AIs were evaluated for grade 3/4. The most costly AIs were fesinloterpina (€ 1,703.22), thomibopentina (€ 1,625.77) and anemia (€ 817.55).

CONCLUSIONS: In order to prove the cost-effectiveness, the local resource use data need to be collected, which are key drivers for health-economic modelling and can guide resource allocation decisions in CLL in Slovakia. This survey provides information to support these decisions.

PCN101

ANALYSIS OF COSTS OF BEST SUPPORTIVE CARE FOR PATIENTS WITH ADVANCED NON-SMALL-CELL LUNG CANCER (NSCLC) IN GERMANY

Mathes P1, Kern B2, Kotowa W1

1GES Institut GmbH, Nuremberg, Germany. 2GES Institut GmbH, Berlin, Germany.

OBJECTIVES: Patients with advanced NSCLC for whom antineoplastics are not suitable are usually treated individually with best supportive care (BSC). This research aims to estimate annual costs of BSC for these patients from the perspective of the German Statutory Health Insurance (SHI) in Germany. METHODS: Recommended measures for BSC were identified from the German development stage 3 (S3) guideline for lung cancer. The costs of these measures were estimated based on German cost data. RESULTS: The annual costs of the recommended measure are as follows: for radiotherapy, chemotherapy, oxygen) from €756.60 to €2,038.86, respectively (depending on regime), for palliative surgery €5,447.63, for rehabilitation €3,660.20 and for three further measures (psychotherapy, physical therapy, therapy with oxygen) from €756.60 to €2,194.25. Summing up the costs of these measures, the upper limit of annual costs is €27,838.81. These costs do not include costs for inpatient palliative care or treatment in the terminal phase. CONCLUSIONS: As BSC is provided individually to patients, the annual costs of BSC in Germany for patients with advanced NSCLC lay within a wide range (from €756.60 to €27,838.81). The estimated costs of BSC are more precisely, further research regarding the frequency of each recommended measure for BSC in Germany is needed.

PCN102

PRICE-DOSE RELATIONSHIP: THE CASE OF ORAL ONCOCOLOGY DRUGS IN EUS

China A1, Facheo L2, Teale CW3

1CERR, UK. 2CERR, UK. 3CERR, UK.

OBJECTIVES: Most oral oncology drugs are linearly or flatly priced but country differences exist within pharmaceutical pricing strategies. This study aims to explore and compare the pricing strategies for oral oncology products in five countries. METHODS: All 14 oral oncology drugs that have received marketing authorization by the European Medicine Agency since 2000 were included in the analysis. The ex-manufacturer prices were sourced from national pricing databases in May 2017. Unit price was calculated as a price per milligram and price per tablet for each individual product in scope countries. The price-dose relationship was characterised as flat, linear or mixed pricing for each product based on each country unit price per dose. A cross-country comparison was then performed to identify dominant strategies and explore local specificities, if any. RESULTS: The pricing strategy of oral oncology products appears to be similar in EUS as 71% (10/14 products; 5 linear and 5 mixed pricing) of the same pricing strategy was observed in Spain, Italy and France, as either flat or linear pricing was used when pricing strategy differed for the same product. CONCLUSIONS: Our findings suggest that most oral oncology drugs are linearly or flatly priced but country differences exist within pharmaceutical pricing strategies. The most costly AEs were febrile neutropenia (€ 116.80) from 116.80

PCN103

DOES CGG SPENDING ON CANCER AFFECT OUTCOMES IN BREAST AND LUNG CANCER?

Gray DJ, Squirrel D1


OBJECTIVES: Clinical commissioning groups (CCGs) are given autonomy through which they can allocate their budget to fund treatments. Current funding pressures mean that there is a greater need to find efficiencies within the National Health Service (NHS). The objective of this study was to investigate the relationship between CGG expenditure on lung and breast cancer outcomes in England. METHODS: UK CGG data for breast and lung cancer for one-year-survival, early stage diagnosis (stage 1 or 2), total spend, and age standardised under 75 mortality were extracted using the cancer and tumours focus pack online tool. Budget spend per event of lung and breast cancer was calculated. Pearson rank correlation coefficients were calculated to determine the relationship of budget spend per event versus outcomes. All calculations were performed using Microsoft Excel 2013. RESULTS: There were 209 CGGs with data available. In 2013, average spend for breast cancer was £3,704 (€ 3,648-6,922) and £2,122 (€1,082-€1,852), respectively. Analysis revealed a non-significant positive correlation between spend per event and one-year survival rate for breast cancer (R = 0.04; p = 0.543), R = 0.01; (p = 0.817), respectively. In addition, there was a statistically significant positive correlation between age standardised under 75 mortality and spend per event of breast cancer (R = 0.15; p = 0.021), though no correlation was identified for lung cancer (R = 0.06; p = 0.311). SUMMARY: The potential exists to statistically significantly increase spend per event and early stage diagnosis (R = 0.16; p = 0.021) and R = 0.08 (p = 0.232) for breast and lung cancer, respectively. CONCLUSIONS: Whilst CGGs face pressures on funding, these results suggest that large variations in cancer expenditure does not necessarily lead to better outcomes in breast or lung cancer. CGGs need to understand why this is the case to reduce inefficiencies during times of higher budget constraints and to improve cancer outcomes.

