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Abstract

The well-known closure concept of Bondy and Chvatal is based on degree-sums of pairs of
nonadjacent (independent) vertices. We show that a more general concept due to Ainouche and
Christofides can be restated in terms of degree-sums of independent triples. We introduce a closure
concept which is based on neighborhood unions of independent triples and which also generalizes
the closure concept of Bondy and Chvatal. Let G be a 2-connected graph on n vertices and let u, v be
a pair of nonadjacent vertices of G. Define A, =|N@)NN{®})|, T,,={weV(G)— {u,v} |u,v¢ N (w)}
and t,,=|T,,|- We prove the following main result: If 4,, >3 and | N (u)UN (0)UN (w)| =n— 4, for at
least t +2 — 4, vertices we T, or if 4,,< 2 and G satisfies the 1-2-3-condition (defined in Section 2) and
IN@@)UN(@)UN(w)|=n—3 for all vertices weT, then G is Hamiltonian if and only if G+uwv is
Hamiltonian.

1. Introduction

We use Bondy and Murty [4] for terminology and notation not defined here and
consider simple graphs only.

Let G be a graph. If G has a Hamilton cycle (a cycle containing every vertex of G),
then G is called Hamiltonian. The set of vertices adjacent to a vertex v of G is denoted
by N(v) and d(v)=|N(v)|. For a pair {u,v} of nonadjacent vertices of G, we define
lw=INW)NN®@)|, T,y={weV(G)—{u,v}|u, v¢N(w)} and t,,=|T,,|. If u and v are
clearly understood, we sometimes write 4 instead of A,,, T instead of T, and t instead
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of t,,. For a triple {u,v,w} of mutually nonadjacent vertices of G, we define
Aurw=|N@)ON@©)NN(w)|.

The closure concept of Bondy and Chvatal [3] is based on the following result of
Ore [8].

Theorem 1.1 (Bondy and Chvatal [3] and Ore [8]). Let u and v be two nonadjacent
vertices of a graph G of order n such that d(u)+d(vy=n. Then G is Hamiltonian if and
only if G+uv is Hamiltonian.

By successively joining pairs of nonadjacent vertices having degree-sum at least n as
long as this is possible (in the new graph(s})), the unique so-called n-closure C,(G) is
obtained. Using Theorem 1.1 it is easy to prove the following result.

Theorem 1.2 (Bondy and Chvatal [3]). Let G be a graph of order n. Then G is
Hamiltonian if and only if C,(G) is Hamiltonian.

Corollary 1.3 (Bondy and Chvatal [3]). Let G be a graph of order n=3. If C,(G) is
complete (C,(G)=K,), then G is Hamiltonian.

It is well known that Corollary 1.3 generalizes a number of earlier sufficient degree
conditions for Hamiltonicity (cf. [2, 5]). Ainouche and Christofides [ 1] established the
following generalization of Theorem 1.1.

Theorem 1.4 (Ainouche and Christofides [1]). Let u and v be two nonadjacent vertices
of a 2-connected graph G and let d, <d, < ---<d, be the degree sequence of the vertices
of T (in G). If

d;=zt+2 for all i with max(l, A—-1)<i<{, (1)

then G is Hamiltonian if and only if G +uv is Hamiltonian.

In [1], the corresponding (unique) closure of G is called the 0-dual closure C¥(G).
Since Theorem 1.4 is more general than Theorem 1.1 (cf. [1]), G € C(G) = C¥(G) (Here
€ means “ is a spanning subgraph of”).

The counterpart of Corollary 1.3 is Corollary 1.5.

Corollary 1.5 (Ainouche and Christofides [1]). Let G be a 2-connected graph. If C§(G)
is complete, then G is Hamiltonian.

