
Chapter 1

FORMAL TEST AUTOMATION:
THE CONFERENCE PROTOCOL WITH PHACT

Lex Heerink
Philips Research Laboratories, Eindhoven, The Netherlands

lex.heerink@philips.com

Jan Feenstra and Jan Tretmans∗

University of Twente†, Enschede, The Netherlands

{feenstra,tretmans}@cs.utwente.nl

Abstract We discuss a case study of automatic test generation and testexecution based
on formal methods. The case is the Conference Protocol, a simple, chatbox-like
protocol, for which (formal) specifications and multiple implementations are
publicly available and which is also used in other case studyexperiments. The
tool used for test generation and test execution isPhact, the PHilips Automated
Conformance Tester. The formal method is (Extented) FiniteState Machines
which is the input language forPhact. The experiment consists of developing
a Finite State Machine specification for the Conference Protocol, generating
82 tests in TTCN withPhact, and executing these tests against 28 different
implementations of the Conference Protocol, both correct and erroneous ones.
The result is that some erroneous implementations are not detected by the test
cases. These results are analysed, the merits of Extented Finite State Machines
for specification are discussed, and the achievements ofPhact are assessed.
Moreover, the results are compared with a previous experiment in which the
same 28 implementations were tested based on specificationsin LOTOS and
Promela.

Keywords: Conformance testing, case study, formal methods, finite state machines, test
generation, test execution.

∗Corresponding author: Jan Tretmans, University of Twente,Faculty of Computer Science, Formal Methods
& Tools research group, P.O. Box 217, 7500 AE Enschede, The Netherlands; tretmans@cs.utwente.nl.
†This research is supported by the Dutch Technology Foundation STW under project STW TIF.4111:Côte
de Resyste– COnformance TEsting of REactive SYSTEms; http://fmt.cs.utwente.nl/CdR.

1

2

1. INTRODUCTION

In this note we describe a case study of automatic test generation and execu-
tion based on formal methods. The case is theConference Protocol, a simple,
chatbox-like protocol, for which (formal) specifications and multiple imple-
mentations are publicly available. The test tool used isPhact. The formal
method is (Extended) Finite State Machines – (E)FSM – which is the input
language forPhact.

The experiment consists of developing an EFSM specificationfor the Con-
ference Protocol, generating tests in TTCN with the Conformance Kit – which
is a part ofPhact – and executing these tests, also withPhact, against 28
different implementations, both correct and erroneous ones. The goal of this
paper is to present the experiment, to analyse the results, assess the merits of
(E)FSM’s and ofPhact, and to compare with a previous experiment in which
the same 28 implementations were tested. That experiment isdescribed in [1]
and this paper is based on it.

2. CONFERENCE PROTOCOL

The Conference Protocol provides a multicast service, i.e., a ‘chatbox’ ser-
vice, to its users. A group of users constitutes a conference. Each user in a
conference can exchange messages with all other users in that conference. A
conference can change dynamically: users can join or leave aconference at any
time.

The Conference Protocol is a relatively simple protocol, yet, it contains many
aspects of more realistic protocols. It has been used in other case studies, in
particular, in [1] we used it with the test toolTorX and formal specifications
in LOTOS,Promela and SDL. Hence, the Conference Protocol serves as a
vehicle for testing and comparison of test tools. The web page [7] provides
descriptions of the protocol, its service, formal specifications, and 28 different
implementations, one of which is (assumed to be) correct, while the others are
mutants in which (small) errors have been introduced.

3. PHACT

Phact (PHilips Automated Conformance Tester) is a set of tools that has
been used within Philips for some time to generate tests automatically and to
execute these tests against concrete implementations [4, 8]. The tool set consists
of two major parts: ageneratorand anexecutor, see Figure 1.1.

The generatormainly consists of the Conformance Kit developed at KPN
Research [2, 5]. It takes a formal specification in Extended Finite State Ma-
chine format (EFSM, Mealy Machine with state variables) as its input. This
EFSM must beinput completeanddeterministic, i.e., for every state and input

The Conference Protocol with PHACT 3

observer
visor

stimulator

SUT

.....