PCN104

A SYSTEMATIC REVIEW OF THE HEALTH-RELATED QUALITY OF LIFE AND COST OF CARE IN DIFFUSE LARGE B-CELL LYMPHOMA (DLBCL)

Chadda G1, Nelson L1, Podilgar S2, Garside J1, Upton CM1


OBJECTIVES: As survival outcomes improve for patients with diffuse large b-cell lymphoma (DLBCL), it is increasingly important to understand costs and humanistic burden to evaluate the need for new treatments. We conducted systematic reviews to understand the health-related quality of life (HRQoL) of patients with DLBCL and costs associated with treatment. METHODS: MEDLINE, EMBASE, EconLit, UK National Health Service Economic Evaluation Database, and Tufts University Cost-Effectiveness Analysis Registry were searched for studies from 2000-2016. Trial registries and health technology assessment websites were searched for appraisals with relevant economic and HRQoL data. Abstracts, were identified from ASCO, ESMO, ASH, EHA, and ISPOR. RESULTS: After screening, 21 of 2184 references were included for costs. Ten studies used the EORTC QLQ-C30. The EQ-SD and FACT-Lym are in trials with unpublished data. Patients who achieve complete response after first-line treatment have significantly greater improvements on HRQoL compared to non-complete responders (p<0.05). Symptoms that compromise HRQoL persist for up to 5 years for patients that do not respond to first-line treatment. Economic studies focused on cost of treatment and hospitalization, with few studies reporting societal costs. Conclusion: Cost of treatment and palliative care is high (€ 4,547.63 for radiotherapy, € 2,390.00 for chemotherapy). The average cost of DLBCL is most costly. Stratification of treatment according to DLBCL subtype (GB vs ABC) has been shown to be cost-effective. CONCLUSIONS: Novel, targeted DLBCL first-line treatments have the potential to provide a more cost-effective, manageable budget treated paradigm, reduce disease progression, and improve HRQoL. Although DLBCL subgroups are recognized in clinical guidelines, further studies are needed to understand their specific HRQoL and economic burden.

PCN105

REAL-WORLD DATA ANALYSIS OF CANCER TREATMENT COST DRIVERS BY TYPE OF SERVICE

Scott J1, Alcorn C, Garfido D, Montgomery J

1Integra Connect, West Palm Beach, FL, USA

OBJECTIVES: As the US healthcare system transitions from one of volume based delivery to value based care there is an increased need to understand the drivers of cancer care for comparison to current results. METHODS: Integra Connect utilized Medicare claims data from two large cancer treatment centers in the US with over 60,000 cancer patients treated in the last 12 months. Overall treatment costs were categorized into 9 cost buckets (including Part B drug costs, Part B drug costs, Inpatient, E&M, Lab testing, Imaging, Emergency visits, etc.). RESULTS: Treatment costs were based on amounts paid by CMS from July 2016 through August 2016. Secondary research included a review of previously published studies on cost drivers. CONCLUSIONS: We found that prescription drug costs from both Part B and Part D paid Medicare claims accounted for 47% (site 1) and 51% (site 2) of total cancer treatment costs. Second, cancer most often caused financial hardship related costs accounted for 20% (site 1) and 17% (site 2) of overall costs. CONCLUSIONS: These results contrast previous published research that found cancer treatment costs to be a smaller proportion of overall treatment costs (18% of overall costs attributed to chemotherapy and other cancer drugs). This real-world data analysis highlights the need for including cancer treatment costs and the continued need for cancer treatments to demonstrate value and savings among other areas that drive overall cost. 1Cost Drivers of Cancer Care: A Retrospective Analysis of Medicare and Commercially Insured Population Claim Data 2004-2014", Milliman.