Our first observation. is that (1) can be restated in terms of degree-sums of
independent triples.
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Proposition 1.6. Relation (1) is equivalent to

du)+d(v)+d(w) =n+ A, for at least min(t,t +2— 1,,) vertices
weT (where n=|V(G)|). )

Proof. Relation (1) can be restated as follows: d(w) >t + 2 for at least min(t, t+2—1,,)
vertices we T. Substituting t =n—2—d(u)—d(v)+ 4,, we obtain (2). [

Motivated by the above observation and the following recent result of Flandrin
et al. [ 7], we were led to investigate closure concepts based on triples instead of pairs
of nonadjacent vertices.

Theorem 1.7 (Flandrin et al. [7]). Let G be a 2-connected graph of order n. If
d(u)+d(v)+d(w) Zn+ Ay, for all independent triples {u,v,w} of vertices of G, then
G is Hamiltonian.

First, we tried to establish a result which would be more general than Theorem 1.4
by replacing n+ ,, in condition (2) by n+4,,,. However, the following examples
show that this is impossible.

Let p,q,r be three natural numbers such that p,q,r=>3 and p+q+r=n. Let
G, denote the graph of Fig. 1(a) on n vertices obtained from three disjoint complete
graphs H, =K,, H,=K, and H;=K, by adding the edges of two triangles between
two disjoint triples of vertices, each containing one vertex of each of H,, H, and Hj;.
Moreover, let G 5, denote the graph of Fig. 1(b) obtained from G, by adding an edge
joining a vertex of Hy and one of H,, both not incident with edges of the added
triangles.

It is easy to check that G, is non-Hamiltonian, and that the addition of any new
edge to G, yields a Hamiltonian graph. In particular, G, is Hamiltonian and
Gpq+uv is Hamiltonian, where u and v are nonadjacent vertices of H, and H, (in G,,,)
which are both incident with edges of the added triangles. For these u and v,
d(u)+d(v)+d(w)=n+1>n+ A4,,,=n for all weT, while G,,,+uv is Hamiltonian and

Gpqr 1s not. So we cannot replace n+ 4, in (2) by n+ 4,,, in order to obtain a more

OICIOXCIDIO

(a) Gpq, (b) G;qr

Fig. 1. Gpp and G .
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general result than Theorem 1.4. Moreover, there exist examples showing that replac-
ing n+ 4, in (2) by n+ 4,,,, +c¢, where ¢ is a constant, is not enough to establish an
analogue of Theorem 1.4.

However, by introducing a new condition and considering cardinalities of neigh-
borhood unions instead of degree-sums, we were able to find another closure concept
based on independent triples of vertices.

2. Results

Let u and v be two nonadjacent vertices of a 2-connected graph G of order n. Recall
that T=T,,={weV(G)—{u, v}|u, v¢ N(w)} and t=|T|. For a vertex weT, we let
n(w)=|Nw)—T1, and we let ,=n,=---=n, denote the ordered sequence corres-
ponding to the set {n(w)|weT }. We say that G satisfies the 1-2-3-condition if T=0 or
n;=4—ifor all i with 1 <i<t (Note that ¢t >1 implies #, >3, t =2 implies 5, >2, and
t =3 implies 3= 1).

In the next section we give a proof of the following result.

Theorem 2.1. Let u and v be two nonadjacent vertices of a 2-connected graph G of
order n.
If 2,,=3 and

INW)UN@)UNW)|=n—21,, foratleast t+2—4,, vertices weT, (3)
or if 2,,<2 and G satisfies the 1-2-3-condition and
IN(WON(@)UNW)|=n—3 for all vertices weT, 4

then G is Hamiltonian if and only if G+uv is Hamiltonian.

It is not difficult to see that we obtain a unique graph from G by successively joining
pairs of nonadjacent vertices u and v satisfying the conditions of Theorem 2.1 as long
as this is possible (in the new graph(s)). We call this graph the triple closure of G and
denote it by TC(G).

Proposition 2.2. C,(G)< TC(G) for any graph G.

