
1

Improving a Modular Verification Technique for Aspect
Oriented Programming

Alfons Laarman
Faculty of EEMCS

University of Twente

a.w.laarman@student.utwente.nl

ABSTRACT

As aspect oriented software becomes more popular, there will
be more demand for a method of verifying the correctness of
the programs. This paper tries to address the verification issue
by improving a modular verification technique proposed by
Krishnamurthi et al. The technique has the problem that it can
not handle every aspect, which may result in a false awnser. By
checking the type of the aspect in advance, we can prevent this
behavior. The proposed solution also improves some other
issues regarding the model checker.

Keywords
Incremental verification, modular verification, model checking,
aspect-oriented programming, feature oriented software, aspect
classification.

1. INTRODUCTION
Aspect oriented programming (AOP) is a new programming
paradigm which deals with crosscutting concerns. These
concerns are usually scattered all over the program code, while
realizing the same task. A good example is logging: at every
place where the programmer wants to log the status of the
program, a logging function has to be called.

The goal of AOP is to separate these crosscutting concerns and
place them in a separate module, called an aspect. The
functionality of the aspect is imposed on the program by the
definition of pointcut designators (PCDs). These PCDs
represent points in the program where the code of the aspect,
called advice code, needs to be applied. These individual points
are also called joinpoints, because these are the places where
the code of the aspect and the program itself will be unified by
the compiler. For a complete introduction into AOP, see
[BH05].

This type of programming allows for better modularity in the
program but also poses new problems, one of which being the
increased difficulty of verifiability. As AOP gradually becomes
more popular, this problem will become a more important one
to solve. Some work already exists that proposes solutions for
model checking of AOP. This paper is an effort to change the
situation by improving an existing technique for AOP model
checking. In the next section, we will show the chosen
technique to be a promising one. After an explanation of how
the technique works, we will identify its shortcomings. The
most important one is that it may return a false answer for

certain types of input (aspects). The proposed solution to this
shortcoming greatly improves the use of the technique in
practice, because model checking is mostly used for mission
critical systems.

2. RELATED WORK
In [UT02] and [DM01] a simple approach to verify AOP is
explained. The properties that can be verified may be expressed
in CTL. In these works, the model of the program is a
composition of a model of the main program and the model of
the advice code. A copy of the advice model is inlined into the
model of the main program, wherever it applies. This is a static
approach, which logically has the problem that the model has to
be adapted for every small change in the program or in the
advice code.

[NC01] takes the approach of defining a formal language,
which supports concern level compositions. Even though it
seems like a promising way, it is still in its early stages of
development. And there is no work to make the technique
useable in practice.

In [KFG04] a modular verification method is discussed. In
addition, this work uses CTL to express properties. The basic
idea of this paper is to use the verification of the base program
to verify aspect individually. This is realized by saving the state
of the verification in interfaces for every joinpoint of the base
program (The left part of figure 1). So interfaces represent the
verification state of the base program and consist of nothing
more than properties. Any aspect that is made for a certain
joinpoint can be individually verified against the interface of
the joinpoint (The right part of figure 1). When verification
succeeds, it can be concluded that the base program still
operates correctly when the aspect is applied.

Interface
generator

Base
program

Interfaces

PCDs

Properties

Modular advice
model-checker

Interfaces

Result

PCDs

Advices

Once Infinitely

Figure 1: The dataflow of the modular model checker

The technique seems very promising. As Krishnamurthi et al.
points out, it may aid aspect development:

1. The advice may be authored at a different time or in a
different place from the program, just as modules are
developed in spatial and temporal independence.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission.
5th Twente Student Conference on IT , Enschede 26th June, 2006
Copyright 2006, University of Twente, Faculty of Electrical
Engineering, Mathematics and Computer Science

2

2. The advice may be edited repeatedly; verification time is
proportional to the size of the system, so constantly
verifying the changing advice against a fixed program is
inefficient.

