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Abstract

Mobile systems operate in a resource-scarce environ-
ment and thus must adapt to external conditions; all layers
must make cost-based decisions about what mode of opera-
tion to use in response to performance feedback. This paper
focuses on the generic interface between adjacent layers
(client and server) in a multi-level hierarchy. TheAdaptive
Research Contracts(ARC) framework uses a bottom-up
approach in which the server exposes a range of quality/cost
modes to the client above. This allows the client to trade
off various algorithms generating different workloads for
multiple resources. A case study shows that control can be
distributed effectively over multiple layers with ARC; global
cost-effective solutions can be obtained with exchanging a
small fraction of all possible control settings.

1. Introduction

Developing applications and systems software for mo-
bile computing is a challenging task, because available
resources such as processing power, memory, and battery
energy are limited. To warrant a reasonable time of opera-
tion, software – applications and operating system – should
collaborate to make the most efficient use of hardware
resources. When wireless communication is required, the
task becomes even more complicated, because of varying
external conditions that influence the quality of the wireless
transmission (i.e., effective bit rate). Changes can result
from a number of different sources:

• the location and speed of a mobile user determine
the transmission errors caused by multi-path fading,
interference, etc.

• interactive applications, like web browsing, typically
generate bursty data traffic over the wireless link.

• the number of users in a cell and their activity directly
influence the available bit rate in a best effort network.

The combined effect of all these fluctuations is that changes
in performance and demands of the wireless link can be

quite largeandquite sudden. This calls for adaptive systems
that continuously reconsider their behavior.

The most scarce resource in a mobile terminal is bat-
tery energy. Consequently, adaptive components always
consider their alternatives with respect to the power they
dissipate. When multiple resources are involved, interesting
trade-offs can be made. For example, it might be possible
to off-load tasks to the backbone network at the expense
of increasing the traffic over the wireless link. More
specifically, when streaming video from a server in the
internet to a mobile client, a trade-off can be made between
compression and communication. If the video stream is
compressed heavily, then a few kbps will be transmitted
over the wireless link, but significant processing power is
required for decoding. If, on the other hand, the video
is transmitted directly, a lot of energy is consumed by the
wireless radio receiving the uncompressed data stream. The
optimal solution depends on the power dissipation of the
radio and processor under various workloads induced by
different compression factors. The best strategy cannot be
determined when establishing the video stream, since the
performance of the radio changes over time, influencing the
trade-offs involved.

In general, adaptive systems must make a trade-off
between the Quality of Service (QoS) they offer and the
resources (Cost) they use. Since adaptive systems are
structured hierarchically, just as any other complex system,
additional effort is required to coordinate the (independent)
decisions at different layers. Adjacent layers, which we will
refer to as client (upper) and server (lower), need an inter-
face to exchange knowledge. At the minimum, a client must
know the current performance offered by the server below,
so it can adapt accordingly. For making trade-offs involving
alternative solutions, as with the video streaming example
above, servers must in addition offer a range of QoS/Cost
alternatives. This leads to a system where adjacent layers,
each having multiple alternatives, must negotiate about the
best overall combination. This paper outlines a generic
approach, namedAdaptive Resource Contracts(ARC), that
structures such negotiations.
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2. Related work

Quality of Service has been addressed by a large number
of researchers. This section focuses on the negotiation
aspects, and reviews various approaches described in liter-
ature; a general survey of QoS architectures is presented
in [11]. The simplest negotiation scheme iscall admission,
where at the time of establishing a connection the appli-
cation specifies its requirements; the network layer tries to
allocate the necessary resources on the route to the final
destination and reports success or failure. For example, the
ATM standard specifies how service requirements must be
formulated; at call setup a client selects a traffic class (e.g.,
Constant Bit Rate), and supplies a number of parameters.
Call admission does not support negotiations during a call,
so applications are tempted to allocate enough throughput
to accommodate their most demanding mode of operation.
This worst-case allocation behavior locks up network re-
sources that could be used by others most of the time.

With the rise of multi-media applications (e.g., video
conferencing) less rigid QoS policies have been developed
to support applications that can dynamically scale their
demands (e.g., reduce the frame rate). The typical approach
is to have the application specify its capabilities through
benefit functions[5], also known asutility functions [3].
A benefit function relates the network performance (i.e.,
bit-rate) to the quality that the application can realize with
it. This information allows graceful handling of network
congestion. Whenever the total traffic exceeds the network
capacity, a decision can be made which client should adapt,
and to what level, while maintaining the highest overall
quality. Instead of optimizing for overall quality, other
policies may be implemented in the network layer [3, 9].