The Conformance Kit

super-

transition tour
partitioned tour

generatorEFSM TTCN

strategy pass / fail

Figure 1.1 Phact

there shall be exactly one transition that specifies the corresponding output and
destination state. The first step of thegenerator is to transform this EFSM
into an equivalent Finite State Machine (FSM) by expanding all (necessarily
finite-domain) variables. This FSM is minimized into an equivalent minimal
FSM, and then tests are generated according to one of the standard, FSM-based
algorithms (random sequences, transition tour, partitioned tour, i.e., UIO-based
test sequences; see [6] for an overview). The tests are expressed in a subset of
TTCN.

Theexecutorpart provides an environment for the execution of tests against
a System Under Test(SUT). It consists of asupervisor, a stimulator and an
observer. The stimulator andobserverare application specific and must be
developed, from a template, for each SUT separately. They provide the func-
tionality for encoding and stimulating the SUT with a singleinput test event
and for observing and decoding an output test event from the SUT. The su-
pervisor is a generic kind of test engine. It reads the generated test cases and
performs actions and test events given in the test case by using thestimulator
andobserverfunctions.

4. TEST ARCHITECTURE

The test architecture for testing Conference Protocol implementations is the
same as the one used in [1], see Figure 1.2. One Conference Protocol Entity
(CPE) is tested; it is the IUT (Implementation Under Test). This CPE has
one local conference user, denotedA, and two remote users, denotedB and
C. The CPE communicates with its environment at the IAP’s (Implementation
Access Points) which are the CSAP (Conference Service Access Point) and
the USAP (UDP Service Access Point). The test context is formed by the
underlying layer, which is assumed to be a reliable and order-preserving UDP
layer, sockets used for UDP communication, and pipes for communication at
the CSAP. The SUT consists of the IUT and the test context. ThePCO’s (Points
of Control and Observation) are the CSAP, which is the Upper Tester PCO (UT)
and the remote USAP’s which constitute the Lower Tester PCO (LT). The tester
is instantiated with thePhact executor(see Section 3.). Thestimulatorand

4

observerprovide the inputs and observe the outputs, respectively, at the UT and
LT PCO’s.

LT

B C

UDP layer

tester
A

USAP

UT = CSAP

= IUT
CPE

Figure 1.2 Test architecture

5. FINITE STATE MACHINE SPECIFICATION

The first step in the test experiment was developing an EFSM specification
of the Conference Protocol. Starting point was the description in [7]. This
resulted in an EFSM for one CPE with two conferences, one local user at the
upper interface, and two remote users. It is written in the EFSM format of
the Conformance Kit and it has 2 states, 3 variables, 18 inputs, 17 outputs and
36 explicitly specified transitions. The FSM expanded from this EFSM contains
9 states.

The restrictions on the (E)FSM imposed by the tool have implications for
the way the SUT was modelled. We discuss a few aspects.

In EFSM’s there is for every input at most one output. The Conference
Protocol has multicast aspects. When userA in Figure 1.2 wants to join a
conference, initiated by ajoin-SP (join-Service-Primitive) at CSAP, the CPE
has to send ajoin-PDU (join-Protocol-Data-Unit) to all potential conference
partners, i.e., toB andC. So, the inputjoin-SP leads to two outputs: ajoin-
PDU to B and one toC. Moreover, these outputs may arrive in any order –
nondeterministically – atB andC. Neither two outputs in one transition, nor
nondeterminism can be modelled directly in EFSM’s. We solved this by using
a single output actionjoin-A-to-BC-PDU, which models the two SUT outputs
occurring in any order (cf. [5]).

When the actionjoin-A-to-BC-PDUoccurs in a test case theobserverhas
to take care to implement this action correctly, i.e., to observe two PDU’s in
arbitrary order. This is implemented by starting a timer before every observa-
tion. As long as this timer runs the implementation may perform its outputs.
On expiration theobserverreads all outputs from all PCO’s, interprets them
together, and tries to map them onto the corresponding single EFSM output
action. So, any observation of outputs lasts at least the time required for this
timer to expire. Note that this way of observation does not correspond with

The Conference Protocol with PHACT 5

the standard TTCN snapshot semantics. A consequence of thisstrategy is that
some orderings of actions are not tested, e.g., in the example above, an input
action between the twojoin-PDU’s will never be considered for testing.

