Chapter 1

FORMAL TEST AUTOMATION:
THE CONFERENCE PROTOCOL WITH PHACT

Lex Heerink
Philips Research Laboratories, Eindhoven, The Nethedand
lex.heerink@philips.com

Jan Feenstra and Jan Tretnians
University of TwentE Enschede, The Netherlands
{feenstra,tretmans}@cs.utwente.nl

Abstract We discuss a case study of automatic test generation andxestition based
on formal methods. The case is the Conference Protocol, @ssichatbox-like
protocol, for which (formal) specifications and multiple plamentations are
publicly available and which is also used in other case sageriments. The
tool used for test generation and test executidracT, the PHilips Automated
Conformance Tester. The formal method is (Extented) Fitate Machines
which is the input language fa*uAcT. The experiment consists of developing
a Finite State Machine specification for the Conferencedemt generating
82 tests in TTCN withPHACT, and executing these tests against 28 different
implementations of the Conference Protocol, both corradterroneous ones.
The result is that some erroneous implementations are netteée by the test
cases. These results are analysed, the merits of Extenitd State Machines
for specification are discussed, and the achievemeniuefcT are assessed.
Moreover, the results are compared with a previous expetinmewhich the
same 28 implementations were tested based on specificatidc@TOS and
PROMELA.

Keywords: Conformance testing, case study, formal methods, finitee steachines, test
generation, test execution.

*Corresponding author: Jan Tretmans, University of Twerdeulty of Computer Science, Formal Methods
& Tools research group, P.O. Box 217, 7500 AE Enschede, TlieeNands; tretmans@cs.utwente.nl.

T This research is supported by the Dutch Technology Foumd&TW under project STW TIF.411Cote
de Resyste COnformance TEsting of REactive SYSTEms; http://fmutgente.nl/CdR.

1

1. INTRODUCTION

In this note we describe a case study of automatic test gemeend execu-
tion based on formal methods. The case isGloaference Protocohl simple,
chatbox-like protocol, for which (formal) specificationedamultiple imple-
mentations are publicly available. The test tool useisscT. The formal
method is (Extended) Finite State Machines — (E)FSM — whscthé input
language folPHACT.

The experiment consists of developing an EFSM specificdtiothe Con-
ference Protocol, generating tests in TTCN with the Con@oroe Kit — which
is a part ofPHACT — and executing these tests, also withAacT, against 28
different implementations, both correct and erroneous.ofiéne goal of this
paper is to present the experiment, to analyse the resafissa the merits of
(E)FSM’s and ofPHACT, and to compare with a previous experiment in which
the same 28 implementations were tested. That experimdesigibed in [1]
and this paper is based on it.

2. CONFERENCE PROTOCOL

The Conference Protocol provides a multicast service,d.&hatbox’ ser-
vice, to its users. A group of users constitutes a confere@®h user in a
conference can exchange messages with all other userd icothfarence. A
conference can change dynamically: users can join or leewafarence at any
time.

The Conference Protocol is a relatively simple protocdl, iyeontains many
aspects of more realistic protocols. It has been used irr otige studies, in
particular, in [1] we used it with the test todlor X and formal specifications
in LOTOS, ProMELA and SDL. Hence, the Conference Protocol serves as a
vehicle for testing and comparison of test tools. The weleday provides
descriptions of the protocoal, its service, formal speciimas, and 28 different
implementations, one of which is (assumed to be) corredlewte others are
mutants in which (small) errors have been introduced.

3. PHACT

Puact (PHilips Automated Conformance Tester) is a set of tools hiag
been used within Philips for some time to generate testsvatioally and to
execute these tests against concrete implementatioris [Ah8 tool set consists
of two major parts: @eneratorand anexecutoy see Figure 1.1.

