Acta Informatica 34, 597-635 (1997) m@

i

© Springer-Verlag 1997

Code generation based on formal BURS theory
and heuristic search

A. Nymeyer, J.-P. Katoen
University of Twente, Department of Computer Science, P.O. Box 217, 7500 AE Enschede, The Netherlands

Received 20 November 1995 / 26 June 1996

Abstract. BURS theory provides a powerful mechanism to efficiently generate pat-
tern matches in a given expression tree. BURS, which standsoftom-up rewrite
systemis based on term rewrite systems, to which costs are added. We formalise the
underlying theory, and derive an algorithm that computes all pattern matches. This
algorithm terminates if the term rewrite systentirgte. We couple this algorithm with

the well-known search algorithm*Athat carries out pattern selection. The search al-
gorithm is directed by a cost heuristic that estimates the minimum cost of code that
has yet to be generated. The advantage of using a search algorithm is that we need to
compute only those costs that may be part of an optimal rewrite sequence (and not
the costs of all possible rewrite sequences as in dynamic programming). A system
that implements the algorithms presented in this work has been built.

1 Introduction

Compiler building is a time-consuming and error-prone activity. Building the front-
end (i.e. scanner, parser and intermediate-code generator) is relatively straightforward
— the theory is well established, and there is ample tool support. The main problem
lies with the back-end, namely the code generator and optimiser — there is little theory
and even less tool support. Generating a code generator from an abstract specification,
also called automatic code generation, in an efficient way is a very difficult problem.
Pattern matching and selection is a general class of code-generation technigue that
has been studied in many forms. The most successful form uses a code generator that
works predominantly bottom-up; a so-callbdttom-up pattern match¢€BUPM). A
variation of this technique is based on term rewrite systems. This technique, popu-
larised under the name BURS, and developed by Pelegri-Llopart and Graham [36],
has arguably been considered the state of the art in automatic code generation. BURS,
which stands fobottom-up rewrite systerhas an underlying theory. However, to this
day, BURS theory is poorly understood. Evidence of this statement are:

Correspondence toA. Nymeyer (e-mail: nymeyer@cs.utwente.nl)

598 A. Nymeyer, J.-P. Katoen

— There has been no further development of BURS theory since its initial publi-
cation [35]. Research in so-called BURS theory has been mainly concerned with
improved table-compression methods.

— Researchers who claim to use BURS theory (e.g. [17, 37]) generally use ‘weaker’
tree grammars instead of term rewrite systems.

— Researchers often equate a BURS with a system that does a static cost analysis

(e.g. [16]).

We argue that a static cost analysis is neither necessary nor sufficient to qualify as
BURS, and that a system that is based on tree grammars cannot be BURS.

In this work we present a lucid but concise and formal derivation of BURS theory
that is based on the (semi-formal) work of Pelegri-Llopart and Graham. However, we
differ in that we do not use the instruction costs to make optimal choices statically.
Instead we use a heuristic search algorithm that only needs to dynamically compute
costs for those patterns that may contribute to optimal code. A result of this dynamic
approach is that we do not require involved table-compression techniques. Note that
we do not address register allocation in this work; we are only interested in pattern
matching and selection, and optimal code generation.

We begin in the following section with a literature survey. This survey traces the
development of BUPMs and BURSSs, and places our research in context. In Sect. 3
we describe the heuristic search algorithmi #that is used to select optimal code.
The algorithm A is all-purpose — it can be used to solve all kinds of ‘shortest-path’
problems. In our case the search graph consists of all the possible reductions of an
expression tree, and we wish to find the least expensive.

In Sect. 4 we define term rewrite systemmand derive an algorithm that generates
the input and output sets of an expression tree. These sets contain the patterns that
match the expression tree. To select the ‘optimal’ patterns, we use the search algorithm
A*. This algorithm uses auccessor functiofalgorithm) to select patterns and apply
rewrite rules. The successor function, which is presented in Sect.5, provides the
search algorithm with a set of possibly-optimal selections. In this sense, the successor
function couples A and BURS. In the implementation, the algorithm that generates
input and output sets, and the successor function, are modules that can be simply
‘plugged’ into A* to produce a code generator. The implementation is also briefly
described in Sect. 5. Finally, in Sect. 6, we present our conclusions.

2 Literature survey

In 1977 R. Glanville submitted a thesis [20] that provided a major impetus to the
field of automatic code generation. Under the supervision of Susan Graham [22],
he developed a technique that in the decade that followed was the subject of much
scrutiny and refinement. Major players in this period include Henry, Ganapathi and
Fischer (see [33] for a review). In the Graham-Glanville technique, as it has become
known, the intermediate representation generated by the front-end of the compiler is
specified by a context-free string grammar, and an LR-parser generator is used as a
code-generator generator. Target-machine instructions are generated as a side effect
of parsing the input expression. Unfortunately, while the technique is conceptually
elegant, it proved unworkable in a production environment. The non-ambiguous LR
formalism is inappropriate and too restrictive to specify the inherently ambiguous
mapping from an intermediate representation to target code. As the popularity of

Code generation based on formal BURS theory and heuristic search 599

the Graham-Glanville technique waned in the mid-1980s, interest turned to another
technique, calledbottom-up pattern matching

2.1 Bottom-up pattern matchers

In this technique, we represent the input expression and target-machine instructions
as trees, where the instruction trees are referred to as patterns. Corresponding to
each pattern is a result (leaf or node), a target-machine instruction and a cost. If
a pattern matches a subtree of the input tree, then we can replace the subtree by
its result node. During code generation, we traverse the input tree bottom-up and
find all pattern matches. In a subsequent top-down traversal, we choose the least-
expensive series of pattern matches that reduce the input tree into a single node.
In a final bottom-up traversal, we generate the instructions that correspond to the
selected patterns. The code-generator generator in this technique reads the patterns,
instructions and costs, and generates a code generator that consists of a combined
pattern matcher and instruction generator. This is referred to astdtie phase. In

the dynamicphase, the code generator reads the input expression tree and generates
target-machine instructions. What makes the problem hard is that there can be very
many ways of reducing the input tree. Further, the cost analysis that is necessary to
determine the least-expensive reduction can be very time consuming.

