
Dependency-Based Action Refinement

Arend Rensink and Heike Wehrheim*

Institut f/Jr Informatik, University of Hildesheim
Postfach 101363, D-31t13 Hildesheim, Germany

{rensink,wehrheim} @informatik.uni-hildesheim.de

Abs t rac t . Action refinement in process algebras has been widely stud-
ied in the last few years as a means to support top-down design of sys-
tems. A specific notion of refinement arises when a dependency relation
on the actions (in the Mazurkiewicz sense) is used to control the inher-
itance of orderings from the abstract level. In this paper we present a
rather simple operational semantics for dependency-based action refine-
ment. We show the consistency of the operational with a (previously
published) denotational semantics. We moreover show that bisimulation
is a congruence for dependency-based refinement. Finally, we give an
illustrative example.

1 I n t r o d u c t i o n

Action refinement in process algebras [1, 2, 18, 11, 8, 9] has been proposed to
support hierarchical design of reactive systems. Starting with an abstract spec-
ification, step-by-step more concrete specifications are constructed by refining
actions into concrete processes. Thus the complexity of the design process is
reduced and furthermore verification can be facilitated [13]. Standard action
refinement uses a strong concept of inheritance of causally related abstract ac-
tions: if two actions sequentially follow each other on an abstract level, their
implementations (as described by the refinement) are also strictly sequential.
However, this has turned out to be too restrictive in practice: it might as well be
the case that some parts of the implementation of sequential actions overlap in
time. A s proposed by [14], one way to overcome this problem is to combine action
refinement with a dependency relation on actions (in the sense of Mazurkiewicz
[16]): the ordering among abstract actions is only inherited to dependent parts
of their refinements. Dependency-based action refinement allows an overlapping
(concurrent execution) of independent parts of the implementation of sequential
abstract actions. Other approaches to design by refinement allowing such an
overlap, but not based on dependencies, can be found in [10, 21, 23].

In general, two approaches to the definition of an action refinement opera-
tor can be found in the literature. On the one hand, action refinement can be
defined as syntactic substitution on terms [1, 2, 18], on the other hand as se-
mantic substitution in an appropriate denotational model [11, 3, 15, 8, 25, 3].

* The research reported in this paper was partially supported by the Human Capital
and Mobility Cooperation Network "EXPRESS" (Expressiveness of Languages for
Concurrency).

469

For dependency-based refinement, only the latter approach has been followed
yet [14]. In general, the two approaches do not coincide (for a comparison see
[12]). Operational semantics for action refinement, being consistent with a de-
notational model, have been defined in [6, 9, 22], however all of them generate
transition systems with an enhanced labelling of transition (not just plain ac-
tions), adding e.g. causes or event names. The reason for this is essentially that
plain transition systems can in general only be distinguished up to bisimula-
tion and bisimulation is not a congruence for standard a~tion refinement [7].
Bisimulation over augmented transition systems (as used for giving operational
semantics to action refinement) coincides with equivalences (ST-bisimulation,
history preserving bisimulation, event isomorphism) which are invariant under
refinement.

In this paper we extend a process algebra with action dependencies (as pre-
sented in [24]) with an operator for action refinement and develop an operational
semantics for it. The basic idea is to reduce refinement to weak sequential com-
position (which is dependency-based sequential composition allowing an overlap-
ping of independent parts of the operands): if the abstract system can perform a
sequence of action ala2.., then the refinement can perform r(al).r(a2).... (r(a)
is the refinement of an action a according to a refinement function r, • denotes
weak sequential composition). This allows independent parts of refinements of
sequentially ordered actions to be executed concurrently. The transition relation
of the resulting labelled transition system is solely labelled with actions.

The operational semantics is shown to be consistent with the denotational
semantics of dependency-based action refinement as introduced in [26]. We fur-
thermore show that bisimulation is a congruence for action refinement. Finally
we illustrate the practical applicability of our approach by an example.