Proof. Let u and v be two nonadjacent vertices of G with d(u)+d(v)=n. Since
t=n—2—d(u)—d(v)+ 2, this implies A=t+2. If 1=2, then t=0, hence T=§, and
clearly G satisfies the conditions of Theorem 2.1. If 123, then t+2—A<0 implies
that (3) is required for no vertices of 7. Again G satisfies the conditions of
Theorem 2.1. O

In [6] Faudree et al. defined the (n — 2)-neighborhood closure of a graph G, denoted
by N,_,(G), as the (unique) graph obtained from G by successively joining pairs of
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nonadjacent vertices u and v satisfying |[N(u)UN(v)|=n—2. Since for such pairs
T,,=9, it is clear that the following holds.

Proposition 2.3. N,_,(G)< T'C(G) for any graph G.

Without proof we note that the graphs G, have a complete triple closure, i.e.,
TC(G yp)=K s g+r, while, if p, =4, C§(G 1)) =G jor, N~ 2(G j2) =G 7 and G 5, does
not satisfy the conditions of Theorem 1.7.

The graphs G,,, show that we cannot omit the 1-2-3-condition in Theorem 2.1.

3. Proof of Theorem 2.1

We first introduce some additional terminology and notation.

For a Hamilton path u=v,v,---v,=0 from u to v we define * =max{i|v,eN(u)},
j*=min{j|v;eN(v)}, where i, je{l,2,...,n}. If i*>j*, then a constrained cycle is
a cycle of the form v,v,---v,0,0,—1---vs0y, Where r and s (s >r) are chosen in such a way
that all vertices v; with r <i<s, if any, belong to 7,,.

If Pis a path of a graph G, we denote by P that path P with a given orientation; if x,
yeV(P), then xPy denotes the consecutive vertices of P from x to y in the direction
specified by P. The same vertices, in reverse order, are given by yPx. Analogous
notation is used with respect to cycles instead of paths. Before proving Theorem 2.1
we establish two lemmas.

Lemma 3.1. Let Pru=v,0,---v,=v be a Hamilton path of a 2-connected graph G with
i*>j* For a given constrained cycle C,,, let X ={v;|v;¢# V(C,,)}. If Ayp=3 and

INW)UN@)YUNW)|Zn—24,, for all vertices weX (5)
or if A,,<2 and G satisfies the 1-2-3-condition and
IN{u)UN(vyUN (w)|=n—3 for all vertices weX, (6)

then G is Hamiltonian.

Proof. Assume G is not Hamiltonian and C,,=v 0, 00,0,_ -0y, Where
2<r<s<n—1. Clearly X #§; otherwise v, Pv,v,Pv,v; would be a Hamilton cycle.
If ,,=3 there are m>4,,—1 constrained cycles C,,...,C, in G which induce
pairwise disjoint subsets X,, ..., X,, of V(G) with X;=V(G)—V(C))#0 (i=1,...,m).
Furthermore, C,,= C, for some ke{l,...,m}. Assume Cy, ..., C,, are ordered in such
a way that the vertices of X; are before the vertices of X;,; on P(i=1,...,m—1). Let
Ci=0103 Up)Upln— 1= Usp0y (i=1,2,...,m). If k=1, then by (5) there exists an
integer ie{2,...,m} such that vg_,weE(G) for all vertices weX;. Then
vlf’vs(l)_lv,(i)+ lﬁvnvr(i)va(l,vl is a Hamilton cycle, a contradiction. Hence k # 1. By
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similar arguments k#m. Now suppose 2<k<m—1. By (5) there exists an integer
ie{l,...,k—1} such that wu,u.,€E(G) for all weX; or there exists an integer
je{k+1,...,m} such that vy, ;we E(G) for all we X ;. Then v3Pvyyy— 10,4+ 1 POlrgo PsV1
or vlf’s(k)_ WGy + Pvv Uy ,)T’vs(k)vl is a Hamilton cycle, a contradiction.

Hence 4,,<2 and we may assume there is precisely one constrained cycle C,,.