Although benefit functions allow for a rather flexible use
of resources, the disadvantage is that knowledge propagates
downwardsin the hierarchy. Consequently, decisions must
be taken at the lowest level where all knowledge accu-
mulates. Taking decisions at a centralized point becomes
too complex for large systems involving many different
resources. It is impractical to combine expert knowledge
of all resources involved and still make effective trade-offs,
for example, between processing and communication. A
better approach is to let QoS information (i.e., feedback)
flow upwards. Decisions can then be made at the “right”
level. Another advantage is that the bottom-up approach
effectively filters most of the QoS changes at the lower
layers reducing the number of adaptation decisions at the
upper layers; only large QoS changes propagate to the top
and incur handling costs at each layer.

When a server is capable of providing performance
feedback, a simple feedback loop can be used to control
the adaptations in the client on top. This approach is
taken by the SWiFT [6] and AQUA [8] projects, which

provide generic support to control processing and network
resources. Feedback loops work well if the service can
be characterized with one parameter and fluctuations are
relatively small. Both assumptions do not hold for wire-
less communication systems, resulting in ad-hoc control
structures. For example, Bodic et al. map generic QoS
requests to predefined bearer classes, and dynamically re-
consider this mapping to adapt to changes in the wireless
link [4]. The set of bearer classes is kept small so that
coarse decisions (i.e., remapping) can be taken by a single
adaptation component. The UNIQuE project takes a more
structured approach and uses a hierarchy of monitor and
control components to adapt process, data, and network
scheduling [1]. The feedback, however, is implicit through
buffer under and overflow signalling, which makes reason-
ing about alternatives difficult.

The work by Bhatti and Knight [2] on adaptive internet
applications is very interesting, because it provides perfor-
mance feedback in terms of application specific parame-
ters. The application specifies its own so-called QoSSpace
defined as an orthogonal combination of parameters. The
parameters are selected such that each mode the application
may operate in, can conveniently be described as a sub-
space (e.g., a cube in a 3-D parameter space). The network
performance feedback is then mapped into the QoSSpace
signalling how well each sub-space can be served under
current conditions. Since the feedback is in application-
specific terms, adapting to changes amounts to selecting
the mode associated with the best sub-space. Unfortunately,
the QoSSpace approach cannot be used in the area of mo-
bile computing since costs (i.e., power) are not addressed.
Supporting cost aware systems requires a different control
structure as will be shown in the next section.

3. Multi-level optimizations

Layers in a hierarchically structured system that operates
in a resource-scarce environment must be prepared to share
knowledge about their alternative modes of operation so
cost-effective decisions can be made. In contrast to tradi-
tional approaches it is important that both layers, referred
to as client and server, expose their modes of operation.
The server should not quote only the best performance it
can offer, but list a range of alternativesandtheir associated
costs instead. The client should make its different modes
of operation explicit by stating the different possible work-
loads and their associated qualities. When both sources of
information (i.e., operation spaces) are available an opti-
mization can be carried out to select the best combination
of client and server mode. The resulting contract is used to
control the operation mode of client and server.

Figure 1 gives a simplified overview – two layers only –
of the general approach to multi-level optimizations. A pre-
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Figure 1. Operation-space optimization.

requisite is that client and server use a common language;
the client’s workload and server’s performance must be de-
scribed by the same parameter tuple. For example, when the
server is a wireless link obvious parameters are throughput,
error rate, and energy consumption. Additional parameters
can be introduced to yield more detailed descriptions, but
the gain must be put off against the increased complexity.
Usually a small number of parameters (≤ 5) is sufficient to
capture the dominating factors. To avoid confusion we will
refer to the common parameters asresourceparameters.

Exposing an operation space amounts to translating
the internal modes of operation into the relevant resource
parameters. The translation, denoted by T, usually requires
some processing to determine the effects of switching an
internal parameter from one mode to another. For example,
changing the quantization factor in the video encoder will
change the throughput (and distortion) of the compressed
stream, but there is no simple relation between quantization
factor and throughput. When changes in internal parameter
settings result in rather large and discrete steps in the
resource parameter space, exposing the operation space by
means of an expression is not an option. In such cases we
simply tabulate the operation space, where each entry is a
parameter tuple. To master the complexity the number of
entries in the exposed operation space (i.e., the length of the
table) should be limited, which may require pruning and sub
sampling of the internal options.