2 D e f i n i t i o n s

We start with a brief repetition of the operational and denotational semantics
for the process algebra L as developed in [24]. Thereafter, L will be extended by
an action refinement operator.

We assume a distributed alphabet (A,I) , where A is a set of actions and
I C A × A is a symmetric and irreflexive independence relation. A is ranged over
by a, b, c. We denote a D b iff -~(a I b), and [A]D := {b D a I a E A}. D is called
the dependency relation. Intuitively, actions are dependent if they share some
common resource, which can for instance be a shared variable, a database item
or a printer. We also use a set of process variables X to allow for the definition
of infinite behaviour. The language L is generated by the following productions:

B ::= Opla t X t B . B I B + B I B H A B I I ~ X . B

where a E A, A, P _C A and X E X. A term is called closed iff all variables are in
the scope of a fixpoint operator. In the sequel we only consider closed terms. We
let B{BI /X} stand for the substitution of all occurrences of the variable X in B

470

by Bq F~rthermore, we denote by a (B) the set of all actions which syntactically
occur in B.

The operators have the following informal meaning: OR describes an empty
process (below we comment on the set P) , a a process executing the action a, • is
weak sequential composition, + denotes a CCS-like choice (with a non-standard
interaction with sequential composition), IIA a TCSP-like parallel composition
with synchronisation on actions in A and # X . B defines recursion. We only con-
sider guarded recursion, where a term B is considered guarded if all variables X
only occur in subterms of the form a . X with [aiD = A .

The information about the dependencies of actions is exploited to give a se-
mantics to terms which ensures that independent actions never have to wait for
one another to proceed. This results in a weak form of sequential composition
which allows actions from the second operand that are independent of the first
to be executed immediately. To capture the intended behaviour of weak sequen-
tial composition, a particular notion of terminat ion is needed. It is not sufficient
anymore to solely distinguish between successful termination and deadlock; in-
stead, a process is said to be terminated wrt. a set of actions P (intuitively if
it does not want to execute anything on which actions out of P depend). In a
sequential composition, the second component can perform an action a if the
first component is terminated wrt. a (e.g. a- b, a I b, can execute b since a is ter-
minated wrt. b). This notion of termination (called permission) is also reflected
in the constants representing empty processes: for any P C A, OF is an empty
process terminated wrt. P (thus 0{~} - a allows execution of a). We let 1 := OA
stand for the completely terminated process.

In connection with weak sequential composition, the semantics of choice is
also non-standard. Choices can be resolved by actions not participating in the
choice but sequentially following it. As an example take B = (a+b).c, a D c, b I c.
Since b and c are independent, c can also be executed first; afterwards, however,
a is not possible anymore, since otherwise the specified order between dependent
actions, a and c, is not met.

In Table 1 we give a structured operational semantics for L. Besides a transi-
tion relation (-+) we also include a permission relation (.. -+) to describe the new
form of termination. In contrast to the usual termination predicate, permission
is a binary relation, since permission may change processes due to the resolu-
tion of choices (see above). This is reflected by the permission rule for choices:
if only one operand of the choice permits an action, the term changes with the
permission. The standard semantic model of labelled transition systems can be
extended to permissions.

D e f i n i t i o n 1. A transition-per~nission-system (tps for short) is a tuple T =
(S, 4 , .. 4) wi th

- S a set of states,
- --+ C S × A × S a transition relation,
- .. --+ C_ S × A × S a permission relation.

In particular, the rules in Table 1 define relations ~ and .. ~ over L that give
rise to a transition-permission system (L, -% .. --~).