If, for some mteger i€{2,....,r—1}, 00,41, U1+ 1€E(G) or vjvs— 1, U;+10,€ E(G), then
01 Pvi0, 4+ 1 Pog, Pu; 4 vy OF lev Vs 1Pv; 4 10,PVSV, (respectively) is a Hamilton cycle,
a contradiction.

If, for some integer je{s ,n— 2} Dr+ 10j+ 15 vluJeE(G) Of Us_1Vj+1, jU.€E(G),
then v, Pov, v,,Pv,Hv,Hijvl or levs 1)+ va,lv,Pusvl (respectively) is a Hamilton
cycle, a contradiction. Therefore, by (6) we get X =T and

G[X] is complete. (7)
Let
p+1= min {i|There is no je{2,...,r—1} with v;, v;+,v,€E(G) and

r+l<igs—1

there is no je{s,...,n—2} with vv,, v;v;. 1€E(G)}.
By the above observations, p+ 1 is well defined.
Let

g—1= max {i|There is no je{s,...,n—2} with v,v;, v;v;+,€E(G) and
pt+lsiss—1

there is no je{2,...,r—1} with vv;, v,0;4,€E(G)}.

Then g—1 is well defined; otherwise the following Hamilton cycles contradict the
assumptions.

If p=r:
v, P, Pow,Pv; v, for some ie{2,...,r—1}
or
01 P00, Pv;4 10,4 Powy  for some ie{s,...,n—2}.
If p>r:
01 Pow, 4+ 1 Pogp;y va,,v,-Pv,-“vl for some i, j with 2<i<j<r—1
or
v, Pop,Po; s 10,Pv; 4 10,0 Pop,  for some i€{s,...,n—2} and je{2,...,r—1}
or
v1Pv,y 1 Pop,Po;s 0,Poi v, for some ie{2,...,r—1} and je{s,...,n—2}
or

1;1}51),,1Jj+ J’u,,vjf’vaﬁ \Pow,  for some i, j with s<i<j<n—2.
Thus X'={v;|p+1<i<q—1}#0 and, by the definition of p+1 and g—1,
Nw)eXou{v,, v} forall weX'.
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If p>r+2, then by (7) v,_ 10, 1€ E(G) and Q=v,Pv,_1v,_Pv, is a path from v, to v,
containing all vertices of v,Pv,_,.Then

v1Pop,Qv,Pv;, 10,Pow, for some je{2,...,r—1}
or
v1Pv, Qv ;4 1 Puo;Po,  for some jeis,...,n—2}

is a Hamilton cycle, a contradiction. A similar contradiction is obtained if p=r+1
and v,v;€ E(G) for some ie{r+2,...,s—1},orif g<s—2, orif g=s5—1 and v, E(G)
for some ie{r+1,...,s—2}.

Hence, we have r<p<r+1, s—1<g<s. Furthermore, if p=r+1, g=s—1, then
t=3,|X'|=t—2and |N(w)|<t—1forallweX';ifp=r+1,g=sorp=r,q=s—1, then
t=2, | X'|=t—1 and |N(w)|<t for all weX'; if p=r, g=s, then t>1, | X'|=¢ and
IN(w)|<t+1 for all weX'. In all cases, this contradicts the 1-2-3-condition. []

Lemma 3.2. Let P:u=uv,v,---v,=v be a Hamilton path of a 2-connected graph G with
i* < j* satisfying the 1-2-3-condition. If

IN(W)ON(@)UNW)|=n—3 for all vertices weT, (8)

then G is Hamiltonian.

Proof. Suppose G is not hamiltonian. By (8)
G[T] is complete. 9)

Let A={v;]i<i*}, B=={v;|j>j*}, D={v;|i*<i<j*} and distinguish the following
three cases. .

Case 1. [D|=1. Clearly, |D|=1 implies i*=j* and, since G is 2-connected, there
exists at least one edge v,v, in G with v, 4 and v,eB. Let r=min{j>p|v;e N(v;)} and
s=max{j<p|v;eN(v,)}. Among all possible edges v, choose one for which
(r—p)+(q—s)is as small as possible. f r=p+1 and s=g—1, then vlf’vpvqf’vnvq_ J’v,,+ 101
is a Hamilton cycle, a contradiction.