The task of the optimizer is to take the client’s operation
space (i.e., different workloads) and match it with the
server’s operation space (i.e., performance levels) and select
the best combination. What is considered the best choice is
dependent on the system at hand. Typical quality measures

from the mobile computing domain are energy consump-
tion, throughput, and CPU cycles. The optimization criteria
may even change over time, for example, the importance of
energy consumption may be related to the available amount
of battery energy; full or nearly empty batteries are different
situations requiring different trade-offs.

It is instructive to see how the various approaches dis-
cussed in the related work section fit into the operation-
space optimization scheme of Figure 1. They can be classi-
fied according to who (client, server, or both) is exposing its
operation space and where (in the client or server) the opti-
mizer is located. With call admission (Figure 2) the client
can issue just a single request and the server grants or denies
it. The optimizer, located in the server, has a simple task:
does the service level exceed the request from the client? If
so, the request is granted, otherwise it is rejected.

Optimizer

Client

Server

�������
�������
�������
�������

��������������������

��������������������

contract workload

�������������������������������������������� ����������������������

T

T

mode
register

mode
register

Figure 2. Call admission.

In the case of benefit functions (Figure 3) the client
exports its operation space, so the server can dynamically
control the operation mode of the client. As with call
admission, the server is still offering only one performance
level, but the optimizer is more complicated since it may
dynamically switch the client’s mode of operation to adapt
to changes. Finally, consider the case where the server
provides performance feedback to the client (Figure 4). The
optimizer is now located with the client who uses the current
service level to determine the best possible mode.

At first glance, it appears that both the benefit functions
and the performance feedback approach can be upgraded
to full multi-level optimizations by simply modifying the
server to expose its internal operation space instead of only
providing its best-effort mode. Unfortunately, it is not that
simple, because of the following two reasons:

1. The purpose of multi-level optimizations is to make
cost-based trade-offs, which often involve multiple re-
sources (e.g., radio vs. CPU). This rules out benefit
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Figure 3. Benefit functions.
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Figure 4. Performance feedback.

functions, since adding resources would result in a
situation where the client specifies its alternatives to
multiple independentservers, each wanting to control
the client’s mode of operation. This clearly does not
work, unless the different servers are redesigned to col-
laborate and make a joint decision. Performance feed-
back has little difficulty in handling multiple resources,
since a single optimizer (part of the client) allows for
straightforward combining of the services involved. For
each client mode the costs of the individual services
required are accumulated; the mode with the lowest
overall costs is selected.

2. Systems are frequently structured in a hierarchy of more
than two layers. This requires a more complicated
control structure than supported by the two-level per-
formance feedback approach: a middle layer must act
both as a client (requiring service from resources at the
layer below) and as a server (offering services to the

layer above). This changes the role of the optimizer
significantly. Instead of selecting the best mode from
the server below, it must provide a range of alternatives
to the client above. The final decision about what
alternative to use is now taken at layers higher up in
the hierarchy.

The effects of applying multi-level optimizations in a
hierarchical context are shown in Figure 5. The optimizer
composes a range of alternatives (wk) out of the two
operation spaces (i.e., tablesuk−1 andyk). In effect, each
alternative reflects the added value of the client to the basic
service and includes all (server+client) costs. To prevent
state explosion the optimizer may not simply include all
possible combinations,(uk−1 × yk), but must filter out
irrelevant entries. There is a risk of filtering too much,
especially since there is no (direct) information about what
the upper layer optimizers are after, but preliminary expe-
rience shows that even simple thresholding rarely misses
opportunities (see Section 5).

After filtering the relevant contracts, the optimizer passes
the resulting set on to the client. The client uses this set to
expose its operation space to the next level up. When the
client is at the top of a (sub) hierarchy, the set is used to
effectuate a contract. A client is at the top of a sub hierarchy
if all contracts at its server interface are settled. A given
contract at the server-side interface matches an entry in the
server-side operation-space exposureuk, which in turn was
constructed upon a single entry from the range of possible
contractswk at the client-side interface. The server-side
contract (indirectly) determines the client-side contract.

