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Abstract

Nearfield acoustical holography (NAH) is used to find the regions of acoustic
activity on the surface of a sound radiating object. One of the most general
NAH approaches is the inverse frequency response function (IFRF) technique,
since it imposes no limitations on the geometry of the radiating boundary. In the
IFRF method acoustic measurements on a grid in the nearfield of the object are
used to determine the corresponding normal velocity distribution on the surface
of the object. The measured sound field is related to the surface vibrations via
a transfer matrix, which is calculated using a boundary element method. The
required inversion of the transfer matrix is not that simple, because the system is
ill-conditioned. Hence, a physically meaningful solution can only be obtained by
applying regularization techniques.

In the literature, the boundary surface of the source is usually meshed with
constant or linear elements of equal shape and size. Most likely, this is done
to avoid the effect that the regularized inversion process favors nodes that are
associated with a high mean square surface normal velocity. This effect is due
to the fact that such nodes have a more effective contribution to the sound field.
In this paper it is demonstrated that the problem in which the inverse solution
is affected by the topology of the mesh gets even worse when quadratic elements
are applied. A new technique will be described that circumvents this problem
completely by the introduction of an appropriate smoothing operator. As a result
all boundary nodes are treated in an equal way, irrespective of their associated area
or type of shape function. With the presented approach, irregular meshes and/or
higher order boundary elements can be successfully used in NAH applications.
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INTRODUCTION

Exterior sound radiation caused by structural vibrations is described by the Helm-
holtz Integral Equation (HIE). The integral equation relates the surface normal
velocities on the boundary of a vibrating object to the acoustic pressure fluctua-
tions in the surrounding fluid domain.

This type of problems is efficiently solved with the direct boundary element
method (BEM), as this approach reduces the spatial dimensionality of the problem
by one. Moreover, the Sommerfeld radiation condition is automatically satisfied
in the integral formulation. Furthermore, BEM not only predicts the acoustic
quantities itself but additionally yields the so-called acoustic transfer matrices
(ATM), which are essential for nearfield acoustic source identification techniques
(see Marki [3], Visser [7]). Such techniques estimate the unknown surface vibra-
tions on the boundary of a radiating object based on measurements of the radiated
sound field. Most publications on this topic seem to be limited to uniform meshes
containing constant or linear elements. In the present paper it is shown that
in order to apply quadratic boundary elements (or nonuniform meshes), it is re-
quired to incorporate an appropriate smoothing operator in the solution scheme.
The influence of such a smoothing operator on the reconstructed solution will be
demonstrated by means of an example concerning radiation from a box mounted
on a baffle as depicted in figure 1.
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Parameter Value Units Description

L1 × L2 × L3 0.3 × 0.5 × 0.12 [m] Size of the box
Lf1 × Lf2 0.4 × 0.6 [m] Size of the field grid

d 0.05 [m] Distance between the field grid and top plate
h 0.05 [m] Characteristic element size on the top plate
ρ0 1.22 [kg/m3] Fluid density
c0 343 [m/s] Propagation speed in fluid
RH 1 [−] Reflection coefficient of baffle

Figure 1: Numerical example of a box mounted on a baffle. The simply supported
top plate of the box is vibrating in a (2,2) mode shape. Simulated measurements
are performed in a planar field grid at distance d above the top plate.
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BASIC EQUATIONS

Assuming a stationary sound source in a homogeneous fluid, the corresponding
acoustic wave propagation is governed by the Helmholtz differential equation

∇2p(~x) + k2p(~x) = 0, (1)

with k = ω/c0 the wave number, c0 the speed of sound, ω the angular frequency,
and p(~x) representing the complex amplitude of the harmonic pressure perturba-
tion. Using Green’s second identity the Helmholtz differential equation (1) can be
rewritten in the HIE, which forms the basis of direct BEM [1, 5, 8]. This integral
equation relates the surface pressure p(~y) and normal velocity vn(~y) on a vibrating
closed boundary S to the radiated pressure p(~x) in field point ~x (see figure 2):

α(~x)p(~x) =

∮

S

{

∂GH(r, r′)

∂ny

p(~y) − GH(r, r′)
∂p(~y)

∂ny

}

dS , (2)

with distances r = ‖~r‖ and r′ = ‖~r ′‖. Note that the present example concerns
radiation into half space instead free space, hence the Green’s function reads

GH(r, r′) =
e−ikr

4πr
+ RH

e−ikr′

4πr′
. (3)
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Figure 2: Nomenclature in half space radiation.