Hence, we may assume r>p+ 1 and s=q — 1; otherwise v;, ;€T and v, _ 105+ 1€ E(G)
by (9), contradicting the minimality of (r—p)+(q—s). By the same argument we
conclude that TnB=9.

If there exists an integer i€{2, ..., p— 1} such that v;v, 4 1, v10;4 1€ E(G) or an integer
je{p+2,...,i*—1} such that v, 04, v,0;€ E(G), then

01 Powy 4 1Py 10, Prgu,Pop vy O viPop, Posv, (Pvji vy Pojy

is a Hamilton cycle, a contradiction.
Furthermore, if v,_,v,_1€E(G), then

v Pv,— 0, 1 Po,Po,v,_ 1 Poo,

is a Hamilton cycle, a contradiction.
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Hence, T={0,,0p+1,---sUr=1} OF T={0,41,Vps2,-vsVp_1}.

If T={v,,0,11,...,0,—1} then t>2 and [N(w)| >t +1 for some vertex weT—{v,}
since G satisfies the 1-2-3-condition. Let w=v; for some je{p+1,...,r—1}. Then
there exists (a) an integer ie{r,...,i* —1} such that vv;,,€E(G) or (b) an integer
ke{2,...,p—1} such that vv;e E(G). Choose j as small as possible among all
v;€{Up+1,...,V,~ 1} With this property. If j<r—2, then there is a path Q, from v; to v
containing all vertices of v, Pv;ora path Q, from v; to v, containing all vertices of
Up+ 1P, (by (9)). Then

UvapquU,,vq_vaH 1va1viv1 or UlpukUjsz,.PUq_IU,.PUquPUk+ 101

is a Hamilton cycle, a contradiction.

Hence, we may assume p+2<j=r—1. If there is an integer me{p+1,...,j—1}
such that v,v,€E(G), then we obtain a contradiction in the same way as above.
Therefore, by the choice of v;, | N (w)| <t —1 for all we T—{v,, v, }, contradicting the
1-2-3-condition (recall that ¢ >3 since p+2<j=r—1).

If T={vp41, Vp+2:...,0—1}, then t=1 and |[N(w)|>¢+2 for some weT, since
G satisfies the 1-2-3-condition. We then proceed in the same way as above. This time
we obtain that |[N(w){<t for all vertices weT—{v,_,}, contradicting the 1-2-3-
condition (recall that t =2 since p+2<j=r-—1).

This completes the proof of Case 1.

If |D|>2, suppose that TnA #) and TnB 0. By (9) there exist pe{4,...,i*} and
ge{j*,...,n—3} such that v,_,,v,4;,€T and v,v,v,0,€E(G). Then by (9),
v,-1Ug+1€E(G) and vlf’vp_ g+ lf’v"vqpupv 1 is a Hamilton cycle, a contradiction.
Hence, we may assume TrnB=0.

Case 2. |D|=2. If there is an edge wvp, with pe{2,...,i*—1} and
ge{j*+1,...,n—1}, then we proceed as in Case 1. Otherwise, since G is 2-connected,
there exist integers pe{2,...,i*—1} and ge{j*+1,...,n—1} such that vy,
v;+0,€ E(G). Note that j*=i*+ 1 and that v,_ v, E(G) since TnB=0. As in Case 1, let
r=min{j>p|v;eN(v,)}.

We now follow the proof of Case 1 (precisely). Note that v,v+¢E(G) for
m=p+1,...,r—1, by the minimality of r—p. There is a path Q=Upvj.f’vq_lu,,7’qu,-.
from v, to v;« containing v, and all vertices of v+ Pv,. Whenever we reach a contradic-
tion in Case 1 by indicating a Hamilton cycle C of G, we can obtain a similar
contradiction by replacing UPCU,-~ or upﬁ‘v,-. by Q.