Operation-space exposures propagate up the hierarchy,
whereas contract establishments propagate down the hi-
erarchy. The exposures and contracts are specified in
resource parameters, which may be different from the
internal parameters used inside a layer. The conversion
is taken care of by transformations Ts and Tc shown in
Figure 5. These transformations comply with common state
space description from control theory [10]. Letqk be the
internal state of a layerk, uk andyk be the operation-space
exposures at the server and client-side, respectively, andwk

be the possible contracts as in Figure 5. Note thatqk, uk,
yk, andwk are lists of parameter tuples. Then we have

uk = fk(qk, g
−1
k (wk) ) (Ts)

yk = gk(qk) (Tc) (1)

The transformations Ts and Tc implement functionsfk()
andgk() that map input and internal parameters to output
parameters. Locating Ts and Tc in the same layer circum-
vents the necessity to share information between Ts and
Tc to implementgk() andg−1

k (). In general,g−1
k () need

not exist, butg−1
k (wk) must exist. The inverse values can

be obtained through a look-up table recording the actions
of gk().
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Figure 5. Hierarchical optimization.

4. Adaptive resource contracts

Within the Ubiquitous Communications (Ubicom) pro-
gram at Delft University of Technology [7] we have de-
veloped a generic approach for adaptive systems to be
used in resource-scarce environments. The driving tar-
get of Ubicom is a wearable augmented-reality terminal
with a wireless connection to information and services on
the backbone network. The experimental mobile Ubicom
platform, currently under construction, is structured as a
hierarchical system; each layer is designed to be capable of
adapting to changes in the environment (transmission qual-
ity, application load, etc.) by selecting from a set of possible
modes of operation. Layers interact through a generic con-
cept, named Adaptive Resource Contracts (ARC), based on
the multi-level optimization discussed above.

As the name suggests, the basic unit of interaction
between two layers is thecontract specifying the mutual
agreements to which both client and server are committed.
In a wireless environment no hard guarantees can be given,
so contracts can and will be violated, but this must be
done by explicitly signalling the other layer involved in the
contract. A contract consists of a set of constraints on the
resource parameters, which characterizes the performance

of the lower layer (server) and the induced workload of
the upper layer (client). Each constraint is a pair of values
specifying the allowed range of operation for the associated
resource parameter. It is important that a range is specified,
not a single point, so the server has room to adapt without
involving the client. Small changes will be handled locally;
large changes (violating a contract) will propagate to the
next layer.

An efficient implementation of the hierarchical opti-
mization (Figure 5) minimizes the communication over-
head. The optimizer observesuk−1 and yk, and gener-
ateswk with only significant entries, in effect discarding
unattractive combinations. So why bother to communicate
irrelevant entries inuk and yk in the first place? A
straightforward solution is to combine the optimizer either
with the client or server component. Below we argue that
combining the optimizer with the client is a good choice and
we derive a method to generate and control the resultinguk.

Recall that contract establishment propagates down the
hierarchy. From the client’s point of view, therefore, it
is efficient to be able to control the volume and range of
alternative contractswk generated by the optimizer (and
depending onuk−1). We can focus the generation of
alternatives by constraining the resource parameters; these
constraints can be specified by partially filling a contract.
A top-level client can specify such a target set of partial
contracts (vk). Givenvk a hierarchical component gener-
ates a set of partial contracts (vk−1) of its own, which when
acknowledged (wk ≈ vk−1) yields an operation-space ex-
posureuk closely resemblingvk. In the ideal case,uk re-
semblesvk and the optimizer reduces to identity. A bottom
level server can directly generate an operation-space expo-
sureuk−1 closely matching the requested (partial)vk−1.
Obviously, locating the optimizer in the client allows for the
necessary volume control of the operation-space exposures.
In addition the optimizer can take advantage of the work
performed to handle the partial contracts. We refer to these
partial contracts as requests.

Although an individual contract captures commitments
between two layers only, the process of drawing up con-
tracts involves a complete hierarchy. It is a three-sweep
negotiation process:

1. The topmost layer (LT ) initiates arequestsweep by
asking an offer from the layer below (LT−1) about the
current set of cost/quality levels that it supports. To
focus the inquiry, the request may contain restrictions
on the ranges of the resource parameters. LayerLT−1

interprets the request, considers its options, and passes a
new request down to layerLT−2 to collect the informa-
tion needed to answer the original request from above.
This reformulation of requests continues downwards.

