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ABSTRACT 
Inverse source identification based on acoustic measurements is essential for the 
investigation and understanding of sound fields generated by structural vibrations of 
various devices and machinery. 
Acoustic pressure measurements performed on a grid in the nearfield of a surface can be 
used to determine the vibration pattern of the surface at the frequency of interest. A 
general applicable method is the inverse frequency response function method (IFRF). The 
method is preferred, because it imposes no limitations on the shape of the measurement 
grid and the geometry of the source. Unfortunately, the inverse problem consists of 
solving an ill-conditioned system of equations, which can be only be performed by 
application of regularization (stabilization) techniques. Without these techniques the 
solution will be dominated by effects resulting from modeling errors and measurement 
noise. 
The presentation investigates the physical nature of the ill-conditioned problem and 
explains how to deal with it. The quality of the approximated solution is mainly 
determined by the choice of a regularization parameter. This paper investigates the use of 
an L-curve plot for choosing the "optimal" parameter. 
An illustration of the various steps in the acoustic source identification procedure will be 
given by means of a simulated experiment on the sound radiation of a rigid box covered 
by a flexible plate. 
 

1. INTRODUCTION 
Structural acoustics is focused on the relation between vibration patterns on the surface of 
a structure and the radiated sound field. The example in this paper concerns a rigid box 
covered by a simply supported flexible plate vibrating in a 2-1 mode with a frequency of 
216.5 Hz, as shown in Figure 1. The box has the dimensions 0.15x0.2x0.4m. A set of 133 
field points is used to measure the acoustic pressure in the free field at a distance of 0.06m 
from the source. The direct boundary element method (DBEM) is used to relate the 
normal velocities on the discretized geometry to the pressure in the set of field points. This 
relation is given by a frequency dependent, dense populated transfer matrix  (see [1]): H

normalfield vHp ��  (1) 
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Because the number of field points (133) exceeds the number of source nodes (125) in this 
example, the system is overdetermined. 
When the velocity is prescribed (e.g. from a FEM calculation) and the transfer matrix is 
known (e.g. from a BEM calculation), the forward radiation problem of calculating the 

field pressures reduces to a simple matrix-vector multiplication. 

Rigid box 

Plate 

Figure 1: The normal velocity distribution of the example problem (left) and the discrete set of
measurement points surrounding the box (right). 

However, in inverse acoustic source localization techniques, the task is to obtain the 
unknown surface velocities from the pressures measured at the field grid. Unfortunately, 
system (1) is a discrete ill-posed problem, which implies that arbitrary small perturbations 
in the measured pressure result in arbitrary large errors in the solution of the surface 
velocities. Therefore, solving the set of equations cannot be performed by standard least 
squares techniques. 
In spite of the ill-conditioned nature of the problem, a meaningful solution can be found 
when regularization techniques are applied. This article explains the ill-conditioned nature 
in both physical and mathematical terms with the help of the numerical example of Figure 
1. 

2. DISCRETE ILL-POSED PROBLEMS 
In regularization theory it is common to write the system of equations (1) as: 

bAx �  (2) 
In inverse acoustics the challenge is to obtain a meaningful estimate of the original input 
of the system given by vector  (surface velocity). The complex data vector  is obtained 
from a pressure measurement and the transfer matrix  can be measured or calculated 
(BEM). As the matrix is ill-conditioned, standard inversion techniques fail to obtain a 
physically meaningful approximation of . 
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A superior numerical tool for analysis of discrete ill-posed problems is the singular value 
decomposition (SVD). The SVD reveals all the difficulties associated with the ill-
conditioning of matrix . A
Let nmR x

�A be a rectangular matrix with m . Then the SVD of matrix  is a 
decomposition of the form 
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V  are unitary matrices, U , 
and where  has non-negative real diagonal elements appearing in 
descending order such that� . 
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The numbers �  are the singular values of  while the vectors  and  are, 
respectively, the left and right singular vectors of . In connection with discrete ill-posed 
problems, two characteristic features of the SVD of  are often found [3,5]: 
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�� The singular values �  decay gradually to zero with no particular gap in the 

spectrum. 
i

�� The left and right singular vectors  and  tend to have more sign changes in 
their elements as the index i  increases, i.e., as � decreases (vectors become more 
oscillatory). 
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Figure 2 clearly shows the gradual decay of singular values of the transfer matrix of our 
example problem from Figure 1. 

