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ABSTRACT 

As aspect oriented software becomes more popular, there will 
be more demand for a method of verifying the correctness of 
the programs.  This paper tries to address the verification issue 
by improving a modular verification technique proposed by 
Krishnamurthi et al. The technique has the problem that it can 
not handle every aspect, which may result in a false awnser. By 
checking the type of the aspect in advance, we can prevent this 
behavior. The proposed solution also improves some other 
issues regarding the model checker.  
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1. INTRODUCTION 
Aspect oriented programming (AOP) is a new programming 
paradigm which deals with crosscutting concerns. These 
concerns are usually scattered all over the program code, while 
realizing the same task. A good example is logging: at every 
place where the programmer wants to log the status of the 
program, a logging function has to be called.  

The goal of AOP is to separate these crosscutting concerns and 
place them in a separate module, called an aspect. The 
functionality of the aspect is imposed on the program by the 
definition of pointcut designators (PCDs). These PCDs 
represent points in the program where the code of the aspect, 
called advice code, needs to be applied. These individual points 
are also called joinpoints, because these are the places where 
the code of the aspect and the program itself will be unified by 
the compiler. For a complete introduction into AOP, see 
[BH05]. 

This type of programming allows for better modularity in the 
program but also poses new problems, one of which being the 
increased difficulty of verifiability.  As AOP gradually becomes 
more popular, this problem will become a more important one 
to solve. Some work already exists that proposes solutions for 
model checking of AOP. This paper is an effort to change the 
situation by improving an existing technique for AOP model 
checking. In the next section, we will show the chosen 
technique to be a promising one. After an explanation of how 
the technique works, we will identify its shortcomings. The 
most important one is that it may return a false answer for 

certain types of input (aspects). The proposed solution to this 
shortcoming greatly improves the use of the technique in 
practice, because model checking is mostly used for mission 
critical systems. 

2. RELATED WORK 
In [UT02] and [DM01] a simple approach to verify AOP is 
explained. The properties that can be verified may be expressed 
in CTL. In these works, the model of the program is a 
composition of a model of the main program and the model of 
the advice code. A copy of the advice model is inlined into the 
model of the main program, wherever it applies. This is a static 
approach, which logically has the problem that the model has to 
be adapted for every small change in the program or in the 
advice code.  

[NC01] takes the approach of defining a formal language, 
which supports concern level compositions. Even though it 
seems like a promising way, it is still in its early stages of 
development. And there is no work to make the technique 
useable in practice. 

In [KFG04] a modular verification method is discussed. In 
addition, this work uses CTL to express properties. The basic 
idea of this paper is to use the verification of the base program 
to verify aspect individually. This is realized by saving the state 
of the verification in interfaces for every joinpoint of the base 
program (The left part of figure 1). So interfaces represent the 
verification state of the base program and consist of nothing 
more than properties. Any aspect that is made for a certain 
joinpoint can be individually verified against the interface of 
the joinpoint (The right part of figure 1). When verification 
succeeds, it can be concluded that the base program still 
operates correctly when the aspect is applied.  
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Figure 1: The dataflow of the modular model checker 

The technique seems very promising. As Krishnamurthi et al. 
points out, it may aid aspect development: 

1. The advice may be authored at a different time or in a 
different place from the program, just as modules are 
developed in spatial and temporal independence.  
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2. The advice may be edited repeatedly; verification time is 
proportional to the size of the system, so constantly 
verifying the changing advice against a fixed program is 
inefficient. 

So a clear advantage of the technique is that it does not require 
simultaneous design of the advice for every PCD. Moreover it 
is merely an extension to verification techniques that are 
already successfully used in practice for non-AOP programs, 
like the one described in [CES86] and [CDH00].  

3. BACKGROUND 
The previous section showed in what ways the modular aspect 
model checker is superior to other techniques for aspect model 
checking. Therefore, we will focus on this technique. To be 
able to explain where its weaknesses lie and what can be done 
about them, we will first explore the technique in more detail. 

According to standard model checking practices the base 
program is first checked, this process is henceforth called the 
“base verification”. It must satisfy the properties, but that is not 
the only use of the verification process. Interfaces must be 
constructed at every joinpoint where advice can apply. The 
interfaces are the recorded state of the verification at each 
identified joinpoint plus some extra information about the 
joinpoint detection. The latter is used to detect newly created 
jointpoints in advices and is not of any interest for the 
improvements discussed here. 