So a clear advantage of the technique is that it does not require
simultaneous design of the advice for every PCD. Moreover it
is merely an extension to verification techniques that are
already successfully used in practice for non-AOP programs,
like the one described in [CES86] and [CDH00].

3. BACKGROUND
The previous section showed in what ways the modular aspect
model checker is superior to other techniques for aspect model
checking. Therefore, we will focus on this technique. To be
able to explain where its weaknesses lie and what can be done
about them, we will first explore the technique in more detail.

According to standard model checking practices the base
program is first checked, this process is henceforth called the
“base verification”. It must satisfy the properties, but that is not
the only use of the verification process. Interfaces must be
constructed at every joinpoint where advice can apply. The
interfaces are the recorded state of the verification at each
identified joinpoint plus some extra information about the
joinpoint detection. The latter is used to detect newly created
jointpoints in advices and is not of any interest for the
improvements discussed here.

It is intuitively clear that the state of the verification process can
be used to verify advices in isolation, because this would be the
same as verifying the advice woven into the base code.
However, some subtleties arise by doing so. These are
discussed in section 6 of [KFG04] and will be further explored
in the next section.

4. PROBLEM STATEMENT

4.1 Problems
Modular verification looks like a promising way to verify AOP,
mainly because it is powerful; there is no need to repeat
analysis on the base program for new aspects and aspects can be
developed separately from the base program. However there are
some shortcomings which are not explored enough in [KFG04]
(or in others) to conclude that they cannot be eliminated. To
quote Krishnamurthi et al.:

1. Around advices (Section 6). “Depending on whether
proceed is called or not, the body of a function f will be
executed or not. The body of f has already been traversed
by the model checker (in the base verification), it is
tempting to reuse the verification effort by adopting the
labels already in the program and avoiding re-verification
of the body of f. Reusing the labels on this copy of f is,
unfortunately, not necessarily sound. The fragment of the
advice that appears after resumption may invalidate some
of the labels that are on the states of f. For this reason, we
currently inline a copy of f and verify f’s body in the
context of the proceed-resume states.…”

For a large function f it logically has costly consequences
to inline a copy of the body of f.

2. Algorithm costs (Section 11). “While the underlying
model checker runs in time linear in the size of the model
(which can be the base program or an advice machine), in
the worst case each advice must be verified once per state
in the joinpoint it advises…”

An even more important shortcoming of the technique is the
fact that not all advices can be verified correctly. As [KAT06]
notes, but [KFG04] fails to mention, the advice may only access
fields, which are local to itself. If the advice makes a
modification to a field local to the program, the base
verification may not be correct anymore. [KAT06] proves this
and calls such advices “invasive”. It is illustrated by figure 2,
where the variable A is local to the program (left part of the
figure). When the advice (middle part) is applied at PCD before
Call(f) we get a new state diagram (right part). We can see that
the first state of the program directly after the advice (the first
state of the body of f) is a new state and the guard in the next
state is invalidated.

Figure 2: program advised by an invasive aspect

This can result in a situation where the advice is concluded to
be correct, i.e. satisfying the properties of a particular interface,
but the remainder of the program is now incorrect because the
base verification is not sound anymore. In other words, the
model checker may return a false positive.

4.2 Focus
To make use of the modular model checker in practice it is
crucial that it operates correctly. Therefore, this paper will
mainly focus on the problem of the false positives. In the next
section, a practical method will be proposed and investigated to
overcome this problem.

The other problems mentioned in the preceding section have a
negative effect on the time complexity and applicability of the
model checker.

1. Re-verification of the body of a function may be
extraneous, depending on the classification of the advice.
Because Krishnamurthi et al. also states about around
advices: “In practice, however, we believe this will often
be unnecessary. When an around advice invokes proceed,
the aspect itself often performs operations orthogonal to
those being advised…”

Another problem regarding in-lining of a function is the
fact that the code of the base program may not be
available at the time or place of aspect verification. No
precaution is taken for this case in the [KFG04].