471

a E P a l b

Op .Y.-+ Op b..a ~ b

B 1 ..a._+ B t B2 ..a._.,~ B2 ..%-+ B' B1 ..a ¢~

Bt + B2 ..~.-+ B' B1 + Be .2-.> B'

B1 ..%-+ B~ B2 .a._+ e~ B1 -% 311

B1 • Be ..~.--~ B~ • B~ B1 • Be -% B~ . Be

BI .~-+ B'~ B2 .~-+ B' e B1 -% B~,a ~ A

B1 tlA B2 .~-+ Bi I{A B~ B1 I1~ B~ -% Bi II~ B:

B~ -% B~ Be -% B~, a e A B { # X . B / X } ..~-+ B'

B1 {IA B2 -% Bi iIA B'2 #X .B ..%-+ U'

a 2 + 1

B1 -% B' B2 -% B '

B1 + B2 --% B' B1 + B2 --% B'

B1 .~--~ B'I B2 -% B~

BI " Be -% B'I " B~2

Be -% B~, a ~ A

Bt IIA B2 --% B1 IIA B~

B { # X . B / X } -% B'

t tX.B -% B'

Table 1. Operational semantics for L

In a transition-permission system T, a state s' is called reachable from a
state s if (s, s') E (LJa -% u .2_+).. ~klrthermore, s is called fully terminated
if s ..a.~ s for all a E A, and terminating if for all s r reachable from s, there is a
fully terminated s" reachable from s'. The usual notion of (strong) bisimilarity
of [19, 17] on labelled transition systems can be adapted to our setting.

D e f i n i t i o n 2. Let T = (S, ~ , ..--+/ be a tps. Bisimilariy over T is the largest
symmetrical relation ~ C_ S × S such that whenever Sl ~ s2 then

1. sl -% s~ implies 3s~ : s2 -% s~ and s~ ,-~ s~;
2. sl .2__+ s~ implies 3s~ : s2 ..~.~ s~ and s~ ~ s~.

Denotational semantics. We now recall the event-based denotational model for
L developed in [26], with a slight deviation to smoothen the definition of action
refinement, later on. In this model, a process is represented by its set of maximal
runs (this is the deviation from [26], where all runs where included, not just the
maximal ones). Each run consists of a set of events that have happened (where
an event corresponds to the execution of an action), together with their causal
ordering and a labelling function indicating which actions have been executed.
~ r t h e r m o r e , each run contains termination information, in the form of a set
containing the actions with respect to which the run is terminated. The causal
ordering has to be consistent with the dependency relation: only dependent
actions may (and must) be ordered. For the construction of runs we assume a
universe of events E, ranged over by d, e.

D e f i n i t i o n 3. A run is a tuple u = (E, <,~, 4) where
- E C E is a (finite or infinite) set of events;
- < C_ E x E is an acyclic ordering on E;

472

- g: E --+ A is a labelling function, such that ~(d) D ~(e) iff d _< e or e < d;
- 4" C A is a termination set.

The class of runs is denoted R. We denote the elements of a run u by E~, <u,
& and ¢'u. _< will denote the transitive closure of <. The independence relation
I is extended to Eu through & such that d D u e iff &(d) D &(e) . A run can
be depicted by a graph; e.g., ~ - ~ , A denotes a run consisting of two ordered
events, 1 and 2 labelled with a and b, respectively, and termination set is A. A
run u is called a prefix of a run v if the following holds:

u E v :¢~z (Eu C Ev) A (<u = <v M (Eu × Ev)) A ~/u -'- ~/v X [~v(Ev X Eu)]D .
If P C_ R, we denote ET} = U~e~ Eu and ~ = Uu~p &- 7) is called labelling
consistent if t~ is a function. Our denotational models will be nonempty, la-
belling consistent sets of runs, called families of runs. The class of families of
runs is denoted M. They are an extension of the families of posets proposed in
[20]. Only the ___-maximal elements of a family of runs are considered significant.
This is expressed by taking two models, 7) and Q, as equivalent if there is a
bijection ¢: Ep ~ EQ such that ¢* (v) E max E Q for all u E max E 7} (where ¢*
denotes the natural pointwise extension of ¢ to R).