PCN106

ESTIMATING THE DRUG TREATMENT COST OF BREAST CANCER

Berghaus AS1, Koffijberg H1, Westerlön LW1, Sleijfer S2, Eeberink M3

1University of Twente, Enschede, The Netherlands. 2Erasmus MC, Rotterdam, The Netherlands. 3Acerta, Vantaa, Finland

OBJECTIVES: Overall treatment costs in oncology are increasing rapidly due to the increasing availability of expensive drugs. Comparing the costs of currently used drugs and assessing the cost-effectiveness of new drugs requires a transparent overview of actual breast cancer treatment prices. As such an overview is lacking, the study aims to synthesize evidence on the reimbursement and costs to estimate the total treatment cost of expensive breast cancer drugs for the Netherlands. METHODS: Evidence on the approval, reimbursement and list prices of expensive breast cancer drugs were identified from the Health Authority (ZINL). RESULTS: On the average length of treatment and dosing schedules was obtained from European Parliament Assessment Reports (EPARs) or ZINL reports. All EPARs were aggregated in the estimation of actual treatment cost. RESULTS: In the Netherlands, 31 breast cancer drugs are approved (available in 41 different forms). Based on drug list prices Pertuzumab, Trastuzumab Emantins and Trastuzumab are the most expensive drugs. For 17/41 (41.5%), no evidence on the average treatment length and dosing schedules was obtained. CONCLUSIONS: Our results suggest that the potential to provide a more cost-effective, manageable budget treated paradigm, reduce disease progression, and improve HRQoL. Although DLBCL subgroups are recognized in clinical guidelines, further studies are needed to understand their specific HRQoL and economic burden.
to be synthesized. This complicates rapid and transparent assessment of actual cancer drug treatment cost, which is necessary to focus strategies aiming to reduce the increasing healthcare costs. Differences exist in list prices within countries and between countries, thereby influencing the corresponding estimated treatment costs and resulting in list prices having limited value in this context. Therefore, extending standardization in presenting information on costs related to cancer drug and immunotherapy, and recently with the adoption of combination therapies. This study aims to analyze and estimate the financial impact for the Portuguese NHS of the MM market dynamics until 2020. METHODS: MM patient estimations was calculated by a linear prediction of historical data (considering disease incidence, stage of disease and cost), which is estimated that in 2020 MM drug expenditure will account for 62.9 M€.

1Pharmerit International, Bethesda, MD, USA, 2Bristol-Myers Squibb, Princeton, NJ, USA, 3Bristol-Myers Squibb, Rueil Malmaison, France, 4Medical Data Analytics, Parsippany, NJ, USA, 5Sankyo Europe GmbH, Munich, Germany, 6Isala Oncological Center, Zwolle, The Netherlands, 7Radboud university medical center, Amsterdam, The Netherlands, 8IsasmunMC Cancer Institute, Rotterdam, The Netherlands, 9Kings College London, London, The United Kingdom, 10Radboud university Medical Center, Nijmegen, The Netherlands, 11Eramus Medical Center, Rotterdam, The Netherlands, 12Eramus University Rotterdam, The Netherlands, 13Erasmus University Rotterdam, The Netherlands, 14Medical Data Analytics, Parsippany, NJ, USA, 15Cabinet Minister of Public Health, Ministry of Health, Social Welfare and Sport, Netherlands, 16Cabinet Minister of Public Health, Ministry of Health, Social Welfare and Sport, Netherlands, 17VU University Medical Center, Amsterdam, The Netherlands, 18Leiden University Medical Center, Leiden, The Netherlands, 19University Medical Center Groningen, Groningen, The Netherlands, 20Leiden University Medical Center, Leiden, The Netherlands, 21Kings College London, London, The United Kingdom, 22Erasmus University Rotterdam, The Netherlands, 23Maxima Medical Center, Veldhoven, The Netherlands.

OBJECTIVES: There is limited evidence on costs associated with ipilimumab. We investigated healthcare costs of ipilimumab treatment in Dutch patients with advanced cutaneous melanoma and compared costs across subgroups. METHODS: Data were retrieved from the nation-wide Dutch Melanoma Treatment Registry for patients diagnosed between July 2012 and July 2015. Ipilimumab episode duration was computed from start of ipilimumab until start of a next systemic treatment, death or last day of follow-up. Costs were determined by applying unit costs to individual patient resource use. Costs in each subgroup were calculated during the years 2011-2015. Results: A total of 2978 patients from the Granada Register of Cancer with health care activity have been identified. To date, information has been gathered from external consultations, hospitalizations, surgery, laboratory tests and radiodiagnosis and ambulatory hospital sessions. The consolidated information provides a chronology of the assistance received that allows to reconstruct, for each patient, the actual development of their care process in the last months of the life and the costs associated with that process. CONCLUSIONS: The reconstruction of the process of health care activity at patient level through administrative records is a practice still not very widespread in the public health care sector. The knowledge of the unit hospital cost of the treatment of a cancer patient at the end of its life and its composition will facilitate an improvement in clinical-economic efficiency in cancer patients and the identification of more efficient treatment patterns according to clinical situation.