The generatormainly consists of the Conformance Kit developed at KPN
Research [2, 5]. It takes a formal specification in Extendimitd-State Ma-
chine format (EFSM, Mealy Machine with state variables)tasriput. This
EFSM must benput completeanddeterministi¢i.e., for every state and input

The Conference Protocol with PHACT 3

stimulator H—={
EFSM generator TTCN || super-
=1) 1 visor
The Conformance Kit "—‘
|

SUT
observer [«

transition tour
strategy | partitioned tour

pass / fail

Figure 1.1 PHACT

there shall be exactly one transition that specifies theespaonding output and
destination state. The first step of theneratoris to transform this EFSM
into an equivalent Finite State Machine (FSM) by expandith@necessarily
finite-domain) variables. This FSM is minimized into an e@lent minimal
FSM, and then tests are generated according to one of theasthfr SM-based
algorithms (random sequences, transition tour, pargtdiour, i.e., UIO-based
test sequences; see [6] for an overview). The tests aressqurén a subset of
TTCN.

Theexecutorpart provides an environment for the execution of testsregai
a System Under TegBUT). It consists of asupervisoy a stimulator and an
observer The stimulator and observerare application specific and must be
developed, from a template, for each SUT separately. Thayige the func-
tionality for encoding and stimulating the SUT with a singhput test event
and for observing and decoding an output test event from Wé $he su-
pervisoris a generic kind of test engine. It reads the generated assiscand
performs actions and test events given in the test case by tlsestimulator
andobserverfunctions.

4. TEST ARCHITECTURE

The test architecture for testing Conference Protocol@mgintations is the
same as the one used in [1], see Figure 1.2. One Conferente@r&ntity
(CPE) is tested,; it is the IUTIfiplementation Under Test This CPE has
one local conference user, denotédand two remote users, denotédand
C. The CPE communicates with its environment at the IARg{ementation
Access Poinjswhich are the CSAP (Conference Service Access Point) and
the USAP (UDP Service Access Point). The test context is dalrioy the
underlying layer, which is assumed to be a reliable and gudeserving UDP
layer, sockets used for UDP communication, and pipes fomgonication at
the CSAP. The SUT consists of the IUT and the test context.PIB@’s Points
of Control and Observatigrare the CSAP, which is the Upper Tester PCO (UT)
and the remote USAP’s which constitute the Lower Tester AQQ The tester
is instantiated with thé&®HACT executor(see Section 3.). Th&timulatorand

4

observemrovide the inputs and observe the outputs, respectiviglyed) T and
LT PCO’s.

UT=CSAP —

UDP layer

Figure 1.2 Test architecture

5. FINITE STATE MACHINE SPECIFICATION

The first step in the test experiment was developing an EFS3difsgation
of the Conference Protocol. Starting point was the desoripth [7]. This
resulted in an EFSM for one CPE with two conferences, ond losey at the
upper interface, and two remote users. It is written in th&ERormat of
the Conformance Kit and it has 2 states, 3 variables, 18 sndut outputs and
36 explicitly specified transitions. The FSM expanded frore EFSM contains
9 states.

The restrictions on the (E)FSM imposed by the tool have ioapions for
the way the SUT was modelled. We discuss a few aspects.

In EFSM’s there is for every input at most one output. The €marice
Protocol has multicast aspects. When udein Figure 1.2 wants to join a
conference, initiated by @in-SP (join-Service-Primitivg at CSAP, the CPE
has to send @in-PDU (join-Protocol-Data-Uni) to all potential conference
partners, i.e., td3 andC'. So, the inpujoin-SP leads to two outputs: min-
PDU to B and one toC. Moreover, these outputs may arrive in any order —
nondeterministically — aB andC'. Neither two outputs in one transition, nor
nondeterminism can be modelled directly in EFSM’s. We swltygs by using
a single output actiojoin-A-to-BC-PDU which models the two SUT outputs
occurring in any order (cf. [5]).

When the actiornjoin-A-to-BC-PDU occurs in a test case tlubserverhas
to take care to implement this action correctly, i.e., toesss two PDU’s in
arbitrary order. This is implemented by starting a timeobefevery observa-
tion. As long as this timer runs the implementation may penfis outputs.
On expiration theobserverreads all outputs from all PCO’s, interprets them
together, and tries to map them onto the correspondingesiBfISM output
action. So, any observation of outputs lasts at least the taquired for this
timer to expire. Note that this way of observation does notespond with

The Conference Protocol with PHACT 5

the standard TTCN snapshot semantics. A consequence atridiisgy is that
some orderings of actions are not tested, e.g., in the exaatuve, an input
action between the twjoin-PDU’s will never be considered for testing.