2. At the bottom level (L0) the server has all basic in-
formation available and is able to respond directly to
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Figure 6. ARC generic interface.

the request. It replies with anoffer listing all current
cost/performance levels that fulfill the requirements
stated in the request. This is the start of the second
sweep, since the offer byL0 is used by layerL1 to
construct its offer to layerL2 above, etc.

3. Finally, when the offers reach the topmost level, a
decision is made which option is best. This is laid down
in the contract between layersLT andLT−1. Now layer
LT−1 knows what it must do, and draws up the contract
with layerLT−2, etc. until finally the contract between
layersL1 andL0 is established.

Figure 6 shows the generic ARC interface. In comparison
to Figure 5, the optimizer is now part of the hierarchical
layer-k component so that it can operate directly on the
internal parameter space. The translations between internal
and resource parameters (Ts and Tc) are reduced to thin
client and server-interface wrappers. Another difference to
Figure 5 is that additional information (request setvk) is
provided to the server as to direct the search.

Note that at each layer multiple resources may be active.
For example, at the bottom layer of the Ubicom hierarchy
we distinguish the radio and CPU as two different resources.
Therefore, when layerL1 (channel encoding) receives a
request it must query both the radio and CPU before it

can reply with an offer. In general requests (and offers)
propagating down (up) the hierarchy follow a DAG pattern.

The more specific the request, the smaller the set of
options for the layers below. Nevertheless, even a detailed
request may generate large numbers of alternatives. There-
fore, a request will be accompanied by a number (N ) stating
that the client is interested in a offer containing at mostN
alternatives. When the server can offer more alternatives
than requested, it must select theN most applicable ones.
Different criteria may be used for pruning the intermediate
results, but since the server is not fully aware of the client’s
objectives it probably is wise to return a large spread by
some form of sub sampling. The client can get more detail
by rephrasing the request, for example, by narrowing the
ranges around one or more promising alternatives.

In adaptive systems like Ubicom the (external) condi-
tions vary, so contracts frequently have to be renegotiated.
Fortunately, it is not always needed to renegotiate each
and every contract throughout the entire hierarchy. Minor
changes can usually be handled inside a layer by adapting
its operation mode. Moderate changes require mode adjust-
ments in a few layers, which are established by applying
the three-sweep process to a sub hierarchy. Only significant
changes affect the entire hierarchy. Thus, it depends on the
magnitude of the changes how many layers participate in
the renegotiation process.

5. Ubicom case study

This section presents a case study from the Ubicom
project, which involves a high-level model of a typical
Ubicom application. The model is hierarchical with ARC
interfaces between components. In line with the ARC
concepts the model implements distributed control and local
adaptations. The aim of our case study is to analyze ARC
in a relevant setting. We address the issue of having a
consistent concept for modeling system components. We
study the effects of applying local optimization and adap-
tation routines with respect to overall system performance.
Finally, we monitor the volume and density of respective
operation-space exposures, which should be small for ARC
to be effective.

The Ubicom case models a view point sharing applica-
tion that offers mobile users the opportunity to look over
the shoulder of other users walking around on the campus.
We assume that users are interested in controlling power
dissipation and video quality, on a per video stream basis.
For example, one may choose to watch high quality video
for a short while or poor quality video for a longer time.
Power is considered the dominating factor in our system
and is part of each ARC interface.

The case includes four layers (from top to bottom): the
video broker, source coder, channel coder, andtransceiver.
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All layers require processing and induce a workload on the
CPU being part of the mobile user’s terminal. According to
Figure 6 each layer in the application model has a clientand
a server-side interface. We have consistently modeled each
layer with internal parameters,qk, a client-side workload
generating function,yk = gk(qk), and a performance
indication function,uk = fk(qk, g

−1
k (wk) ). To keep the

model manageable, we have limited the number of resource
parameters on the ARC interfaces to three; likewise the
number of internal parameters controlling the mode of
operation of each layer is also limited. Note that in
practical systems, designers can use as many parameters as
needed, but the number should be small to limit complexity.
Selecting which parameters to include is a difficult task, but
the overall component-structure usually guides the selection
of functionality and associated parameters at each interface.
Despite the simplifications in the Ubicom case the total set
of options is large. Clients therefore use requests to control
the volume and density of the operation-space exposures.
Finally, the optimization routine in each layer discards
irrelevant entries by considering the ratio of power versus
some local notion of quality.