Alternation between inputs and outputs is always required in EFSM’s. This
also implies that a sequence of multiple inputs with delayedoutputs is not
considered, and hence not tested. In fact, EFSM’s assume a kind of synchrony
hypothesis.

Compositionality is not straightforward in EFSM’s. This involves the test
context. In our previous experiments with LOTOS andPromela we could
easily combine the CPE model with the context models. For ourEFSM model
this turned out to be more complex. Actually, we do not take itinto account
at all, so we make the assumption that the test context, i.e.,the queues which
model the CSAP pipes and the lower layer UDP, does not influence the observ-
able behaviour of the IUT. Whereas for queues this might seema reasonable
assumption it causes problems if the reliability and ordering assumptions on
UDP are released, i.e., if UDP has to be modelled as a lossy bag.

The last important restriction of EFSM’s in the ConformanceKit andPhact

is that they do not allow data parameters in inputs and outputs. Whereas in
LOTOS andPromela different conferences, users and UDP addresses were
easily modelled with data parameters, in EFSM’s these have to be coded ex-
plicitly. This means that simplifications and abstractionshave to be made with
respect to the data aspects which will be tested in order to avoid an enormous set
of explicitly coded input and output actions. Consequently, for all abstracted
data aspects there will be no test cases generated. As an example, the input
actionjoin-B-to-A-1-PDUrepresents ajoin-PDU with parametersB as source
address,A as destination address, and1 as conference identifier. This explains
the large number of actions necessary in our EFSM model.

6. THE TEST EXPERIMENT

With the Conformance Kit 82 tests were generated from the EFSM specifi-
cation with the partitioned tour method. For each explicitly specified transition
of the FSM, obtained from the EFSM, a test case was generated;for transitions
only added to make the EFSM input complete, no test cases weregenerated. A
test case following the partitioned tour method consists of(i) a synchronizing
sequencethat brings the system from any arbitrary state into its initial state;
(ii) a transferring sequencethat brings the system from the initial state to the
source state of the transition to be tested; (iii) a transition test, which performs
the input and checks the output of the transition to be tested; and (iv) a Simple
Input/Output Sequence(also known as Unique Input/Output (UIO) sequence),
which verifies whether the correct destination state is reached. The length of
the test cases varies from 6 to 16 test events: the synchronizing sequence has

6

minimum 2 and maximum 4 test events, the 9 transferring sequences have a
length from 0 to 6, every transition test consists of 2 test events, and the 9 UIO
sequences have a length from 2 to 4 test events (not countingstart-timerevents).

The 82 test cases were successively applied, using theexecutorpart of
Phact, to the 28 Conference Protocol implementations. They were executed
for each implementation without resetting and re-initializing the implementa-
tion between the different test cases, which is possible dueto the synchronizing
sequence.

The results of the test experiments are that 21 obtained the verdictfail. These
21 implementations were correctly detected: they are knownto be erroneous
mutants. To 6 implementations the verdictpasswas assigned, among which
there was the correct one. Moreover, the following (erroneous) mutants got a
passverdict (using the mutant numbers of our internal identification scheme):
289, 293, 398, 444, and 666. One implementation (mutant 749)led to an
abnormal termination (‘core dump’).

In our previous experiment with the Conference Protocol we tested the same
28 implementations with the test toolTorX [1]. Those experiments led to the
detection of 25 out of the 28 implementations: the correct implementation and
the mutants 444 and 666 got the verdictpass.

