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Numerical Evaluation of Acoustic Power
Radiation and Radiation Efficiencies of Baffled
Plates
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Abstract

In this paper expressions are given for the numerical evaluation of radi-
ation efficiencies and power radiation of baffled plates. The expressions can
be used as a postprocessing tool in the Finite Element Method. Numerical
results for simply supported plates are presented and compared with results
obtained by a statistical technique. There is a good agreement between the
results of the two techniques.

1 Introduction

Acoustic design and control of baffled thin plates, which are often sources of noise,
is an important subject in structural acoustics. Acoustic power radiated by these
plates can be studied by equivalent sources methods. The most important of these
methods are: the equivalent surface method and the radiation efficiency method.
In both methods the energy of the equivalent source and the energy of the original
source are equal.

The equivalent surface method is described in [7] for rib-stiffened plates with
various boundary conditions.

Application of the radiation efficiency method requires evaluation of the
radiation efficiency, which relates the radiation of the original plate to the radiation
of a piston with equal surface area and mean velocity. When the radiation efficiency
and energy of vibration of a plate are known, the acoustic power radiation can be
determined. In this paper expressions for the radiation efficiency and acoustic
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power radiation of baffled plates are presented. The main objective of this work is
the numerical evaluation of these expressions.

In the low frequency region numerical evaluation of the radiated power of
individual modes may be of interrest in order to control the low frequency radiation
of a structure. For higher frequencies, techniques as Statistical Energy Analysis
are more suitable [5]. Numerical results for modal radiation properties of simply
supported plates are presented and compared with results obtained by a statistical
technique.

2 Equations for radiated power and radiation ef-
ficiency

For a baffled plate vibrating in out of plane motion and placed in a light fluid
such as air, the Rayleigh integral gives a relation between the normal velocity
distribution v(r;) on the plate and the pressure p in an arbitrary point 7
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where & = w/c and R =| 7, — 7| Singularities in this integral expression occur
when R = 0, thus for points 7, on the plate’s surface. The acoustic intensity of
any point 7, is defined as

I117) = 3 Relp(5 " ()} )

where v™ is the complex conjugate of v. The acoustic power W radiated from the
surface is given by

W= / I(r)dS (3)

Combination of equations (1),(2) and (3) results in an integral expression over the
plate’s surface for the radiated power
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The singularities in the integral expression have disappeared since sinkR/R — k
for & — 0. Once the radiated power is known, the radiation efficiency can be
calculated from
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3 Numerical implementation

The radiated power can be calculated by dividing the plate’s surface in a number
(V) of quadrilateral 4-noded elements. Assuming a linear velocity field within the
elements, the double integral can be carried out with 1-point Gauss quadrature,
which 1s suﬁment for a linear velocity field. Equation (4) can then be written as
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where v;(0,0) is the velocity and D;(0,0) is the Jacobian in the center of the ith
element. For right-sided elements the Jabobians D;(0,0) are equal to a quarter of
the element’s surface, thus D; = 14;. The velocities at the element centers are
determined by the corner nodes. For a linear velocity distribution

Z vk (7)
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After the radiated power has been evaluated the radiation efficiency can be cal-
culated from equation (5). For the 4-noded quadrilateral elements the radiation
efficiency can be approximated by
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The numerical evaluation of modal power radiation and modal radiation efficiencies
can thus be acheived in two steps for each mode using FEM:

e Solving: calculate the required modeshape (nodal velocities) and natural
frequency

o Postprocessing: calculate the radiated power and radiation efficiency with
equations {6)-(8)

Equations (6)-(8) for linear elements are quite simple, however the double sum-
mation can be rather expensive for a high number of elements (proportional to
N?). In the literature {9] it can be found that 6 linear elements per wavelength are
required to obtain accurate results. When the modeshapes of a plate are described
in terms of modenumber indices m and n in resp. z- and y-direction, the number
of required elements can be expressed as N = 9mn.