It is intuitively clear that the state of the verification process can 
be used to verify advices in isolation, because this would be the 
same as verifying the advice woven into the base code. 
However, some subtleties arise by doing so. These are 
discussed in section 6 of [KFG04] and will be further explored 
in the next section. 

4. PROBLEM STATEMENT 

4.1 Problems 
Modular verification looks like a promising way to verify AOP, 
mainly because it is powerful; there is no need to repeat 
analysis on the base program for new aspects and aspects can be 
developed separately from the base program. However there are 
some shortcomings which are not explored enough in [KFG04] 
(or in others) to conclude that they cannot be eliminated. To 
quote Krishnamurthi et al.: 

1. Around advices (Section 6). “Depending on whether 
proceed is called or not, the body of a function f will be 
executed or not. The body of f has already been traversed 
by the model checker (in the base verification), it is 
tempting to reuse the verification effort by adopting the 
labels already in the program and avoiding re-verification 
of the body of f. Reusing the labels on this copy of f is, 
unfortunately, not necessarily sound. The fragment of the 
advice that appears after resumption may invalidate some 
of the labels that are on the states of f. For this reason, we 
currently inline a copy of f and verify f’s body in the 
context of the proceed-resume states.…” 

For a large function f it logically has costly consequences 
to inline a copy of the body of f. 

2. Algorithm costs (Section 11). “While the underlying 
model checker runs in time linear in the size of the model 
(which can be the base program or an advice machine), in 
the worst case each advice must be verified once per state 
in the joinpoint it advises…” 

An even more important shortcoming of the technique is the 
fact that not all advices can be verified correctly. As [KAT06] 
notes, but [KFG04] fails to mention, the advice may only access 
fields, which are local to itself. If the advice makes a 
modification to a field local to the program, the base 
verification may not be correct anymore. [KAT06] proves this 
and calls such advices “invasive”. It is illustrated by figure 2, 
where the variable A is local to the program (left part of the 
figure). When the advice (middle part) is applied at PCD before 
Call(f) we get a new state diagram (right part). We can see that 
the first state of the program directly after the advice (the first 
state of the body of f) is a new state and the guard in the next 
state is invalidated.   

Figure 2: program advised by an invasive aspect 

This can result in a situation where the advice is concluded to 
be correct, i.e. satisfying the properties of a particular interface, 
but the remainder of the program is now incorrect because the 
base verification is not sound anymore. In other words, the 
model checker may return a false positive. 

4.2 Focus 
To make use of the modular model checker in practice it is 
crucial that it operates correctly. Therefore, this paper will 
mainly focus on the problem of the false positives. In the next 
section, a practical method will be proposed and investigated to 
overcome this problem.  

The other problems mentioned in the preceding section have a 
negative effect on the time complexity and applicability of the 
model checker.  

1. Re-verification of the body of a function may be 
extraneous, depending on the classification of the advice. 
Because Krishnamurthi et al. also states about around 
advices: “In practice, however, we believe this will often 
be unnecessary. When an around advice invokes proceed, 
the aspect itself often performs operations orthogonal to 
those being advised…” 

Another problem regarding in-lining of a function is the 
fact that the code of the base program may not be 
available at the time or place of aspect verification. No 
precaution is taken for this case in the [KFG04]. 

2. Algorithm costs can be reduced by the prevention of 
unnecessary checking of advice for different joinpoints. 
In section 11, Krishnamurthi et al. propose the use of 
deductive techniques to pool joinpoints with similar 
interfaces. However, as [KAT06] notes that in many cases 
it is not even necessary to verify an advice at all, aspects 
classified as spectative cannot invalidate the base 
verification. 
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The next section will mainly focus on the problem of the false 
positives. The other problems are loosely related and can also 
benefit from the proposed solution, for reasons that will become 
clear in the subsequent sections. 

5. Improvements 
5.1 False positives 
False positives can only be caused by invasive advice [KAT06] 
and the modular model checker is proven to be sound for all 
other advices ([KFG04] Theorems). 

It would not be appropriate to try to extend the model checker 
so that it would be able to check invasive advices correctly. 
That would mean changing the fundamental approach, which 
makes it modular in the first place. So we can safely conclude 
that invasive advice is beyond the scope of this model checker. 

A functional implementation of this model checker would need 
to be able to recognize such advice and to handle it 
appropriately. To recognize the classification of the advice we 
propose the use of the method in [RSB04], because the authors 
even produced a functional tool in java which is able to identify 
the type of any advice.  This tool can be directly coupled to an 
implementation of the modular model checker and needs to 
identify the advice type as the first step of the whole 
verification process. Figure 3 gives an impression of the 
dataflow of the new model checker, the interface generator is 
omitted because it stays the same. 