In [26] we have presented a denotational semantics for L that can easily be
adapted to the above families of runs, giving rise to a mapping [.]: L --+ M. Due
to lack of space, we omit the model constructions for the standard operators.
As an example, assume A = {a, b, c} with a D c, a D b and b I c. A family of

F'--- ' - -""71

runs modelling the term (a + b). (b I]z c) is given by I /~2°l,A and I~bp-+2b], A.

¢ . - - . . 2 - - - - - - - - - - - - . y~

Without proof, we state the following property:

P r o p o s i t i o n 4 . B is terminating iff ¢'u = A / o r all u E maxE[B].

Families of runs distinguish concurrent from interleaving behaviour; moreover,
the branching structure of the behaviour can be reconstructed via the names
of events. Thus, the model is quite expressive; much more so, in fact, than
necessary for our present purposes. In this paper, we interpret families of runs
up to bisimulation, by regarding them as transition-permission systems in the
sense of Definition 1:
(1) A transition corresponds to the occurrence of an event; the label of the
transition is the event label. For an event to occur it must be enabled in a
run, i.e., have no causal predecessors; afterwards, it can be discarded. Hence, if
e E min E~, the remainder of u after e is given by

\ e := (E \ {e}, < n ((E \ {e}) × (E \ {e})), ~ r (E \ {e}), eu>
(2) A permission corresponds to the occurrence of a future action a. For any
given run u, such a future action a can only be allowed if it is independent of all
actions of u and u is terminated w.r . t .a . We say that u permits a iff a E ~u and
Ve E Eu. &(e) I a. The following relations are considered to hold iff the right
hand sides are nonempty:

7) ~(e)> { u X e [u e 7),e C minEu}

7) ..~--+ { u E P I u p e r m i t s a }

473

This gives rise to a transition-permission system (M,-+, ..-~). We then have the
following consistency result (cf. [24]):

T h e o r e m 5. For arbitrary terms B E L, B ~ ~B] (in the transition-permission
system L U M).

3 A c t i o n R e f i n e m e n t

We now extend our language with the action refinement operator discussed in
the introduction. Syntactically, the extension is given by the term Bit], where r
stands for a refinement]unction r: A -+ L. In contrast to standard action refine-
ment in causality-based models [11], in our setting, the inheritance of abstract
orderings by the concrete actions of the refinement is driven by the dependen-
cies between the latter. Therefore, the refinement of ordered abstract actions
may result in sets of events which partially overlap in their execution. This is
demonstrated in the following example.

Example 1. Let B = a.b with a D b; hence [B~ = { ~ , A}. Let r: a ~ al .a2
with al D a2, and b ~+ bl - b2 with bl D b2, such that al D bl and a2 D b2 but
a2 I bl and al I b2. The only allowed execution of B[r] by standard refinement
would be ala2blb2, where the entire refinement of b has to wait for a to complete.
With dependency-based refinement we get the following run, which also allows

an overlapping execution albla2b2: I (1,1) al -+ (1,2)a2

J $ $ h
(2,1)bl -+ (2,2)b2

In the following we extend both the operational and the denotational semantics
of L to capture this type of dependency-based refinement. To achive this, we
have to impose two restrictions on refinement functions:
(1) All images have to be terminating (see Section 2). This is a quite natural
restriction, given the fact that abstractly, an action is atomic, i.e., cannot dead-
lock during its execution.
(2) The refinement has to preserve dependency and independency. This property
is called D-consistency below. Preservation of dependency, in our case, means
that if a D b then a also has to depend on the initial actions of r(b). Preservation
of independency means that if a I b then a is independent of all actions of r(b).
Formally, r is called terminating if r(a) is terminating for all a E A~ and D-
consistent if

a D b ~ r(a) .b_~ A Yr(a) - ~ : a' D b

a z b ~ va' e ~(r(a)) : ~' Z b

Operational semantics. We develop SOS rules for refinement. With respect to
the transitions of B[r], it is clear that we need at least a rule of the following
form: from B -% B I and r(a) -~ C, conclude Bit] -~ B" for some term B ' . The
interesting part is the choice of B ' . It should capture the following points: (1)
The refinement of a should be able to proceed, i.e., B" should somehow contain