2.1 Interpretation of SVD 
Márki [2] showed that the singular vectors u  and  
can be interpreted as ‘mode shapes’ of the pressure 
on the field grid ( u ) and normal velocity on the 
source surface ( ). The singular values couple each 
‘surface mode’ of velocities independently to the 
corresponding ‘field mode’ of pressures. An 
important aspect of the SVD is that the singular 
vectors  and  become more oscillatory for 
higher indices i . In Figure 3, three source velocity 
modes are shown, the field modes are not shown 
because of the irregular field grid. 
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Figure 2: The singular values of the
example problem clearly indicate the ill-
conditioning of the problem. 
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Figure 3: Smaller singular values have more oscillatory velocity modes (real-part). 
  



3. DISCRETE PICARD CONDITION 
We assume that the errors in the system of equations (2) mainly occur in the right-hand 
side b . Thus the measured data  can be written as: b

xAbebb ��� ,  (4) 

where b  represents the exact unperturbed data, x  represents the exact solution, and the 
vector  represents the errors in the data. These errors typically tend to have components 
in each left singular vector  (white noise in spatial sense). 
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In order to check the existence of a physically meaningful solution to the inverse problem 
and to ensure that this solution can be approximated by a regularized solution, it is 
necessary to satisfy the Discrete Picard Condition (DPC) [3]: 

The exact SVD coefficients |||| buH
i  decay faster than the singular values � . i

Fulfillment of this condition assures that the exact, unknown, solution can be 
approximated by a regularized solution.  

Figure 4: Picard plot for the unperturbed (left) and the perturbed (right). b b
The left-hand part of Figure 4 gives the visualization of the DPC for the unperturbed data 
vector b . Obviously the ‘average’ decay of the SVD coefficients (crosses) is steeper than 
that of the singular values. This ensures that a meaningful regularized solution to our 
example problem can be obtained. The circles in the figure show the participation of each 
field mode to the solution. It can be seen that (some of) the first few modes will mainly 
determine the reconstructed velocity pattern and that there is no dominance of the higher 
modes.  
The right-hand part of Figure 4 gives the Picard plot when the data vector b  is 
contaminated with Gaussian noise at a S/N ratio of 20 dB. As the first few SVD 
coefficients fall off steeper than the singular values it is still possible to reconstruct a 
meaningful solution, but it can also be seen that the coefficients (crosses) level off at the 
noise level. The contributions to the solution (circles) show very clearly the dominant 
behavior of the higher modes with respect to the first few lower modes, which are 
important in the physically meaningful solution. This shows the disastrous influence of 
noise in ill-conditioned problems. The task of the regularization methods is to eliminate 
the influence of these higher modes in the solution. 



4. REGULARIZATION OF THE SYSTEM OF EQUATIONS 
If the SVD (3) is inserted in the system of equations (2) then it is straightforward to show 
that the standard least-squares solution  becomes: LSx
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For well-posed problems this gives accurate predictions of solution . For ill-conditioned 
problems the first term between brackets (5) satisfies the DPC and thus decreases for 
smaller singular values. Unfortunately, the error term does not satisfy the DPC and will 
grow rapidly for smaller singular values and eventually will dominate the solution (see 
right-hand side plot in Figure 4). As a consequence, the least-squares solution (5) has 
many sign changes due to the oscillatory nature of the higher modes u  and  and 
appears completely random (see Figure 7). 
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With this knowledge it is easy to understand that the purpose of a regularization method is 
to damp or filter out the contributions to the solution corresponding to the small singular 
values. Hence, a regularized solution x  is sought in the form of: reg

�
�

�

n

i
i

i

H
i

ireg f
1

vbux
�

 (6) 

Here,  are the filter factors for the particular regularization method. The filter factors 
must have the important property that for decreasing � , the corresponding  tends to 
zero in such a way that the contributions to the solution from the smaller 

 are filtered out. The difference between the various regularization methods lies 
essentially in the way in which these filter factors are defined. Hence, the filter factors 
play an important role in connection with regularization theory, and it is worthwhile to 
characterize the filter factors for the regularization methods that are used in this paper. 
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4.1 Truncated Singular Value Decomposition - TSVD 
The most commonly applied method is the truncated SVD, which simply truncates the 
number of singular values which is considered in the solution  regx
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The TSVD eliminates the influence of all singular vectors associated with singular values 
above . The parameter  is called the regularization parameter which determines the 
amount of filtering (or regularization) applied to the least-squares solution. How to choose 
the optimal truncation parameter will be discussed in the section on the L-curve criterion. 

k� k

4.2 Damped Singular Value Decomposition - DSVD 
A less known regularization method is the damped SVD. Here, instead of using filter 
factors 0 and 1 as in TSVD, a smoother cut-off is defined 
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where �  is an arbitrary chosen parameter. These filter factors have only a slight influence 
on the high singular values but suppress the smaller singular values which are responsible 
for the ill-conditioned behaviour of the solution. How to efficiently choose the 
regularization parameter�  will be discussed also in the section on the L-curve. 