2. Algorithm costs can be reduced by the prevention of
unnecessary checking of advice for different joinpoints.
In section 11, Krishnamurthi et al. propose the use of
deductive techniques to pool joinpoints with similar
interfaces. However, as [KAT06] notes that in many cases
it is not even necessary to verify an advice at all, aspects
classified as spectative cannot invalidate the base
verification.

3

The next section will mainly focus on the problem of the false
positives. The other problems are loosely related and can also
benefit from the proposed solution, for reasons that will become
clear in the subsequent sections.

5. Improvements
5.1 False positives
False positives can only be caused by invasive advice [KAT06]
and the modular model checker is proven to be sound for all
other advices ([KFG04] Theorems).

It would not be appropriate to try to extend the model checker
so that it would be able to check invasive advices correctly.
That would mean changing the fundamental approach, which
makes it modular in the first place. So we can safely conclude
that invasive advice is beyond the scope of this model checker.

A functional implementation of this model checker would need
to be able to recognize such advice and to handle it
appropriately. To recognize the classification of the advice we
propose the use of the method in [RSB04], because the authors
even produced a functional tool in java which is able to identify
the type of any advice. This tool can be directly coupled to an
implementation of the modular model checker and needs to
identify the advice type as the first step of the whole
verification process. Figure 3 gives an impression of the
dataflow of the new model checker, the interface generator is
omitted because it stays the same.

Figure 3: The dataflow of the improved modular advice
model checker

Types of advice in [RSB04] are called classifications; Table 1
shows an overview of them. It contains two axes; the flow
control axe (vertical) classifies aspects according to their
influence on the execution sequence of the program and the
scope axe (horizontal) classifies aspects according to the data
dependencies it has with the base code.

Table 1: A classification scheme for aspects

 Scope

Flow

control O
rt

ho
go

na
l

In
de

pe
nd

en
t

O
bs

er
va

ti
on

A
ct

ua
ti

on

In
te

rf
er

en
ce

Augmentation

Narrowing

Replacement

Combination

This classification system makes finer distinction between
aspects then [KAT06] does. Luckily, there are similarities
between to two classification systems. [KAT06] points out the
following equalities: “The latter two categories (classifications
on the scope axe in [RSB04]) are invasive”. The control flow,
the other axe in the classification of [RSB04], does not
influence the model checker as is clearly illustrated by the
example Krishnamurthi et al. give for verifying around advice.

Until now we only explained how the model checker can be
extended to identify the classification of advices and which
classes should be handled appropriately. We have said nothing
on how to handle them. A safe treatment would be to reject
them always. However, it is possible that the advice still does
not invalidate the properties we are checking; it is only our
model checker, which is not able to verify it. Therefore, we
may choose to reroute the input to another model checker (for
example [UT02] or [DM01]) which verifies the properties on
the woven program. It should be noted that we need the base
code do this, so it may not be appropriate in all cases.

5.2 Around advice
The section “problem statement” explained the algorithm costs
involved in checking around advice and the problem of the
possible absence of (a model of) the base code to in-line the
function in the advice.

Now that the advice classification is known in advance we can
treat around advice more appropriate. [KAT06] proves that all
the properties for the base program hold for spectative advice.
The work also identifies the first classification on the scope axe
to be definitely spectative. So whenever an aspect is classified
as being orthogonal, independent or observational the model
checker can refrain from in-lining a copy of the function for
every proceed call.

5.3 Algorithm costs
For the same reason that around advice does not need to inline a
copy of the function for spectative aspects, advice itself does
not need to be verified whenever it is found to be of that
classification. This can reduce the algorithm costs dramatically
in some situations, because normally an aspect needs to be
verified for every joinpoint. Further optimizations using
deductive techniques as Krishnamurthi et al. propose could still
be useful.

6. DISCUSSION
The improvements proposed here are only of some use if it does
not put another burden on the already time-complex operation
of model checking.