5.1. Concise system description

The system configuration with its ARC and internal
parameters is outlined in Figure 7. To avoid clutter, the
CPU and its interfaces to the four layered components are
not shown. The energy consumed by the CPU, however,
is accounted for in the power parameter exposed at each
ARC interface. The plots at the left-hand side represent
operation-space exposures of the corresponding compo-
nents. The plots on the right-hand side present details of the
fk() andgk() mappings. Since our goal is to experiment
and analyze the ARC interface system we will be brief on
the details of the applied models and parameter choices.

Transceiver. The transceiver makes an optimal choice
for the number of sub carriers (N ), a modulation scheme
M , and the transmitted power (Eb/No). Since the
transceiver is at the bottom layer, it estimates the noise level
(No) of the physical channel and the distance (d) to the
mobile station. At its server-side the transceiver exposes
throughput, error probability (Pe), and power.

The plot on the right-hand side in Figure 7 shows the
resulting error probability with a trade-off between using
more transmit power or increased processing power (select-
ingN andM ). The generating function is given by

Pe ∝
1
2

(N − 1) Erfc

√3 2log (M)
2(M − 1)

Eb
No

1
d2


where Erfc() is the complementary error function.

Given(No, d) and an estimate of the generated workload
on the CPU, optimal choices can be made for the transmit
power (Eb/No), the number of sub carriers, and the mod-
ulation scheme. The resulting operation-space exposure is
on the left-hand side in Figure 7.

Channel coder. The channel coder applies(n, k) for-
ward error coding; it sendsk source bits in packets of size
n. The server-side exposure of the channel coder is in terms
of throughput, bit error rate (BER), and power. We apply a
simple performance estimate of the so-called sphere pack-
ing bound. This is a theoretical best performance coding
technique, to trade-off throughput and BER. The plot on
the right-hand side demonstrates that for different (channel)
error probabilities increasing the number of source bits (k)
yields a decrease of the resulting error rate (BER). The
operation-space exposure is on the left-hand side. A trade-
off between applying a heavier coding scheme and request-
ing a better channel is included in the optimization function.

Source coder. The source coder applies a progressive
coding technique; the more bits transferred correctly, the
more variance is transmitted and, hence, the less distortion
is observed. The internal parameters to optimize for are the
encoded block length (L), the source characterization (M ),
and the (fixed) image resolution [12]. The source coder
exposes distortion, frame rate, and power as performance
metrics at its server-side operation space.

For block lengthL and source characterizationM , the
encoded variance is given by

encoded variance∝ ln (
L

M
+ 1)

A normalized graphical representation is on the right-hand
side in Figure 7. Typical values forM are: 2−16 for static
still images,2−8 for natural images,2−3 for a video stream,
and1 for the notorious MTV video clip.

Broker. Finally, the broker sets a (fixed) maximum
frame rate and exposes quality and power metrics to the
user, who is at the top of the hierarchy. We assume a
simple model where we consider a high frame-rate and low
distortion the best possible quality, low frame-rate and high
distortion are considered to be of poor quality. Intermediate
values are linearly mapped, thus a low frame rate and
low distortion sequence has the same quality as a high
frame-rate, high distortion sequence.

The requests for the broker are ranges for quality and
power dissipation. The resulting operation-space exposure
is plotted in the top left corner of Figure 7.

5.2. Analysis

The result of layering the internal models and their
operation-space exposures is that the user is presented with
a concise view of the trade-offs for the complete Ubicom
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application. The ARC operation-space exposure of the
broker, the top left-hand plot in Figure 7, gives the user the
opportunity to trade-off power vs. quality. Each point in the
plot corresponds to a chain of contracts and internal param-
eter settings throughout the system. For example, when the
user chooses the contract with the lowest power/quality ra-
tio, the subsequent contract-establishment sweep bypasses
the channel coder(n= k) and sets the transceiver to operate
with just a few subcarriers(N = 32). Choosing the highest
quality, on the other hand, yields a channel coder with a
low resulting bit error rate (BER =10−7) and a transceiver
operating with many sub carriers (N = 256). This shows
that a layered system with local optimizations is capable of
supporting a wide range of control settings.