4.3 Tikhonov 
Besides TSVD, Tikhonov regularization plays a central role in regularization theory. For 
Tikhonov regularization the filter factors are defined by 
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These filter factors decay faster than the 
DSVD filter factors and effective filtering is 
obtained for singular values � . ��i

In Figure 5 the filter factors for the different 
regularization methods are shown. 
Evidently all regularization methods act as 
low-pass filters in the singular value spectrum. 
They effectively filter out the small singular 
values, which are responsible for the 
dominance of the highly oscillatory modes in 
the reconstructed velocity pattern. 
 Figure 5: Filter factors for the three

regularization methods  
 

5. L-CURVE CRITERION 
Perhaps the most convenient graphical tool for the 
selection of the optimal regularization parameters is 
the so-called L-curve, which is a plot of the norm 

of the regularized solution versus the 
corresponding residual norm . The 
L-curve clearly visualizes the compromise between 
minimalization of these two quantities, which is 
essential in any regularization method [4,5,6]. 

2|||| regx��

2|||| bAx �� reg

regularization 
error 

perturbation 
error 

optimum 
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When the L-curve is plotted in a log-log scale, 
almost always a characteristic L-shaped curve 
appears (hence its name) with a distinct corner 
separating the vertical and horizontal parts of the 
curve. Both regions can be explained from two error 
types in the regularized solution 
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The error given by the first summation in (10) is solely caused by the regularization 
method and is called the regularization error. The error given by the second summation 
finds its origin in the errors of the data vector b  and is called the perturbation error. 
The horizontal part of the L-curve corresponds to solutions in which the regularization 
error dominates (e.g. too much filtering). In contrast, the vertical part of the L-curve 
corresponds to solutions dominated by the perturbation error (too less filtering). 
The optimal regularization parameter is found in the corner of the L-curve. The DSVD 
performs unsatisfactory, the corner of its L-curve is less distinct than for the other two 
methods and the solutions tend to be of lower quality. There seems to be little difference 
between the Tikhonov solution and the TSVD solution. However, the first gives usually  
 
slightly better L-shaped curves. As the reconstructed velocity patterns of the two methods 
are comparable, only the reconstructions with the Tikhonov regularization will be shown. 

Zoom

Figure 6: L-curve plots for the 3 regularization methods (‘x’ indicates optimum). 

6. RECONSTRUCTED VELOCITY DISTRIBUTIONS 
Figure 7 shows the reconstructed result from a ‘numerical’ pressure measurement, which 
has been artificially contaminated with noise. In the first picture the regularization 
parameter � was chosen too low resulting in too less filtering. Therefore the perturbation 
error associated with the highly oscillatory modes  is dominant in the reconstructed 
results. The large amplitude indicates the division of errors by small singular values. For 
the middle picture the regularization parameter was selected by the L-curve criterion (see 
Figure 6). This shows a very good reconstruction of the original prescribed 2-1 vibration 
mode as given in Figure 1. Finally the last picture was created with too much 
regularization and thus results in a too smooth velocity distribution. The excessive 
filtering causes severe decay in the amplitude of the reconstruction. 

iv

   



Figure 7: Reconstructed velocity amplitudes using Tikhonov regularization with 3 different parameters and 
a S/N-ratio of 20 dB. 

CONCLUSIONS 
This paper discussed three regularization methods for nearfield acoustic source 
identification problems. By means of a numerical example, it was shown that the choice of 
a correct regularization parameter is vital for the quality of the reconstructed velocity 
field. The L-curve criterion results in an easy understandable and robust graphical method 
for choosing this optimal regularization parameter. 
For the numerical example presented in this paper, it was shown that both TSVD and 
Tikhonov regularization are well suited to be used in combination with the L-curve 
criterion whereas the DSVD method proved to be less suitable for solving this inverse 
acoustic problem. 
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