NUMERICAL IMPLEMENTATION

For the numerical evaluation of integral equation (2), a discretization of the bound-
ary surface S into so-called boundary elements is made. In the sample problem,
the surface of the box has been divided into 222 quadratic triangular elements
(TRIA6) with a total of 461 nodes. After a piecewise polynomial interpolation of
the acoustic quantities, the numerical integration is performed for each element
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separately and the contributions of each of these elements to their nodes are as-
sembled in a matrix. In this way the continuous integral equation is approximated
by the following algebraic system of equations

pf = H · vn , (4)

with vector pf representing the pressures in a discrete set of field points. Vector
vn represents the prescribed surface normal velocity on the nodes of the source
mesh. Note that the acoustic transfer matrix H is a function of the wave number.

ACOUSTIC SOURCE IDENTIFICATION

Problem formulation

In BEM based acoustic source identification methods [3, 4, 7] the objective is to
obtain the unknown surface velocities in normal direction (vn) from the acoustic
pressures (pf ) measured in the field grid.
In inverse theory a problem like pf = H · vn is commonly written as

H · x = b , or as min
x

‖H · x − b‖ with H ∈ C
m×n , (5)

where H represents the transfer matrix that relates an input vector x = vn (cause)
to an output vector b = pf (effect) of dimensions n and m, respectively. A
particulary useful tool for solving such systems is the compact singular value
decomposition (SVD), being defined as

H = U · S · VH =
∑

i

uisiv
H
i , (6)

where in case of an overdetermined system (m > n), matrix U is of dimensions
m × n and V of n × n while for the underdetermined system (m < n), U is of
dimensions m × m and V is of n × m. For both cases U and V are unitary
matrices, UH ·U = Im and VH ·V = In, with their columns representing the left
and right singular vectors ui and vi, respectively

U =
[

u1 u2 · · · umin (m,n)

]

and V =
[

v1 v2 · · · vmin (m,n)

]

. (7)

The nonnegative and real singular values are collected on the diagonal of matrix
S = diag

(

s1 s2 · · · smin (m,n)

)

appearing in descending order such that s1 ≥
s2 ≥ · · · ≥ smin (m,n) ≥ 0.
In terms of this decomposition the standard least-squares solution to system (5)
reads

xLS =
∑

i

uH
i · b

si

vi . (8)

Unfortunately, the acoustic transfer matrix proves to be ill-conditioned, which
implies that arbitrary small perturbations in the measured pressure data b result
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in large errors in the solution of the surface velocities x. Nevertheless, a meaningful
solution can be found in both physical and mathematical terms with the help of
regularization methods.

It is known [2, 3, 7, 8] that standard regularization techniques like truncated
singular value decomposition (TSVD), Tikhonov regularization or iterative least-
squares QR factorization (LSQR) give adequate solutions in these inverse BEM
techniques. In this paper the TSVD technique has been adopted as it provides
an excellent physical interpretation of the inverse problem. By imposing TSVD
regularization, the original ill-conditioned least-squares problem (5) is replaced by
the following generalized problem [2, 9]

min
x

‖H · x − b‖ subject to min
x

‖L · x‖ , (9)

which shows a trade-off between minimizing the residual and the magnitude of
the solution measured according to a discrete smoothing operator L. Basically
any arbitrary matrix L can be applied to constrain the norm of x, but preferably
it should reflect some physical property of the solution.

Solving the problem - TSVD

Once the transfer matrix has been computed and a smoothing norm has been
chosen, the first step towards solving the generalized problem (9) is to convert it
into standard form by introducing the transformation x̂ = L · x, leaving

min
x̂

∥

∥

∥
Ĥ · x̂ − b

∥

∥

∥
subject to min

x̂

‖x̂‖ , (10)

with Ĥ = H ·L−1. Now that the problem is in standard form, a TSVD regularized
solution similar to that of equation (8) can be found:

x̂κ =
κ

∑

i=1

ûH
i · b

ŝi

v̂i , with κ ≤ min (m,n) , (11)

where only the first κ singular components are accounted for in the summation.
The symbol κ represents the regularization parameter which controls the amount
of filtering (regularization) applied to the least-squares problem. To determine
the optimal amount of regularization the L-curve has been applied that balances

the size of the residual norm
∥

∥

∥
Ĥ · x̂κ − b

∥

∥

∥
and the solution norm ‖x̂κ‖ (e.g. see

Hansen [2]). Finally, the regularized solution to the original generalized prob-
lem (9) is obtained through the back-transformation xκ = L−1 · x̂κ.