The ARC framework is quite efficient in that the total
number of offered contracts throughout the system is just
about60 in this particular case study. To determine the
quality of the top-level contracts we compared them with
all possible offers that result from a straightforward enu-
meration over all internal component parameters. With 7
adjustable internal parameters and a moderate 6 different
values per parameter this yields a global operation space of
67 ≈ 300, 000 points. Figure 8 is a copy of the broker’s
operation space (top left-hand plot in Figure 7) augmented
with the points from the global operation space. (For read-
ability only one out of eight points is plotted). The plot
shows that ARC does a good job: the vast majority of points
in the global operation space denote unattractive settings
that offer lower quality and/or dissipate more power than
the alternatives provided by ARC. (Most points are located
above and/or to the left of the ARC curve.) The plot also
shows that ARC is not perfect and misses a few operation
points with a better price/performance ratio. (Some points
are located to the right and/or below the ARC curve.) This
is a consequence of the huge – three orders of magnitude
– reduction in the number of operational points communi-
cated (60 vs. 300,000). More global optima can be identi-
fied by lowering the thresholds in the various optimizers, at
the expense of increasing the number of contracts commu-
nicated across the ARC interfaces. It is the designer’s task
to strike the right balance between accuracy and overhead.

6. Open issues

The experience with working out the Ubicom case study,
which involved many discussions with our colleagues about
specific components, showed that the ARC approach has
an edge in designing hierarchical systems operating in
resource-scarce environments. The ARC concept, however,
is by no means finished; some open issues must still be ad-
dressed before ARC can be seamlessly applied in a working
Ubicom prototype. We will now list the most important
issues, and our initial views about how to approach them.
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Figure 8. Global vs. ARC operation space.

Policing. ARC assumes that all layers and components
cooperate to achieve a common goal; there is no policing
entity checking whether or not contracts are obeyed. An ill-
behaving component, which consumes too much or delivers
too little, will degrade system performance. Therefore,
some form of policing behavior is needed, if only to catch
errors in cooperative components.

Resource overloading. ARC does not specify what
policy to use when a resource becomes overloaded. Should
the server renegotiate with all clients that established a con-
tract? If not then some specific contract must be selected for
renegotiation, but which one: the last established contract,
the biggest contract? For now, servers in an ARC context
will have to establish an ad-hoc overload policy.

Incompatible modes. Servers often support multiple
clients. A problem occurs when a server has some internal
parameters that can only be switched on a per resource
basis, not per client. For example, a transceiver may offer
multiple modulation schemes, but only support one at a
time. When offering all modes, two independent clients
may indirectly select two different modulation schemes
forcing the server to deny one contract. Simply denying the
last contract leads to a static situation where the first client
determines the modulation scheme during its lifetime.

Time. Parameter values in a contract are predicted
averages with limited lifetime, for example, throughput of
the wireless link for the coming second. From a system
point of view it is important that both layers know the ap-
proximate lifetime of parameters. This way they can select
an optimum mode of operation with respect to stability and
agility of the entire system. Usually parameter lifetimes are
fixed at design time. When lifetimes of parameter values
are long, however, contracts may be violated occasionally.
Not every violation will jeopardize the overall stability,
therefore it may be beneficial to control the deviations from
the contract using second order statistics (how much, how
long) at run time. One solution is to use anachievement
factor that specifies the fraction of time the service must be
within the negotiated ranges [4].
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Overhead. Applying ARC induces some overheads.
In particular, request processing and operation-space opti-
mization may be expensive when applied frequently (i.e.,
in lower layers). Reducing the frequency is not always
an option since that affects the agility of the system. An
alternative approach is to sacrifice generality and only allow
for certain specific types of requests; bearer classes are an
extreme case where all ranges are predefined.

7. Conclusions

Mobile systems operate in a resource-scarce environ-
ment and must adapt to changes in external conditions; all
layers must make cost-based decisions about what mode of
operation to use in response to performance information
provided by neighboring layers. Since battery energy is
the limiting factor, layers must coordinate their actions to
deliver the best available quality for a given cost. Often
trade-offs between multiple resources (e.g., CPU and radio)
must be made requiring quality/cost information for vari-
ous workloads. Traditional QoS negotiation mechanisms
only provide best-effort information. Therefore we have
designed a framework, named Adaptive Resource Contracts
(ARC), that provides a generic concept for exchanging
ranges of quality/cost settings.

