FEM Simulation of the rolling of stator vanes

Harm Wisselink

University of Twente/ NIMR Cluster Modelling of Forming Fac. Mechanical Engineering/ Applied Mechanics P.O. Box 217,7500 AE, Enschede

Introduction

ELDIM manufactures among others stator vanes for the compressor of an aero engine (figure 1). These vanes are produced from strips of sheet metal by a cold rolling process. The development of a rolling process for a new type of vane can take several cycles of trial and error, before all requirements are fulfilled.

Figure 1: Pratt&Whitney F119-PW-100 for the JointStrikeFighter.

Objectives

The objective of this research is to build a model that gives more insight in this rolling process, which should accelerate the development of the rolling process for new vane types.

The rolling process

The roll-die and die-plate contain respectively the convex and concave airfoil profile of the vane. Due to the applied horizontal force, the die-roll rolls over the die-plate, deforming a strip (clamped in the die-plate) into a vane.

Figure 2: Tools and airfoil profile used for the rolling process.

The investigated vane [1], rolled from an 40x3mm aluminium strip, has a straight and symmetrical profile (figure 2).

FEM model

The rolling of straight vanes can be considered as a stationary process. The ALE formulation in the Finite Element Method code DiekA is suitable for such processes [2]. Starting from an estimated initial geometry the steady state geometry is calculated. The tools are modelled rigid.

Results

The calculated deformation of the material agrees with the measured deformations (figure 4). A parameter study is performed with different friction coefficients and initial strip dimensions.

Figure 4: Calculated (C) and measured (M) deformations.

Future work

The model will be extended to be able to simulate real (non-symm.) vane profiles. Furthermore the elastic deformation of the tools has to be taken into account.

References

[1] A. Z. Abee, On the simulation of the shape rolling process of stator vanes using a FEM model, Master thesis, University of Twente, 2000

[2] H. H. Wisselink, Analysis of guillotining and slitting, Ph.D thesis, University of Twente, 2000

Contact info: Harm Wisselink Han Huetink Martien van Dijk Andre van Leeuwen ID eldim@eldim.nl

h.h.wisselink@wb.utwente.nl j.huetink@wb.utwente.nl ID eldim@eldim.nl