Alternation between inputs and outputs is always requindgiSM’s. This
also implies that a sequence of multiple inputs with delagatputs is not
considered, and hence not tested. In fact, EFSM’s assunmelaksynchrony
hypothesis

Compositionality is not straightforward in EFSM’s. Thivatves the test
context. In our previous experiments with LOTOS dreloMELA we could
easily combine the CPE model with the context models. FOES8M model
this turned out to be more complex. Actually, we do not taketi account
at all, so we make the assumption that the test contextthe queues which
model the CSAP pipes and the lower layer UDP, does not infeidrecobserv-
able behaviour of the IUT. Whereas for queues this might seeeasonable
assumption it causes problems if the reliability and ordg&ssumptions on
UDP are released, i.e., if UDP has to be modelled as a lossy bag

The lastimportantrestriction of EFSM’sinthe ConformakgeandPHACT
is that they do not allow data parameters in inputs and ositpWhereas in
LOTOS andProMELA different conferences, users and UDP addresses were
easily modelled with data parameters, in EFSM’s these hawe tcoded ex-
plicitly. This means that simplifications and abstractibase to be made with
respect to the data aspects which will be tested in orderaiol @n enormous set
of explicitly coded input and output actions. Consequeritly all abstracted
data aspects there will be no test cases generated. As amplexdhe input
actionjoin-B-to-A-1-PDUrepresents min-PDU with parameters3 as source
addressA as destination address, ahds conference identifier. This explains
the large number of actions necessary in our EFSM model.

6. THE TEST EXPERIMENT

With the Conformance Kit 82 tests were generated from theNEB{$ecifi-
cation with the partitioned tour method. For each expiicipecified transition
of the FSM, obtained from the EFSM, a test case was geneffatddansitions
only added to make the EFSM input complete, no test casesgeesrated. A
test case following the partitioned tour method consist§)ad synchronizing
sequencehat brings the system from any arbitrary state into itgahstate;
(i) atransferring sequencthat brings the system from the initial state to the
source state of the transition to be testéd) & transition testwhich performs
the input and checks the output of the transition to be tested {v) a Simple
Input/Output Sequendalso known as Unique Input/Output (UIO) sequence),
which verifies whether the correct destination state istredc The length of
the test cases varies from 6 to 16 test events: the syncimgréequence has

6

minimum 2 and maximum 4 test events, the 9 transferring semsehave a
length from 0 to 6, every transition test consists of 2 teshés;, and the 9 UIO
sequences have a length from 2 to 4 test events (not cowstéirigsimerevents).

The 82 test cases were successively applied, usingxbeutorpart of
PHacT, to the 28 Conference Protocol implementations. They wezelded
for each implementation without resetting and re-initigg the implementa-
tion between the different test cases, which is possibléaltiee synchronizing
sequence.

The results of the test experiments are that 21 obtainedtiokctfail. These
21 implementations were correctly detected: they are knimave erroneous
mutants. To 6 implementations the verdietsswas assigned, among which
there was the correct one. Moreover, the following (erraisganutants got a
passverdict (using the mutant numbers of our internal identifazascheme):
289, 293, 398, 444, and 666. One implementation (mutant [&bjo an
abnormal termination (‘core dump’).

In our previous experiment with the Conference Protocolesed the same
28 implementations with the test toblorX [1]. Those experiments led to the
detection of 25 out of the 28 implementations: the correg@mentation and
the mutants 444 and 666 got the vergiess