474

C; (2) B" should resolve all the choices in B in the same way as in B' ; (3) B "
should be able to start the refinements of all a-independent actions allowed by
B ' and (4) B" should still contain the function r. A rule which captures all these
aspects is:

B -% B', r(a) -~+ C
B[r] --~ C. B'[r] (1)

Hence, B" equals the sequential composition of C with B'[r]. To come back
to Example 1, the overlapping execution of the refinement of a and b is thus
derivable:

B[r] a~> a2"b[r] - ~ a2"b2" l[r] an> 1 -b2- l[r] - ~ 1 . 1 - l[r]

The rule for permissions is straightforward, and reflects the intuition behind
D-consistency: If the abstract system B permits an action a, then the refined
system permits it as well.

B ..~.-+ B'

B[r] ..~.-+ B'[r] (2)

The operational semantics of L-plus-refinement, therefore, is determined by Ta-
ble t augmented by Equations (1) and (2). It is noteworthy that these opera-
tional refinement rules are simpler by far than the ones obtained in other ap-
proaches, in particular [9] and [22]. For instance, we no not rely on auxiliary
operators of any kind.

An immediate question concerns the congruence of our semantic equivalence,
bisimulation. This is proved by showing that our operational rules obey a certain
format, which must at least allow negative premises. The format we choose is
GSOS [4]. In order to apply this to our setting, with two kinds of transition
relations, we can extend A by a set A and define ..~.-+ to be -%.

T h e o r e m 6. ,~ is a congruence for refinement.

It is clear that the congruence property does not depend on the termination or
D-consistency of r, since these requirements are not expressed in the operational
rules in any way. On the other hand, for refinement functions that are not D-
consistent, the operationally derived behaviour may deviate from the expected.

Example 2. Consider B = a • b with a D b, and a D-inconsistent refinement in
which some initial action bl from r(b) is independent of the refinement of a; e.g.,
r : a ~+ a', b ~+ bl " b2 such that a' I bl and a' D b2. Intuitively, since abt b2 is an
execution of B[r] and bl is independent of a, B[r] should also be able to s tar t
with bl. However, this cannot be inferred operationally: the only initial action
of B is a, and therefore B[r] cannot start with an action not coming from r(a).

We will strengthen and formalise the concept of "intuitive correctness" for the
operational semantics by investigating a denotational characterisation of the
refinement operator, and showing that the resulting models coincide, at least for
D-consistent refinement functions.

475

Denotational semantics. For the denotational semantics of B[r], we first derive
a semantic function [r]: A --+ M according to [r]:a ~ ~r(a)], and then show
how to apply such a function to an arbitrary model P 6 M. The latter concerns
a pointwise extension of the refinements of single runs.

- Given a model P 6 M and a semantic refinement function 7£: A --+ M, a
witness is a function w:E~ --+ R such that w(e) 6 TC(~(e)) and ¢'w(e) = A
for all e 6 Ep .

- Given a run u 6 P and witness w: E~ -~ R, the refinement o f u by w replaces
all e 6 Eu by their w-images, and orders the resulting events, insofar they
are dependent, according to the ordering of u. This is defined formally below.

- The refinement of P by 7¢ is defined as the set of all P-runs refined by all
TO-witnesses: T~(P) = {w(u) I w is a TO-witness, u 6 P}.

D e f i n i t i o n 7. Let u be a run and w: E -~ R a function with E~ C_ E. The
refinement o fu by w, denoted w(u), is defined as:

- Ew(~) := UeeE~{e} x E~(e);
- (d,d') <w(u) (e,e') :¢:~ (d = e A d ' <~(~) e ')V (d<ueAd 'Dw(u)e ') ;
- g~(=): (e , e ') ~ g~(e)(e ')for all (e,e') 6 g~(~);
- ¢'~(~) := ¢'~.