7. ANALYSIS

While analysing the test results, the first observation was that some of the
mutants were only detected because the 82 test cases were executed consecu-
tively without resetting the implementation, i.e., the 82 test cases were actually
executed as one large concatenated test case. This led to thesituation where
an error is triggered in one test case, without causing an incorrect observa-
tion, while the subsequently executed test case then led to the failure in terms
of an incorrect observation. This situation becomes apparent, for instance, in
the mutants numbered 332 and 345. These mutants implement the leave-PDU
incorrectly, so that a conference partner which leaves the conference is not re-
moved from the implementation’s internal set of current conference partners.
When one test case is finished and the synchronizing sequenceof the next test
case has been executed, the specification FSM is in its initial state again. But,
since the SUT is not re-initialized between the two test cases, the SUT is, er-
roneously, not in its initial state: the conference partnerthat left is still in the
set of current conference partners. This situation then leads to an incorrect
observation withfail verdict in the subsequent test case, e.g., when PDU’s are
sent to the partners in the set.

The second point of analysis concerns mutant 749 that led to an abnormal
termination. Analysis shows that this mutant generates an invalid PDU which is
not correctly recognized by theobserverand, consequently, cannot be mapped

The Conference Protocol with PHACT 7

onto an EFSM output action. It turns out that our developedobserverof Phact

is not robust for unrecognized PDU’s, which is an anomaly of our observer.
Mutant 749 was detected byTorX since the observer part ofTorX maps
every message which it cannot recognize onto a non-existingPDU. Since, of
course, such a PDU does not occur in the specification this is subsequently
considered as an incorrect response leading to the verdictfail. An analogous
solution could have been implemented forPhact.

The third point of analysis concerns the mutants not detected byPhact.
Mutants 444 and 666: Analysis in [1] showed that these mutants accept

PDU’s from any source, not only from (potential) partners. In the LOTOS
andPromela specifications the responses to such PDU’s are not explicitly
specified, which means that, followingTorX’ correctness criterionioco [1],
any response from the SUT is allowed. Consequently, 444 and 666 areioco-
correct and passTorX.

With Phact we only generated test cases for explicitly specified transitions
and not for those that were only added to make the FSM input complete (Sec-
tion 6.). Consequently, it is no surprise that also withPhact the mutants 444
and 666 were not detected. However, whereas withTorX these mutants can
principally not be detected – the necessary stimuli are never generated byTorX

– they might have been detected withPhact – they can occur in a synchroniz-
ing sequence or UIO sequence. Moreover, in order to minimizethe number of
data parameters (which have to be coded explicitly; see Section 5.), inputs from
non-existent partners were not considered in our EFSM. Hence, such inputs are
outside the considered input set and, like forTorX, the necessary stimuli to
trigger the faults are never generated.

Mutants 289, 293 and 398: These erroneous mutants got the verdictpass,
whereas they were detected in theTorX experiment. We now try to analyse
why Phact does not detect them by comparison with theTorX experiment.
The failure trace-logs ofTorX, i.e., the traces of inputs and outputs leading to
the detection byTorX, were analysed. Then we projected these failure traces
onto the EFSM and analysed the relevant EFSM behaviour and thePhact test
suite with respect to these failure traces.

Mutant 293: Mutant 293 uses a bag instead of a set to administer its
conference partners. WithTorX the following failure trace detects this mutant.

1 input: UT ! A ! join-SP(A,conf-1) 5 input: LT ! C ! answer-PDU(C,conf-1)
2 output: LT ! C ! join-PDU(A,conf-1) 6 input: UT ! A ! datareq-SP(m1)
3 output: LT ! B ! join-PDU(A,conf-1) 7 output: LT ! C ! data-PDU(A,m1)
4 input: LT ! C ! answer-PDU(C,conf-1) 8 output: LT ! C ! data-PDU(A,m1) : fail

In step1 the local userA wants to start a conference with nameconf-1via
a join-Service-Primitiveat the upper test interfaceUT . In steps2 and3 the
SUT informs the potential partnersB andC at the lower test interfaceLT by
sending twojoin-PDU’s. Then, atLT , userC sends ananswer-PDUto the

8

SUT, twice. The SUT should react by simply neglecting the second answer-
PDU, however, the SUT does store the second one in its bag. In step6 the SUT
receives a request from its local userA to send messagem1. Then, in steps7
and8 the SUT sends the message to userC, also twice, which is incorrect: the
SUT should send it only once. So, in step8 no output was expected according
to the specification (‘quiescence’):fail.