1. ANALYSIS

While analysing the test results, the first observation Wwas $ome of the
mutants were only detected because the 82 test cases wergeskeonsecu-
tively without resetting the implementation, i.e., the 88ttcases were actually
executed as one large concatenated test case. This led sauhton where
an error is triggered in one test case, without causing aoriiect observa-
tion, while the subsequently executed test case then ldtettatlure in terms
of an incorrect observation. This situation becomes appafer instance, in
the mutants numbered 332 and 345. These mutants implenedettlie-PDU
incorrectly, so that a conference partner which leaves dinéecence is not re-
moved from the implementation’s internal set of currentfecence partners.
When one test case is finished and the synchronizing seqoétioe next test
case has been executed, the specification FSM is in itsl isiitite again. But,
since the SUT is not re-initialized between the two test gagee SUT s, er-
roneously, not in its initial state: the conference parthet left is still in the
set of current conference partners. This situation thedsléa an incorrect
observation wittfail verdict in the subsequent test case, e.g., when PDU’s are
sent to the partners in the set.

The second point of analysis concerns mutant 749 that led shbaormal
termination. Analysis shows that this mutant generatesvaiid PDU which is
not correctly recognized by thabserverand, consequently, cannot be mapped

The Conference Protocol with PHACT 7

onto an EFSM output action. Itturns out that our develapeserverof PHACT

is not robust for unrecognized PDU’s, which is an anomaly wf @bserver

Mutant 749 was detected bjyorX since the observer part GforX maps
every message which it cannot recognize onto a non-exigting. Since, of
course, such a PDU does not occur in the specification thighisesjuently
considered as an incorrect response leading to the véadictAn analogous
solution could have been implemented fmACT.

The third point of analysis concerns the mutants not deddzye®HACT.

Mutants 444 and 666 Analysis in [1] showed that these mutants accept
PDU's from any source, not only from (potential) partners the LOTOS
and PROMELA specifications the responses to such PDU’s are not explicitl
specified, which means that, followinGor X’ correctness criteriotioco [1],
any response from the SUT is allowed. Consequently, 444 66difeioco-
correct and pas$orX.

With PHACT we only generated test cases for explicitly specified ttamms
and not for those that were only added to make the FSM inpuptzim (Sec-
tion 6.). Consequently, it is no surprise that also withAacT the mutants 444
and 666 were not detected. However, whereas Witlk X these mutants can
principally not be detected — the necessary stimuli arengesgerated b or X
—they might have been detected withAcT — they can occur in a synchroniz-
ing sequence or UIO sequence. Moreover, in order to minithigenumber of
data parameters (which have to be coded explicitly; seed®egs), inputs from
non-existent partners were not considered in our EFSM. &lesuch inputs are
outside the considered input set and, like Tovr X, the necessary stimuli to
trigger the faults are never generated.

Mutants 289, 293 and 398 These erroneous mutants got the vergass
whereas they were detected in therX experiment. We now try to analyse
why PHACT does not detect them by comparison with ther X experiment.
The failure trace-logs df'orX, i.e., the traces of inputs and outputs leading to
the detection by'orRX, were analysed. Then we projected these failure traces
onto the EFSM and analysed the relevant EFSM behaviour a&ilhcT test
suite with respect to these failure traces.

Mutant 293 Mutant 293 uses a bag instead of a set to administer its
conference partners. WithorX the following failure trace detects this mutant.

1 input UT ! Aljoin-SP(A,conf-1) 5 input: LT ! C!answer-PRO,conf-1)
2 output: LT!C!join-PDU(A,conf-1) 6 input: UT ! Al datare§P(m1)
3 output: LT!B!join-PDU(A,conf-1) 7 output: LT!C!data-RI§JA,m1)
4 input: LT ! C ! answer-PDU(C,conf-1) 8 output: LT!C!datdDR(A,m1): fail

In step1 the local userd wants to start a conference with nacenf-1via
a join-Service-Primitiveat the upper test interfadé?’. In steps2 and3 the
SUT informs the potential partnef® andC' at the lower test interfacéT by
sending twgjoin-PDU’s. Then, atLT, userC sends aranswer-PDUto the

8

SUT, twice. The SUT should react by simply neglecting theosd@nswer-
PDU, however, the SUT does store the second one in its bag. 116 shepSUT
receives a request from its local uséto send messagel Then, in stepg
and8 the SUT sends the message to uSealso twice, which is incorrect: the
SUT should send it only once. So, in st&po output was expected according
to the specification (‘quiescencetail.