We can now extend the semantic mapping [.] to the language with refinement,
through the rule [B[r]] := [r] ([B]) . The consistency result of Theorem 5 can
now be extended to the full language.

T h e o r e m 8. For arbitrary B and terminating, D-consistent r, B[r] .~ [B[r]].

For the proof see [27]. Here, the requirement of D-consistency is crucial: The
denotational semantics can describe the intuitively expected behaviour of Ex-
ample 2. This shows that the operational and denotational interpretations may
differ outside the class of D-consistent refinements. Moreover, for D-inconsistent
refinements, bisimulation may fail to be a congruence. For more details see [27].

4 E x a m p l e : D a t a b a s e a c c e s s

In this section we apply our theory to a small example inspired by Brinksma,
Jonsson and Orava [5]. The example concerns a distributed data base that can be
queried and updated. We assume that there are only two possible data, which
we denote 1 and 2. The data base specification is modelled by the transition
system Datas in the following figure:

Data1

qry qry

The problem considered in the paper is to change the interface of the data base,
so that updating consists not of a single action but of two separate stages, in

476

which the update is requested and confirmed, respectively. In our setting, this
can be expressed by a refinement function r: upd i ~ reqi; cnf. Moreover, it is
required that in the meantime (between request and confirmation), querying the
da ta base should still be possible. This results in the behaviour Data1 above.

In our approach, this implementation can be obtained algebraically through
an application of the refinement operator. The overlap between qry i and cn] is
obtained by setting the dependencies appropriately: qryi D reqj but qryi I cnf.

Datas = #Dr. qryl.Dt + upd I .D1 + upd2.#D2, qry2.D2 + updl .DI + upd2.D2

Data~ = #D2. qry2.D2 + upd2 .D2 + upd 1 .#D1. qry 1 .D1 + upd 2 .D2 + upd 1 .D1

The operational behaviour of Data1 = Datas[r] is given by the left hand transi-
tion system in the following figure, The right hand system shows the case where
qry i D cn] instead, in which case the next query must wait for the second phase
of the updating to finish.

Datas[r]

qry~ @

qrY2

. D a i a ' s [r]

cnf . Datas[r]

req 1

~ qrY2

Datals[r]

Datas[r] enf . Datas [r] ~ , enl /
" r 2

qryl

req2 ~

t cnf ', " " ~ qry2

cnf . Data ~ [r] Datds[r]

References

1. L. Aceto and M. Hennessy. Towards action-refinement in process algebras. Infor-
mation and Computation, 103(2):204-269, 1993.

2. L. Aceto and M. Hennessy. Adding action refinement to a finite process algebra.
Information and Computation, 115(2):179-247, 1994.

3. E. Best, R. Devillers, and J. Esparza. General refinement and recursion operators
for the Petri box calculus. In Enjalbert, Finkel, and Wagner, eds., STACS 93, vol.
665 of LNCS, pp. 130-140. Springer, 1993.

4. B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can't be traced. Journal of
the ACM, 42(1):232-268, Jan. 1995.

5. E. Brinksma, B. Jonsson, and F. Orava. Refining interfaces of communicating sys-
tems. In Abramsky and Maibaum, eds., TAPSOFT '91, Volume 2, vol. 494 of
LNCS, pp. 297-312. Springer, 1991.

6. N. Busi, R. van Glabbeek, and R. Gorrieri. Axiomatising ST bisimulation equiva-
lence. In Olderog, ed., Programming Concepts, Methods and Calculi, vol. A-56 of
IFIP Transactions, pp. 169-188. IFIP, 1994.

7. L. Castellano, G. De Michelis, and L. Pomello. Concurrency vs. interleaving: An
instructive example. Bull. Eur. Ass. Theoret. Comput. Sci., 31:12-15, 1987. Note.

8. P. Darondean and P. Degano. Refinement of actions in event structures and causal
trees. Theoretical Computer Science, 118:21-48, 1993.