Analysis of this sequence of events in the EFSM specificationgives:

Steps Condition Input Output Action Dest.

(1-3) TRUE join-A-1-PDU join-A-to-BC-1-PDU (A-conf:=1) Conn
(4) (A-conf=1) answer-C-to-A-1-PDU (none) (C-part:=TRUE) Conn
(5) (A-conf=1) answer-C-to-A-1-PDU (none) (C-part:=TRUE) Conn
(6,7) notbc datareq-SP data-A-to-C-PDU (none) Conn

notbc == (NOT(B-part) AND C-part)

In the first EFSM transition, corresponding to the steps(1–3)of theTorX

trace, userA joins conference1 and sends twojoin-PDU’s to usersB and
C, respectively. (This is modelled as one output, see Section5.). The EFSM
goes to stateConnand conference1 is active: (A-conf:=1). We see in steps
(4) and(5) that userC is allowed to send ananswer-PDU, twice. The second
one does not change the state of the EFSM and, consequently, should have
no effect. If in (6,7) the local userA issues adatareq-SPthe corresponding
data-PDU is sent only once. This state of the EFSM is never reached by the
mutant: after transition(5) the mutant goes to a state where the set (bag) of
current conference partners contains two entries for partner C. This state does
not exist in the EFSM specification. Using the partioned tourmethod no test is
generated for such a state and, consequently, the error is not detected. Typically,
errors in implementation states which do not have a corresponding state in the
specification are not always found by the UIO-based partitioned tour method.

Mutant 289: Mutant 289 does not update its internal set of current confer-
ence partners correctly when ananswer-PDUis received. With an analogous,
although somewhat more complex analysis as for mutant 293 weconcluded
that also this failure of detection was caused by an additional state in the imple-
mentation which did not have a corresponding state in the EFSM specification.

Mutant 398: Mutant 398 does not check the conference identifier when
partners sendanswer-PDU’s. WithTorX we constructed the following failure
trace.

1 input: UT ! A ! join-SP(A,conf-1) 4 input: LT ! C ! answer-PDU(C,conf-2)
2 output: LT ! C ! join-PDU(A,conf-1) 5 input: LT ! C ! data-PDU(C,m1)
3 output: LT ! B ! join-PDU(A,conf-1) 6 output: UT ! A ! dataind-SP(C,m1) : fail

UserA joins conferenceconf-1in steps1-3. Then userC sends ananswer-
PDU to the SUT to join another conference:conf-2. The SUT should ignore
this, but it does not: it erroneously addsC to its set of current conference

The Conference Protocol with PHACT 9

partners. Then, when it receives in step5 a data-PDUwith messagem1 from
C, the SUT passes the messagem1erroneously asdataind-SPto local userA.

Transposing this failure trace to the EFSM we obtain the following.

Steps Condition Input Output Action Dest.

(1-3) TRUE join-A-1-SP join-A-to-BC-1-PDU (A-conf:=1) Conn
(4) (A-conf=1) answer-C-to-A-2-PDU (none) (none) Conn
(5,6) c1notbnotc data-C-to-A-PDU join-A-to-C-1-PDU (none) Conn

c1notbnotc == ((A-conf=1) AND NOT(B-part) AND NOT(C-part))

Transition(4) is a transition which is added in the EFSM only to make the
EFSM input complete. The EFSM specifies simply to neglect theincoming
answer-C-to-A-2-PDU. Since for such transitions no test cases are derived the
mutant is not detected. Probably, mutant 398 would have beendetected if test
cases had been generated for all transitions including the ones intended to make
the EFSM complete, which is a possibility inPhact. After all, the mutant
makes an erroneous transition to a state known in the specification, i.e., the state
in which C is a partner in the set of current conference partners. We didnot
perform this additional experiment yet.