Choosing a smoothing norm

Most studies in literature are restricted to boundary surface meshes with equally
sized and identically shaped constant or linear elements, since choosing such a dis-
cretization effectively circumvents the choice of an appropriate smoothing norm.
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In fact in those cases the smoothing operator has implicitly been chosen equal
to the identity matrix L = I. As a consequence the inverse problem (9) is auto-
matically in standard form and strictly speaking no transformation is required.
In practical situations however, choosing such a regular discretization is generally
unwanted or simply not possible and the boundary mesh consists of elements of
different sizes or types. Especially when higher order elements are applied, like
the quadratic TRIA6 elements of the sample model, it is required to select an
appropriate smoothing operator since the boundary nodes have no longer equal
contributions in the radiation process. This problem with higher order elements
has recently been reported in a paper of Valdivia and Williams [6]. The current
study offers a solution to the problem by choosing the operator L such that the
contributions of the boundary nodes in the inverse problem are weighted with
respect to the mean square value of the surface normal velocity, defined as

M =
1

2S

∫

S

vH
n (~y)vn(~y) dS , (12)

which can be approximated in discrete sense by

M = vH
n · B · vn . (13)

where B contains the integration results over the squared shape functions. As
the discrete smoothing operator L must work on solution vector vn, it is rather
logical to take L = chol(B), the Cholesky factor of matrix B = LH · L.

Regularized solutions

Returning to the example of the box with a (2,2) structural vibration as depicted
in figure 1, the corresponding inversely obtained TSVD solutions based on a nu-
merical measurement of the acoustic pressures in the field grid are presented in
figure 3. In order to make the simulated measurements more realistic, 10% noise
has been added to the pressure data.

~e1
~e2

~e3

(a) Reconstruction for L = I.

~e1
~e2

~e3

(b) Reconstruction for L = chol(B).

Figure 3: Optimal reconstructed surface normal vibrations obtained for different
smoothing operators L.

It is obvious that the reconstructed solution obtained through application of the
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smoothing operator L = chol(B) makes sense, whereas the solution obtained with
L = I is severely influenced by the element characteristics as explained later.
Because the actual physical solution is of interest and not a mesh dependent
solution, application of L = I in combination with quadratic elements is unac-
ceptable. Note that this behavior is also found when other types of regularization
are imposed (e.g. Tikhonov, LSQR). The observed behavior can be explained by
taking a closer look at the singular vectors from which the regularized solution is
composed.

Source modes and field modes

After performing a singular value decomposition of matrix Ĥ and application of
the back-transformation vi = L−1· v̂i, the first two singular vectors are plotted in
figure 4 for both a smoothing operator of L = I and L = chol(B). It is obvious that

(a) Singular vectors for L = I. (b) Singular vectors for L = chol(B).

Figure 4: Real parts of first two singular vectors vi (source modes) and ui (field
modes) for different smoothing operators L.

for the latter choice the source modes indeed represent a physically meaningful
distribution whereas without an appropriate smoothing norm the source modes
are strongly influenced by the element properties of the TRIA6 elements. More
specifically, in contrast with the mid-side nodes, the corner nodes of such elements
have no net contribution to the specific nodal volume velocity qi, defined as

qi =

∫

Sm

Ni dS with qi =

{

0 , if node i is a corner node,
Sm/3 , if node i is a mid-side node.

(14)

where Sm is the element area and Ni the shape function corresponding to node
i. This element behavior is directly observed in the source modes as shown in
figure 4(a), where each corner node shows a zero valued contribution to the sound
field. In order to avoid this unwanted behavior it is recommended to apply the
smoothing operator L = chol(B) at all times since this completely avoids the
nonphysical effects arising from the element discretization.
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CONCLUSIONS

The current paper investigated the application of higher order and irregularly
shaped boundary elements in acoustic source identification techniques. It was
shown that boundary nodes that are associated with a high mean square surface
normal velocity are favored in the inversion process, resulting in solutions that
depend on the applied element size and type. To prevent this unwanted nonphys-
ical behavior, a discrete smoothing operator based on a Cholesky decomposition
of the spatially averaged square surface normal velocity should be applied.
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