This completes the proof of Case 2.

Case 3. |D|=3. We distinguish the two subcases TnA=0 and TnA#0.

I. TnA=9.

If there exist pe{2,...,i*—1} and ge{j*+1,...,n—1} such that vp,cE(G), then
v J’v,,uqﬁv,,vq_ 1T’vp+ 1v1is a Hamilton cycle, a contradiction. Now the 2-connectedness
of G implies there exist pe{2,...,i*—1}, ge{j*+1,...,n—1},se{i*+1,...,j*} and
te{i*, ..., j*—1} such that v, vv,€ E(G). Choose s as large as possible and ¢ as small
as possible subject to the conditions, and consider two subcases.

Ta. s<t.
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If i*+2<s and t<j*—2, then v,_ v, ,€E(G) by (9), and
UIPUPUSF)U[U‘IPU”U,]_1PU,+IUS_IPUP+1U1

is a Hamilton cycle, a contradiction. Hence, we may assume s=i*+1 and t<j*—1.
Since G is 2-connected, there exists an integer ie{s+ 1, ..., j*} such that v,.0;e E(G). If
i=t+1, then vlpvpvsf’v,vqf’vnvq_llsv,+ lv,»v‘]svl,+ 1ty is a Hamilton cycle, a contradic-
tion. Hence i#t+1.

Suppose ie{s+1,...,t}. If t<j*-2, then, by (9), v;_(v,4+,€E(G) and
v, Poo,Po;_ 10,4, P, 0, Po,v,Puw.Pv, .40, is a Hamilton cycle, a contradiction.
Therefore, t =j* — 1. Since G is 2-connected, there exists an integer je{s, ...,t—1} such
that v0;,€ E(G). If i< j, then v; v, 1€ E(G) (by (9)), and if i > j, then v;_,v;, 1€ E(G). In
these cases we obtain, respectively, the following Hamilton cycles contradicting the
assumption:

01 PovsPo; 1054 1 PUo Pogvg —  PopevjPovn Po, o qvq
and

UIPUpl)sPUj_.lvi+1PUthPU,,Uq_IPUstjPUiU,-tPUp+ 101

Now suppose ie{t+2,...,j*}. If s<t, then, by (9), v,—1v;-:€E(G) and
vlﬁvpuspv,_ 10; - J’v,vqﬁv,vq_lf’uiv,-j’vw 1 1s a Hamilton cycle, a contradiction.
Therefore, s=t. If i<j*—2, then, by (9), v,+10;+1€E(G) and

01 PU o0, Pog0, — PV 4 1054 1 PU0 Pry 404

is a Hamilton cycle, a contradiction. Hence, ie{j*—1,j*}. Choose the smallest
possible i.

Suppose i=j*— 1. If there exist integers ke{t+1,...,i—1} and re{j*+1,...,n—1}
such that vv,€ E(G), then, by (9), there is a path @ from v, to v, containing all vertices
of {v;...,v;-1}. Then vlf’vpvsévkv,ﬁv,,v,_ J’uiz),-,j’vl,Jr w7 1s a Hamilton cycle, a
contradiction. If there is an integer ke{t+1,...,i—1} such that vv,.€ E(G), then by
(9), there is a path Q from v; to v;« containing all vertices of {v,1,,...,v;:}. Then
v, Poo,Pv,v, - 1 PojQuvinPoy vy is a Hamilton cycle, a contradiction. Hence,
N(w)—T=0 for all vertices we T—{v,, v;}, contradicting the 1-2-3-condition.

We conclude that i=j*. By the choice of i and s, and by the 1-2-3-condition, there
exist integers ke{t+1,...,i—1} and re{j*+1,...,n—1} such that v,v,€ E(G). Like in
the case i=j*—1 above, we can indicate a Hamilton cycle, a contradiction.