 [RSB04] does not come with conclusions regarding the
time-complexity of the tool. However if we check the
technologies, it was build on [BLA99] and [SAL01], we
quickly see that the time-complexity is polynomial in the
number of statements of the advice. This may be acceptable if
the average length of advice is taken into account, which is
normally much shorter than the average function of the base
code. However, complex structures may have a negative effect
on the pointer analysis, so it may be useful to consider some
preliminary checks before the classification analysis is
performed.

 Katz identifies a sub-classification of invasive aspects,
called weakly-invasive: “The latter two categories are invasive,
but could be further analyzed to identify special cases of
weakly invasive aspects”. He shows these aspects to be
functioning correctly under the conditions of the modular model
checker (Lemma 9). However interesting it would be to be able
to identify these aspects and accept them, it is not possible to do
so with the static approach of the current classification tool. To
identify a weakly invasive aspect, one has to prove it returns to
a state, which is already part of the base program, the latter may
not be available at the time the aspects are verified. It is likely
that the time-complexity of this job does exceed that of the
model checker.

4

7. CONCLUSION
We have shown modular aspect model checking [KFG04] to be
a promising technique to verify AOP correctness. Through its
inherent shortcomings, it is not able to verify each class of
advice correctly. We have proposed a way to identify the class
of advices prior to model checking, so that they can be handled
by a different model checker or at least be rejected all together.

To do this we make use of two works regarding aspect
classification. The tool from [RSB04] can be used to identify
the classification of an aspect automatically and [KAT06]
delivers the proofs which classes can be handled by the model
checker and which not.

The result still leaves much room for improvement; since the
automatic identification tool cannot make a distinction fine
enough to implement the perfect filter (weakly invasive aspects
can only be identified dynamically).

ACKNOWLEDGMENTS
Lodewijk Bergmans and Mariëlle Stoelinga helped me with the
definition of concrete methods and boundaries for the proposed
research. My fellow students helped me find a good research
domain by sharing their findings.

REFERENCES
[BH05] Johan Brichau and Theo D’Hondt. Introduction to

Aspect-Oriented Software Development. European
Network of Excellence on Aspect-Oriented Software
Development, August 2005.

[BLA99] B. Blanchet. Escape analysis for object oriented
languages. Application to Java. In Proceedings of the
14th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications,
Denver, CO, Nov. 1999.

[CDH00] James C. Corbett, Matthew B. Dwyer, John Hatcliff,
Shawn Laubach, Corina Pasareanu, Robby, and
Hongjun Zheng. Bandera: extracting finite-state
models from Java source code. In International
Conference on Software Engineering, 2000, pages
439–448.

[CES86] Clarke, E. M., Emerson, E. A., and Sistla, A. P. 1986.
Automatic verification of finite-state concurrent
systems using temporal logic specifications.
ACMTrans. Program. Lang. Syst. 8, 2, 244–263.

[DM01] Denaro, G. and M. Monga. An experience on
verification of aspect properties, In International
Workshop on Principles of Software Evolution,
September 2001

 [KAT06] S. Katz. Aspect categories and classes of temporal
properties. In Transactions on Aspect Oriented
Software Development, Volume 1, LNCS 3880, pages
106–134, 2006.

[KFG04] Shriram Krishnamurthi, Kathi Fisler, Michael
Greenberg. Verifying Aspect Advice Modularly,
ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, 2004.

[NC01] Nelson, T., D. D. Cowan and P. S. C. Alencar.
Supporting formal verification of crosscutting
concerns. In Reflection, 2001, pages 153–169.

[RSB04] M Rinard, A. Salcianu, and S. Bugrara, A
classification system and analysis for aspect-oriented
programs, International Conference on Foundations
of Software Engineering (FSE), 2004

[SAL01] A. Salcianu. Pointer analysis and its applications for
Java programs. MEng thesis, Massachusetts Institute
of Technology, September 2001.

[UT02] Ubayashi, N. and T. Tamai. Aspect oriented
programming with model checking. In International
Conference on Aspect-Oriented Software
Development, April 2002, 148–154