Analysis of this sequence of events in the EFSM specificajioes:

Steps Condition Input Output Action Dest.
(1-3) TRUE join-A-1-PDU join-A-to-BC-1-PDU (A-conf:=1) abn

4) (A-conf=1) answer-C-to-A-1-PDU (none) (C-part:=TRYE Conn

5) (A-conf=1) answer-C-to-A-1-PDU (none) (C-part:=TRYE Conn
(6,7) notbc datareqg-SP data-A-to-C-PDU (none) Conn

notbc == (NOT(B-part) AND C-part)

In the first EFSM transition, corresponding to the stéips3) of the TOrRX
trace, userA joins conferencel and sends twgoin-PDU’s to usersB and
C, respectively. (This is modelled as one output, see SebtipnThe EFSM
goes to stat€onnand conferencaé is active: (A-conf:=1). We see in steps
(4) and(5) that userC' is allowed to send aanswer-PDU) twice. The second
one does not change the state of the EFSM and, consequérdlyidshave
no effect. If in(6,7)the local userA issues alatareg-SPthe corresponding
data-PDU s sent only once. This state of the EFSM is never reacheddy th
mutant: after transitiorf5) the mutant goes to a state where the set (bag) of
current conference partners contains two entries for pafin This state does
not exist in the EFSM specification. Using the partioned toethod no test is
generated for such a state and, consequently, the errdrdstaated. Typically,
errors in implementation states which do not have a corretipg state in the
specification are not always found by the UlO-based pamgiibtour method.

Mutant 289 Mutant 289 does not update its internal set of current genfe
ence partners correctly when answer-PDUis received. With an analogous,
although somewhat more complex analysis as for mutant 298oreluded
that also this failure of detection was caused by an additistate in the imple-
mentation which did not have a corresponding state in theME§{&cification.

Mutant 398 Mutant 398 does not check the conference identifier when
partners sendnswer-PDUs. With TorX we constructed the following failure
trace.

1 input UT ! Aljoin-SP(A,conf-1) 4 input: LT ! C ! answer-PO,conf-2)
2 output: LT!C!join-PDU(A,conf-1) 5 input: LT ! C ! data-PD@,m1)
3 output: LT!B!join-PDU(A,conf-1) 6 output: UT!A!datair8P(C,m1) : fail

User A joins conferenceonf-1in stepsl-3. Then useC' sends amnswer-
PDU to the SUT to join another conferenceonf-2 The SUT should ignore
this, but it does not: it erroneously addsto its set of current conference

The Conference Protocol with PHACT 9

partners. Then, when it receives in step data-PDU with messagenlfrom
C, the SUT passes the messagéerroneously adataind-SPto local userA.
Transposing this failure trace to the EFSM we obtain thefailhg.

Steps Condition Input Output Action Dest.
(1-3) TRUE join-A-1-SP join-A-to-BC-1-PDU (A-conf:=1) Qo

4) (A-conf=1) answer-C-to-A-2-PDU (none) (none) Conn
(5,6) clnotbnotc data-C-to-A-PDU join-A-to-C-1-PDU (rgn Conn

clnotbnotc == ((A-conf=1) AND NOT(B-part) AND NOT(C-p3art)

Transition(4) is a transition which is added in the EFSM only to make the
EFSM input complete. The EFSM specifies simply to neglectinkkeming
answer-C-to-A-2-PDUSince for such transitions no test cases are derived the
mutant is not detected. Probably, mutant 398 would have betatted if test
cases had been generated for all transitions includingriés imtended to make
the EFSM complete, which is a possibility PuAcT. After all, the mutant
makes an erroneous transition to a state known in the spsific i.e., the state
in which C' is a partner in the set of current conference partners. Waatid
perform this additional experiment yet.