4 Simply supported baffled plates

In this section the equations for radiated power and radiation efficiency for simply
supported plates will be derived. These equations can be used for a semi- analvtlcal



evaluation of the radiation efficiency. The modeshapes of a simply supported plate
can be written as mrz . nmy
. I} N ¥l
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The radiation efficiency of a mode with modenumbers m and n can be obt;.a,ined
by substitution of (9) into (5)
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Combining equations (4), (9) and (10) .
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where R = {(z — 2')? + (y — ¥')*}? and k = wpp/c with w,,, the eigenfrequency
of mode (m,n). From this equation we may conclude that the modal radiation
efficiency of a simply supported plate is dependent of the plate’s

¢ modeshapes (m,n)
¢ natural frequencies corresponding to each modeshape (m,n)
e area

‘These conclusions are valid for lightly damped structures. When modes do not
radiate independently, the modal radiation efficiency is also dependent of the cou-
pling between modes [2]. Then, equation (8) is more appropriate, using e.g. FEM
to determine the modeshapes. Assuming modeshapes of form (9) the radiation
efficiency can be determined once the natural frequencies have been determined.
For various configurations such as isotropic, sandwich and rib-stiffened plates [1]
these natural frequencies can be derived analytically. Semi-analytical evaluation
of the radiation efficiency can then be performed in 2 steps for each modeshape:

o analytical: determine the natural frequency of modeshape (m,n)

e numerical: calculate the radiation efficiency (11) with 1-point Gauss quadra-
ture

When the structure is excitated by a harmonic point force with amplitude |F| at
location € , the energy of vibration can be determined as [4]
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where w iIs the excitation frequency, 5 is the structural damping and ¢, =
4/ Msin(mzz/L,)sin{nwy/L,) in case of a plate. When the structure is lightly
damped, the energy of vibration of a modeshape (m,n) can be approximated by
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‘The average response < v? > is related to this energy by < v? >nn= Enn/M
with M the mass of the plate. Then from equation (5) the radiated power of a
modeshape can be determined as
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5 Statistical methods

Previous kind of analysis is known as deterministic vibration analysis: the analysis
determines radiation efficiencies and power radiation of modeshapes at specific
frequencies, When we are interested in vibrational behaviour at higher frequencies,
it 1s more appropriate to use statistical methods such as Statistical Energy Analysis
(SEA) [5] or Structural Acoustic Optimization (SAQ) [3]. These methods describe
vibrational behaviour in terms of space and frequency averaged variables (energy).
Instead of determining a radiation efficiency at a specific frequency, SEA and SAO
determine the average radiation efficiency in a frequency band. As an illustration
we consider the case of point excitated plates. The average response of a structure
within a frequency band can be determined by averaging equation (12} over a
frequency band. The average response can then be expressed as [4]
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. where AN/Aw is the modal density of the structure. For a plate
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where L, and L, are the plate’s lengths in z- and y-direction, pp the density, v
Poisson’s constant, £ Young’s modulus and 4 the thickness.

An expression for the frequency averaged radiation efficiency has been de-
termined by Maidanik [6]. This result has generally been accepted and has its
application in various SEA software packages. The radiation efficiency of a flat
simply supported plate can be summarized by
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where L, is the total length of boundaries and stiffeners, A, is the area of the plate,
kp the plate’s bending wavenumber and %y the wavenumber of the air.

After < v® > and & are known for a frequency range, the radiated power can
be calculated from equation (5). In the next section, the numerical method will be
compared with frequency averaged results.

6 Numerical Results

6.1 Radiation efficiency of an aluminium plate

For an aluminium plate with L, = L, = 1m the radiation efficiencies have been
calculated for thicknesses A = 0.01m and & = 0.005m, for the first 40 modes. The
plate was divided into 25%25 linear elements. The results are shown in figure 1a
and b. For the plate of thickness 2~ = 0.01m the first 49 modes have radiation
efficiencies from 0.03 below coincidence upto 1.8 at coincidence. At coincidence
the bending wavenumber is equal to the acoustic wavenumber. For modes above
coincidence the radiation efficiency converges to unity. The computational results
agree very well with the frequency averaged result of Maidanik. The coincidence
effect is always exaggerated by the curve of Maidanik. The plate of thickness
h = 0.005rn shows a great variance in radiation efficiencies. This can be explained
by the fact that the first 49 modes are all below coincidence. Below coincidence
odd-odd modes are most efficient. These modes are the points around the curve
of Maidanik. Modes with even modenumbers do not contribute to the frequency
averaged radiation efficiency.