With ARC QoS negotiations between two layers in a
hierarchy (client and server) occur in three sweeps: 1) the
client issues a request about the alternatives in a specific
part of the parameter space, 2) the server responds with
an offer listing all its options, and 3) the client determines
the best combination of client and server mode and issues a
contract. The contract consists of a set of ranges specifying
within what region the server may operate. This provides
the server some room to adapt to small changes in the
environment. Large changes will cause the server to violate
the contract, which will be reported back to the client, so it
can take appropriate action and renegotiate a new contract.

We demonstrated the use of ARC by giving a small
case study taken from the Ubicom project. The view
point sharing application controls the quality and cost of
transmitting camera images from one mobile user to the
other, and consists of four layers with ARC interfaces.
The study shows a consistent modeling of components
with local optimization and adaptation routines. The over-
all performance of the system with ARC approaches the
global optimum. ARC is also communication efficient:
state explosions can be prevented using simple threshold
optimization routines. From a system-design perspective
a major advantage of ARC is that expert knowledge is
captured in individual components. To gain insight into
the identified open issues, such as overhead, agility, and
stability, we are rewriting Ubicom software and incorporate
ARC-style negotiations in the Ubicom test system.

Acknowledgements

This work was conducted within the Ubicom program
(www.ubicom.tudelft.nl ) and funded by the TU Delft,
DIOC research program. We thank Chris van den Bos,
Adrian Bohdanowicz, Slawomir Pietrzyk, and Arjen van
der Schaaf for providing valuable input for the case
study. We thank Dick Epema, Inald Lagendijk, Kees van
Reeuwijk, and the anonymous reviewers for commenting
on draft versions of this paper.

References

[1] M. Bechler, H. Ritter, and J. Schiller. Quality of service
in mobile and wireless networks: The need for proactive
and adaptive applications. InHawaii Int. Conf. on System
Sciences (HICSS-33), Jan. 2000.

[2] S. Bhatti and G. Knight. Enabling QoS adaptation decisions
for Internet applications.Journal of Computer Networks,
31(7):669–692, Mar. 1999.

[3] G. Bianchi, A. Campbell, and R.-F. Liao. On utility-fair
adaptive service in wireless network. In6th International
Workshop on Quality of Services (IWQoS’98), May 1998.

[4] G. L. Bodic, J. Irvine, and J. Dunlop. Resource cost
and QoS achievement in a contract-based resource manager
for mobile communications systems. InProceedings of
Eurocomm, May 2000.

[5] S. Chatterjee, J. Sydir, B. Sabata, and T. Laurance. Model-
ing applications for adaptive QoS-based resource manage-
ment. In High Assurance System Engineering workshop
(HASE’97), Aug. 1997.

[6] A. Goel, D. Steere, C. Pu, and J. Walpole. Adaptive resource
management via modular feedback control. Technical Re-
port CSE-99-03, Oregon Graduate Institute of Science and
Technology, Jan. 1999.

[7] R. Lagendijk. The TU-Delft Research Program Ubiquitous
Communications. InProceedings of the 21st Symposium on
Information Theory in the Benelux, May 2000.

[8] K. Lakshman and R. Yavatkar. Adaptive resource man-
agement for multimedia applications. InHigh-Speed net-
working for multimedia applications. Kluwer Academic
Publishers, 1996.

[9] W. Lee and B. Sabata. Admission control and QoS nego-
tiations for soft-real time applications. InIEEE Interna-
tional Conference on Multimedia Computing and Systems
(ICMCS), June 1999.

[10] B. Li and K. Nahrstedt. A control theoretical model for qual-
ity of service adaptations. In6th International Workshop on
Quality of Services (IWQoS’98), May 1998.

[11] C. Uarrecoechea, A. T. Campbell, and L. Hauw. A survey of
QoS architectures. In7th International Workshop on Quality
of Services (IWQoS’99), 1999.

[12] A. van der Schaaf and R. Lagendijk. Independence of source
and channel coding for progressive image and video data in
mobile communications.Visual Communications and Image
Processing (VCIP2000), June 2000.

10