NC110 HEALTHCARE COSTS OF IPILIMUMAB IN PATIENTS WITH ADVANCED CUTANEOUS MELANOMA IN DUTCH CLINICAL PRACTICE


1Erasmus University Rotterdam, Rotterdam, The Netherlands, 2Erasmus University Rotterdam, The Netherlands, 3Eramus Medical Center, Rotterdam, The Netherlands, 4Erasmus University Rotterdam, The Netherlands, 5Sankyo Europe GmbH, Munich, Germany, 6Isala Oncological Center, Zwolle, The Netherlands, 7Radboud university medical center, Amsterdam, The Netherlands, 8IsasmunMC Cancer Institute, Rotterdam, The Netherlands, 9Kings College London, London, The United Kingdom, 10Radboud university Medical Center, Nijmegen, The Netherlands, 11EramusMC Cancer Institute, Rotterdam, The Netherlands, 12Netherlands Comprehensive Cancer Organisation, Eindhoven, The Netherlands, 13Mest Spectrum Twente, Enschede, The Netherlands, 14Medical Center Leeuwarden, Leeuwarden, The Netherlands, 15University Medical Center Utrecht, Utrecht, The Netherlands, 16Amphia Hospital, Breda, The Netherlands, 17Maxima Medical Center, Veldhoven, The Netherlands.

OBJECTIVES: There is limited evidence on costs associated with ipilimumab. We investigated healthcare costs of ipilimumab treatment in Dutch patients with advanced cutaneous melanoma and compared costs across subgroups. METHODS: Data were retrieved from the nation-wide Dutch Melanoma Treatment Registry for patients diagnosed between July 2012 and July 2015. Ipilimumab episode duration was computed from start of ipilimumab until start of a next systemic treatment, death or last day of follow-up. Costs were determined by applying unit costs to individual patient resource use. Costs in each subgroup were calculated during the years 2011-2015. Results: A total of 2978 patients from the Granada Register of Cancer with health care activity have been identified. To date, information has been gathered from external consultations, hospitalizations, surgery, laboratory tests and radiodiagnosis and ambulatory hospital sessions. The consolidated information provides a chronology of the assistance received that allows to reconstruct, for each patient, the actual development of their care process in the last months of the life and the costs associated with that process. CONCLUSIONS: The reconstruction of the process of health care activity at patient level through administrative records is a practice still not very widespread in the public health care sector. The knowledge of the unit hospital cost of the treatment of a cancer patient at the end of its life and its composition will facilitate an improvement in clinical-economic efficiency in cancer patients and the identification of more efficient treatment patterns according to clinical situation.

NC111 COST DRIVERS OF LUNG CANCER CARE: RESULTS FROM A RETROSPECTIVE CHART REVIEW OF PRETREATMENT ADVANCED NSCLC PATIENTS IN EUROPE

Solem CT, Peen JL, Les M, Macalhiil C, Loo L, Vergeer K, Manley Daumont M, Hertel N

1Pharminter International, Berheda, MD, USA, 2Bristol-Myers Squibb, Princeton, NJ, USA, 3Bristol-Myers Squibb, Rueil Malmaison, France, 4Medical Data Analytics, Parsippany, NJ, USA, 5Pharminter International, Berlin, Germany, 6Bristol-Myers Squibb, Paris, France, 7Bristol-Myers Squibb Pharmaceuticals, Uxbridge, UK, 8Bristol-Myers Squibb (Ireland) Ltd, Dublin, Ireland.

OBJECTIVES: Advanced (stage III/IV) non-small cell lung cancer (aNSCLC) presents a high burden to society. This study aimed to quantify real-world health care resource utilization (HCRU) and related costs of patients with squamous (SQ) and non-SQ (NSQ) NSCLC treated with second-line (2L) or third-line (3L) systemic treatment (ST) in 2L and 3L lines of treatment in England and Sweden. METHODS: Within wave 2 of the 7-country Leading the Evaluation of NSQ and SQ NSCLC (LENS) retrospective chart review study, patients diagnosed with aNSCLC between 07/2010-07/2013 who initiated 2L were sampled from oncology/pulmonology practices and followed from diagnosis through most recent visit/death. HCRU (aNSCLC-related hospital/ER visits, surgeries, radiotherapy, ancillary care) was measured for each patient, with systemic treatment account-