6.2 Steel plate excitated by a harmonic point force

For a steel plate with L, = 0.7m, L, = 0.5m and thickness & = 0.0022m excitated
by a harmonic point force of amplitude |F| =1 at location z = 0.3¢m, y = 0.24m
the modal response, radiation efficiency and radiated power have been calculated.
Results are shown in figure 2a,b and ¢. The modal response shows a great variance
for different modes. Not all modes are equally excitated by the point force near
the middle of the plate. Odd modes are most energetic. The frequency averaged
result is a good average of the modal energies. At low frequency the variance is
large. For higher frequencies the modal energies converge to the frequency averaged
curve. After 1/3th octave band averaging this effect is more obvious. The radiation
efficiency also shows a great variance. In general only odd-odd modes contribute
to the radiation of power below coincidence. This is very clear in the figure of the
radiated power. All points above the frequency averaged curve are odd-odd modes.



6.3 Stiffening of the steel plate

The steel plate of the previous section is stiffened by one stiffener in x- and y-
direction with rectangular cross-section: b = 0.004 and & = 0.020. The radiation
efficiency and radiated power as calculated are shown in figure 3a and b. The
radiation efficiency of the plate increases by stiffening. The modal response how-
ever, decreases because of the higher stiffness and mass of the plate. Therefore the
radiated power decreases in a frequency band, as shown in figure 3b: the radiated
power of the modes decreases and the eigenfrequencies increase. In a band from 0
to 300 Hz where the first four modes of the non-stiffened plate occure, the stiffened
plate has only two modes. As shown in [7] the radiated power does not neccesarily
decrease for all combinations of stiffeners but has for specific combinations a mini-
mum. Therefore the stiffening parameter can be a good parameter for optimization
of acoustic properties of plates.

7 Conclusions

The expressions for the numerical evaluation of radiation efficiencies and power
radiation of baffled plates can be used as a postprocessing tool in the Finite Ele-
ment Method. Radiation efficiencies of complex plate shapes and materials can be
determined using this approach in the low frequency region.

The semi-analytical technique can be used as a test for a FEM implementa-
tion of the method.

Numerical results for simply supported plates are presented and compared
with results obtained by a statistical technique. There is a good agreement between
the results of the two techniques.

References

1. P.G. Bremner 1994 Vibro-Acoustics of Ribbed Structures - A compact Modal
Formulation for SEA Models. Noise-Con 94 Florida, pp.545-550.

2. M.N. Currey and K.A. Cunefare 1995 Journal of Acoustic Society of America
98(3). The radiation modes of baffled finite plates. -

3. M.G. Dittrich and MHA Janssen 1995 A statistical method for calculating
sound transfer of plate-like structures: scope and application. Euro-Noise 95
Lyon.

4. R.L.C. Lemmen 1995 High Frequency Response of Structures: Statistical En-
ergy Analysis. NLR TR 95368 1.

5. R.H. Lyon and R.G. DeJong 1995 Theory and Application of Statistical En-
ergy Analysis, (Second Edition). Butterworth-Heinemann.



6. G. Maidanik 1962 Journal of Acoustic Society of America 34(6), 809-826.
Response of ribbed panels to reverberant acoustic fields.

7. R.J. Panuszka 1995 Applied Acoustics 46, 345-362. The influence of stiff-
ness and boundary conditions of thin rectangular plates on radiated acoustic

power.

8. R.R. Salagame, A.D. Belegundu and G.H. Koopmann 1995 Journal of Vibra-
tion and Acoustics Vol.117, 43-47. Analytical sensitivity of acoustic power
radiated from plates.

9. C. Simmons 1991 Journal of Sound and Vibration, 144, 215-227. Structure-
borne sound transmission through plate junctions and estimates of SEA cou-
pling loss factors using the finite element method.

Figures
10' ' ,
& L H=0.005
0
10 f * Computational

-- Maidanik

‘b *
107} X . *x
[ % ¥ *
10-35' ¥ 1
4
10 1
10" 10° 10° 10*

Frequency [Hz] Figure 1a



10 | : :
¢ H=0.01
* compufational
10° ] - Maidanik ]
107 1
* %
102 . :
10° 10 0° 10
Frequency [Hz]
Figure 1: radiation efficiencies for an aluminium plate of thickness (a) h=0.01 m
and (b) h=0.005 m
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Figure 2: Steel plate excitated by a point force (a) modal response (b) radiation
efficiency (c) radiated power
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Figure 3: Acoustic properties of a stiffened and non-stiffened steel plate:
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