Figure 3: The dataflow of the improved modular advice 
model checker 

Types of advice in [RSB04] are called classifications; Table 1 
shows an overview of them. It contains two axes; the flow 
control axe (vertical) classifies aspects according to their 
influence on the execution sequence of the program and the 
scope axe (horizontal) classifies aspects according to the data 
dependencies it has with the base code.   

Table 1: A classification scheme for aspects 
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This classification system makes finer distinction between 
aspects then [KAT06] does. Luckily, there are similarities 
between to two classification systems. [KAT06] points out the 
following equalities: “The latter two categories (classifications 
on the scope axe in [RSB04]) are invasive”. The control flow, 
the other axe in the classification of [RSB04], does not 
influence the model checker as is clearly illustrated by the 
example Krishnamurthi et al. give for verifying around advice.  

Until now we only explained how the model checker can be 
extended to identify the classification of advices and which 
classes should be handled appropriately. We have said nothing 
on how to handle them. A safe treatment would be to reject 
them always. However, it is possible that the advice still does 
not invalidate the properties we are checking; it is only our 
model checker, which is not able to verify it. Therefore, we 
may choose to reroute the input to another model checker (for 
example [UT02] or [DM01]) which verifies the properties on 
the woven program. It should be noted that we need the base 
code do this, so it may not be appropriate in all cases. 

5.2 Around advice 
The section “problem statement” explained the algorithm costs 
involved in checking around advice and the problem of the 
possible absence of (a model of) the base code to in-line the 
function in the advice.  

Now that the advice classification is known in advance we can 
treat around advice more appropriate. [KAT06] proves that all 
the properties for the base program hold for spectative advice. 
The work also identifies the first classification on the scope axe 
to be definitely spectative. So whenever an aspect is classified 
as being orthogonal, independent or observational the model 
checker can refrain from in-lining a copy of the function for 
every proceed call. 

5.3 Algorithm costs 
For the same reason that around advice does not need to inline a 
copy of the function for spectative aspects, advice itself does 
not need to be verified whenever it is found to be of that 
classification. This can reduce the algorithm costs dramatically 
in some situations, because normally an aspect needs to be 
verified for every joinpoint. Further optimizations using 
deductive techniques as Krishnamurthi et al. propose could still 
be useful. 

6. DISCUSSION 
The improvements proposed here are only of some use if it does 
not put another burden on the already time-complex operation 
of model checking. 

 [RSB04] does not come with conclusions regarding the 
time-complexity of the tool. However if we check the 
technologies, it was build on [BLA99] and [SAL01], we 
quickly see that the time-complexity is polynomial in the 
number of statements of the advice. This may be acceptable if 
the average length of advice is taken into account, which is 
normally much shorter than the average function of the base 
code. However, complex structures may have a negative effect 
on the pointer analysis, so it may be useful to consider some 
preliminary checks before the classification analysis is 
performed.  

 Katz identifies a sub-classification of invasive aspects, 
called weakly-invasive: “The latter two categories are invasive, 
but could be further analyzed to identify special cases of 
weakly invasive aspects”. He shows these aspects to be 
functioning correctly under the conditions of the modular model 
checker (Lemma 9). However interesting it would be to be able 
to identify these aspects and accept them, it is not possible to do 
so with the static approach of the current classification tool. To 
identify a weakly invasive aspect, one has to prove it returns to 
a state, which is already part of the base program, the latter may 
not be available at the time the aspects are verified. It is likely 
that the time-complexity of this job does exceed that of the 
model checker. 
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7. CONCLUSION 
We have shown modular aspect model checking [KFG04] to be 
a promising technique to verify AOP correctness. Through its 
inherent shortcomings, it is not able to verify each class of 
advice correctly. We have proposed a way to identify the class 
of advices prior to model checking, so that they can be handled 
by a different model checker or at least be rejected all together.  

To do this we make use of two works regarding aspect 
classification. The tool from [RSB04] can be used to identify 
the classification of an aspect automatically and [KAT06] 
delivers the proofs which classes can be handled by the model 
checker and which not. 

The result still leaves much room for improvement; since the 
automatic identification tool cannot make a distinction fine 
enough to implement the perfect filter (weakly invasive aspects 
can only be identified dynamically).  
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