8. CONCLUDING REMARKS

If the Conference Protocol experiments were a match betweenTorX and
Phact the result would be25 : 21 in favour ofTorX. Phact did not detect
4 mutants whichTorX did. One of these caused a ‘core dump’; a simple
improvement in theobserverof Phact would detect this mutant. Another
mutant was not detected because we only tested the explicitly specified transi-
tions. APhact test suite which tests all transitions would probably be able to
detect this one. What remains are two implementations whichare not detected
because they clearly have states which do not exist in the EFSM specification.
Such non-detected errors are typical for the partitioned tour method which is
used byPhact. In addition, we should note that some of the mutants were only
detected since all 82 test cases were executed successivelywithout resetting the
implementations, see Section 7..

With respect toPhact, the test tool is usable and successfully detected
most of the faulty implementations. Most of its disadvantages are related to the
restrictions imposed on the EFSM’s it uses. They were discussed in Section 5.:
the required alternation between single input and output actions, determinism,
lack of compositionality, and the inability to cope with data parameters.

The Conference Protocol turned out to be a nice, useful and interesting case
study: it is simple enough to be understood but not so simple that it is triv-
ial, multiple specifications and implementations are publicly available, and the
number of experiments with it increases so that interestingcomparisons are pos-
sible [3]. As far as we know this is the first real comparison, based on actually

10

detected erroneous implementations, of an FSM-based technique –Phact –
with an LTS-based technique –TorX.

Many additional experiments can be envisaged. First, the experiments men-
tioned above to detect the two not yet detected mutants withPhact can be
performed. Second, other orderings of test cases or independent test case ex-
ecution could be considered. Third, other strategies ofPhact can be used:
random sequences, transition tours. Fourth, more, and moretricky erroneous
implementations can be developed to extend the comparison.Fifth, other test
tools can be applied to the Conference Protocol and other case studies can be
used to comparePhact andTorX. Finally, apart from counting detected
mutants, other comparison criteria should be investigated, such as total effort
and cost of testing, cost per detected mutant, and ease of use.

Acknowledgements The authors would like to thank the members ofCôte de Resyste, in

particular Axel Belinfante, Reńe de Vries and Ron Koymans, and the anonymous reviewers for

their comments and support. Erik Kwast from KPN Research is acknowledged for supplying

the Conformance Kit and developing the first version of the Conference Protocol EFSM.

References

[1] A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw, and
L. Heerink. Formal Test Automation: A Simple Experiment. InG. Csopaki et al. (eds.),
Testing of Communicating Systems 12, pp. 179–196. Kluwer Ac. Publ., 1999.

[2] S.P. van de Burgt, J. Kroon, E. Kwast, and H.J. Wilts. The RNL Conformance Kit. In J. de
Meer et al. (eds.),Protocol Test Systems 2, pp. 279–294. North-Holland, 1990.

[3] L. Du Bousquet, S. Ramangalshy, C. Viho, A. Belinfante, and R.G. de Vries. Formal Test
Automation: The Conference Protocol withTgv/TorX. In TestCom 2000. Kluwer Ac.
Publ., 2000. This issue.

[4] L.M.G. Feijs, F.A.C. Meijs, J.R. Moonen, and J.J. Wamel.Conformance Testing of a
Multimedia System using PHACT. In A. Petrenko and N. Yevtushenko (eds.),Testing of
Communicating Systems 11, pp. 193–210. Kluwer Ac. Publ., 1998.

[5] E. Kwast, H. Wilts, H. Kloosterman, and J. Kroon. User Manual of the Conformance Kit.
Version 2.2, PTT Research Neher Labs, Leidschendam, The Netherlands, Oct. 23 1991.

[6] D. Lee and M. Yannakakis. Principles and Methods for Testing Finite State Machines – A
Survey.The Procs. of the IEEE, 84, Aug. 1996.

[7] Project Consortium Ĉote de Resyste. Conference Protocol Case Study.
URL: http://fmt.cs.utwente.nl/ConfCase.

[8] T.I.P. Trew, B. Lanaspre, M. Hollenberg, J. Springintveld, and T.J. Harosia. Delivering
High Definition TV to the USA – Testing Subcontracted Embedded Real-Time Software.
In 16

th Conf. on Testing Computer Software (TCS’99), Washington D.C., June 1999.