Ib. t<s.
Ifi*+2<t and s<j*—2, then v,_,v,, ,€E(G) by (9), and

01 Poo Pow, Pogv, 1 Pogy 0,1 Poy, vy

is a Hamilton cycle, a contradiction. Hence, we may assume t=i*+1and s<j*<1.
If s=t+1, then v,PvpPv,_v,Pvv,Pv,, v, is a Hamilton cycle, a contradiction.
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Hence s>t +2. We may also assume that s and ¢ are chosen in such a way that s—¢ is
as small as possible (although this may conflict with the choice of s being as large as
possible and t being as small as possible).

If there exists an integer ke{t+1,...,s—1} such that v.v,eE(G), then there is
a path Q from uv. to v, containing all vertices of {vs,...,0s-¢}. Then
vlf’vpv,f’vq_ lv"f’qu,Quithp+ 1v; is a Hamilton cycle, a contradiction; if there is such
a k with v, ,€E(G), then there is a path from v, to v, containing all vertices of
{Vr415.--»Vs4+1}, 50 that vlpvpstvs+ Iqu_ lvnpqu,f’vp+ 101 is a Hamilton cycle, a con-
tradiction. By (9), this implies that s=j*—1. Now, however, N(w)—T=0 for all
weT—{v,, v}, contradicting the 1-2-3-condition.

II. TnA#0.

First assume there is no edge v,v, with pe{2,...,i*—1} and ge{j*+1,...,n—1}. Let
v,e TNA such that v,,,¢TnA. Since G is 2-connected, there are integers
ge{j*+1,...,n—1} and te{i*, ..., j*—1} such that v,0,€ E(G). If t<j* —2, then, by
(9), v+ 1€E(G). Then v, Pvp, . P, v,Pv,0,Pv,, v, is a Hamilton cycle, a contra-
diction. Hence t=j*—1. Now there exists an integer ke{2,...,j*—2} such that
U0« E(G).

If vive+1€E(G), then vlf’ukvjtl_qu_ lu,,quv,T’vH 101 1s a Hamilton cycle, a con-
tradiction. Thus v, .€T. I vge€TD, then, by (9), vpwr+1€E(G) and
vlf’u,,vH J’v,uqf’v,,vq_ lpvj*ka’vﬁ 10y 1s a Hamilton cycle, a contradiction. Thus
v +1€ TN A, and, by (9), vy 4 10,4 1€E(G). Now vlﬁukvjj’vq_ 1U"T’qu,pv,-.+1uk+ (Puav, is
a Hamilton cycle, a contradiction.

We conclude that there exist integers pe{2,...,i*—2} and ge{j*+1,...,n—1}
such that v,,eE(G) and wv,,,eTnA (if v,,,¢7, then v,v,,,€E(G) and
vlf’vpvqﬁv,,vq_ lf’vp+ vy is a Hamilton cycle, a contradiction). Then, by (9),
Vp+ 1V« 1 €E(G) and vlf’vl,uqf’v,,vq_1131),«,“1)1,+ Pv,.v, is a Hamilton cycle, our final
contradiction. O

Proof of Theorem 2.1. If G is Hamiltonian, then clearly G+uv is Hamiltonian.
Conversely, suppose that G is not Hamiltonian, while G +uv is Hamiltonian. Then the
vertices of G are contained in a Hamilton path u=v.v,---v,=v. Let i* and j* be
defined as before. By Lemma 3.2, i*>j*. There are at least m=max(l, 4,,—1)
constrained cycles Cy, ..., C,, in G which induce pairwise disjoint subsets X, ..., X,
of V(G) with X,;=V(G)~V(C;) (i=1,...,m). Among all constrained cycles we can
choose one which leaves out X such that the conditions of Lemma 3.1 are satisfied.
This can be seen as follows: If 4,,, <2, then (6) is required for all vertices we T ;if 4,2 3,
then notice that, since | X;nT|>1 (i=1,...,m), it suffices to require (5) for at least
t—((Ay—1)—1)=1t+2—4,, vertices we T. By Lemma 3.1, G is Hamiltonian, a contra-
diction. This completes the proof. []
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