8. CONCLUDING REMARKS

If the Conference Protocol experiments were a match betwesnX and
PHAcT the result would b&5 : 21 in favour of TorX. PHACT did not detect
4 mutants whicH'orX did. One of these caused a ‘core dump’; a simple
improvement in theobserverof PHACT would detect this mutant. Another
mutant was not detected because we only tested the explpiicified transi-
tions. APHACT test suite which tests all transitions would probably be &bl
detect this one. What remains are two implementations wdriemot detected
because they clearly have states which do not exist in thévESgecification.
Such non-detected errors are typical for the partitioned moethod which is
used byPHACT. In addition, we should note that some of the mutants wene onl
detected since all 82 test cases were executed succesgitladyt resetting the
implementations, see Section 7..

With respect toPHACT, the test tool is usable and successfully detected
most of the faulty implementations. Most of its disadvaetagre related to the
restrictions imposed on the EFSM’s it uses. They were dgsalis Section 5.:
the required alternation between single input and outplitirzs; determinism,
lack of compositionality, and the inability to cope with dgtarameters.

The Conference Protocol turned out to be a nice, useful aackisting case
study: it is simple enough to be understood but not so simeit is triv-
ial, multiple specifications and implementations are miplavailable, and the
number of experiments with itincreases so that interestimgparisons are pos-
sible [3]. As far as we know this is the first real comparisamsda on actually

10

detected erroneous implementations, of an FSM-baseditpehrPHACT —
with an LTS-based technique FOrRX.

Many additional experiments can be envisaged. First, theraxents men-
tioned above to detect the two not yet detected mutants RathcT can be
performed. Second, other orderings of test cases or indepétest case ex-
ecution could be considered. Third, other strategiePwhcT can be used:
random sequences, transition tours. Fourth, more, and tnckg erroneous
implementations can be developed to extend the comparfsifth, other test
tools can be applied to the Conference Protocol and otherstasies can be
used to compar@uact and TorX. Finally, apart from counting detected
mutants, other comparison criteria should be investigatadh as total effort
and cost of testing, cost per detected mutant, and ease.of use

Acknowledgements The authors would like to thank the membersQifte de Resystén
particular Axel Belinfante, Reénde Vries and Ron Koymans, and the anonymous reviewers for
their comments and support. Erik Kwast from KPN Researcltka@vledged for supplying
the Conformance Kit and developing the first version of thaef€eence Protocol EFSM.

References

[1] A. Belinfante, J. Feenstra, R.G. de Vries, J. TretmansGhNga, L. Feijs, S. Mauw, and
L. Heerink. Formal Test Automation: A Simple Experiment. Gn Csopaki et al. (eds.),
Testing of Communicating Systems g@. 179-196. Kluwer Ac. Publ., 1999.

[2] S.P.vande Burgt, J. Kroon, E. Kwast, and H.J. Wilts. TIM_LRConformance Kit. In J. de
Meer et al. (eds.Protocol Test Systems gp. 279—294. North-Holland, 1990.

[3] L. DuBousquet, S. Ramangalshy, C. Viho, A. Belinfanted &.G. de Vries. Formal Test
Automation: The Conference Protocol wilhcv/TorX. In TestCom 2000Kluwer Ac.
Publ., 2000. This issue.

[4] L.M.G. Feijs, F.A.C. Meijs, J.R. Moonen, and J.J. Wam&onformance Testing of a
Multimedia System using PHACT. In A. Petrenko and N. Yevardto (eds.)Testing of
Communicating Systems,Idp. 193-210. Kluwer Ac. Publ., 1998.

[5] E. Kwast, H. Wilts, H. Kloosterman, and J. Kroon. User Mahof the Conformance Kit.
Version 2.2, PTT Research Neher Labs, Leidschendam, THeNands, Oct. 23 1991.

[6] D.Lee and M. Yannakakis. Principles and Methods for ifigsFinite State Machines — A
Survey.The Procs. of the IEEB4, Aug. 1996.

[7] Project Consortium Gte de Resyste. Conference Protocol Case Study.
URL: http://fmt.cs.utwente.nl/ConfCase.

[8] T.I.P. Trew, B. Lanaspre, M. Hollenberg, J. Springintiyeand T.J. Harosia. Delivering
High Definition TV to the USA — Testing Subcontracted EmbetiBeal-Time Software.
In 16*" Conf. on Testing Computer Software (TCS:98ashington D.C., June 1999.