477

9. P. Degano and 1~. Gorrieri. A causal operational semantics of action refinement.
Information and Computation, 122(1):97-119, 1995.

10. P. Degano, R. Gorrieri, and G. Rosolini. A categorical view of process refinement.
In de Bakker~ de P~oever, and Rozenberg, eds., Semantics: Foundations and Appli-
cations, vol. 666 of LNCS, pp. 138-153. Springer, 1992.

11. R. van Glabbeek and U. Goltz. Equivalences and refinement. In Guessariau, ed.,
18dine Ecole de Printemps d'Informatique Thdorique Semantique du Parallelisme,
vol. 469 of LNCS, 1990.

12. U. Goltz, P~. Gorrieri, and A. Rensink. Comparing syntactic and semantic action
refinement. Information and Computation, 125(2):118-143~ 1996.

13. M. Huhn. Action refinement and property inheritance in systems of sequential
agents. In Montanari and Sassone, eds., Concur'96, vol. 1119 of LNCS, pp. 639-
654. Springer, 1996.

14. W. Janssen, M. Poel, and J. Zwiers. Actions systems and action refinement in the
development of parallel systems. In Baeten and Groote, eds., Concur '91, vol. 527
of LNCS, pp. 298-316. Springer, 1991.

15. L. Jategaonkar and A. Meyer. Testing equivalences for Petri nets with action re-
finement. In Cleaveland, ed., Concur '92, vol. 630 of LNCS, pp. 17-31. Springer,
1992.

16. A. Mazurkiewicz. Basic notions of trace theory. In de Bakker, de Roever, and
Rozenberg, eds., Linear Time, Branching Time and Partial Order in Logics and
Models for Concurrency, vol. 354 of LNCS, pp. 285-363. Springer, 1989.

17. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
18. M. Nielsen, U. Engberg, and K. G. Larsen. F~ally abstract models for a process

language with refinement. In de Bakker, de Roever, and Rozenberg, eds., Linear
Time, Branching Time and Partial Order in Logics and Models for Concurrency,
vol. 354 of LNCS, pp. 523-549. Springer, 1989.

19. D. Park. Concurrency and automata on infinite sequences. In Deussen, ed., Pro-
ceeding8 5th GI Conference, vol. 104 of LNCS, pp. 167-183. Springer, 1981.

20. A. Rensink. Posets for configurations! In Cleaveland, ed., Concur '92, vol. 630 of
LNCS, pp. 269-285. Springer, 1992.

21. A. Rensink. Methodological aspects of action refinement. In Olderog, ed., Pro-
gramming concepts, methods and calculi, vol. A-56 of IFIP Transactions. IFIP,
1994.

22. A. Rensink. An event-based SOS for a language with refinement. In Desel,
ed., Structures in Concurrency Theory, Workshops in Computing, pp. 294-309.
Springer, 1995.

23. A. Rensink and R. Gorrieri. Action refinement as an implementation relation.
In Bidoit and Dauchet, eds., TAPSOFT '97: Theory and Practice of Software
Development, vol. 1214 of LNCS, pp. 772-786. Springer, 1997.

24. A. P~ensink and H. V~ehrheim. "Weak sequential composition in process algebras.
In Jonsson and Parrow, eds., Concur '9~: Concurrency Theory, vol. 836 of LNCS,
pp. 226-241. Springer, 1994.

25. W. Vogler. Failure semantics based on interval semiwords is a congruence for
refinement. Distributed Computing, 4:139-162, 1991.

26. H. Wehrheim. Parametric action refinement. In Olderog, ed., IPIP Transactions:
PTvgramming Concepts, Methods and Calculi, pp. 247-266. Elsevier, 1994.

27. H. VV-ehrheim. Specifying Reactive Systems with Action Dependencies: Modelling
and Hierarchical Design. PhD thesis, University of Hildesheim, 1996.