Early work on this technique was done by Kron [31], and by Hoffmann and
O’Donnell [29]. The latter in particular have provided the basic theory for early
implementations of BUPMs. Chase [10], for example, implemented a BUPM using
the theory developed by Hoffmann and O’Donnell. Chase specified the patterns using
aregular tree grammafRTG). A RTG is a context-free grammar with prefix notation
on the right-hand sides of the productions representing trees. Chase found that the
tables generated by the pattern matcher were enormous, requiring extensive use of
compression techniques. Like Hoffmann and O’Donnell, Chase did not consider the
problem of selecting patterns, hence he had no need for costs. A formal, concise and
lucid description of Chase’s table-compression technique can be found in Hemerik
and Katoen [24], who formally developed naive and optimised bottom-up pattern-
matching algorithms. An asymptotic improvement in both space and time to Chase’s
algorithm is given by Cai et al. [6].

Hatcher and Christopher [23] went further than Chase and built a complete BUPM
for a VAX-11. Their work was a milestone in that they carried stattic cost analysis,
which is a cost analysis carried out at code-generator generation timedyinaaic
cost analysis, the code generator itself performs the cost analysis. This is a space-
time trade-off. Static cost-analysis makes the code-generator generator more complex
and requires a lot of space for tables. In effect, pattern selection is encoded into the
tables. The resulting code generator, however, is simple and fast. This means that
compilation is faster. We refer to a BUPM that does static (dynamic) cost analysis
as a static (dynamic) BUPM. The approach of Hatcher and Christopher does not
guarantee that the (statically) selected code will always be optimal. In those cases
where this occurs, however, the compiler builder is warned.

In both the static and dynamic BUPMs, the cost analysis is usually carried out
usingdynamic programmingDynamic programming has had a long association with
the field of code generation. Early theoretical work by Aho and Johnson [2, 3] for
example, considered globally optimal code generation for idealised register machines

600 A. Nymeyer, J.-P. Katoen

and a restricted class of input expression trees. This work used the dynamic pro-
gramming algorithm [4] to generate provably optimal code. A top-down dynamic
programming algorithm was used by Aho, Ganapathi and Tjiang [1] to build a code-
generator generator calledig, and by Christopher et al. [11], and Weisgerber and
Wilhelm [39]. The advantages of this top-down technique is that it is intuitive and
that it has theoretical roots. Its disadvantage is that, because dynamic programming is
done during code generation, the code generator can be slow. More recently, Fraser
et al. [16] have reported thawvig has problems processing large grammars.

In atour de force Henry and Damron [28, 27] compared the static and dynamic
performance of the bottom-up and top-down methods, and also the Graham-Glanville
and two brute-force methods, using a system called CODEGEN [25]. They found
that the code generators for both the static and dynamic BUPM produce (locally)
optimal code. The static BUPM had the slowest and most complex code-generator
generator, but the code generator carried out pattern matching 3 times faster than
its dynamic counterpart. Henry and Damron [28] remark, however, that at the time
of their research, bottom-up technology was still “immature.” In [26], Henry found
similar differences in performance between static and dynamic BUPMs.

In 1990, Balachandran et al. [5] used a RTG and techniques based on the work
of Chase, Hatcher and Christopher to build a static BUPM. Unlike the system of
Hatcher and Christopher, however, no user intervention was needed to achieve optimal
code. Very recently, Ferdinand et al. [15] reformulated the (static) bottom-up pattern-
matching algorithms (based on RTGS) in terms of finite tree automata. This theoretical
work was based on the work of Kron [31]. To determine the patterns that match
an input tree, they use a subset-construction algorithm. This algorithm, which is
developed in a step-wise fashion, does a static cost analysis, and generalises the
table-compression technique of Chase.

There have been a number of notable attempts to improve the efficiency of the
dynamic (BUPM) code generator, namely Emmelmann et al. [14] who developed
the BEG system, Fraser et al. [16] who developed the IBURG system, and very
recently Gough [21] who developed the MBURG system. All used a hard-coded
dynamic cost analysis. Emmelmann et al. found that their dynamic code generator
outperformed the standard SUN-workstation (Modula-2) code generator by almost an
order of magnitude, and generated code of comparable quality. Fraser et al. compared
their dynamic code generator with a code generator from the BURG system (described
below). The BURG-system code generator does not perform a cost analysis. They
found that their dynamic code generator was something like an order of magnitude
slower. However, the code generator’s slowness was compensated by the fact that
IBURG was simpler and more intuitive in structure. In fact, it was found to be
useful as a ‘test tool’ in developing the more complex, static BURG system. Gough’s
MBURG system is a variant of IBURG, and more developed.

2.2 Bottom-up rewrite systems

A decade to the month after Glanville submitted his thesis, E. Pelegri-Llopart, who
was also a student of Susan Graham, submitted a thesis [35] that attracted much
attention. In his thesis, Pelegri-Llopart developed a code-generation system using a
semi-formal approach referred to as BURS theory [36]. Pelegri-Llopart combined the
static cost analysis concept from Hatcher and Christopher, the pattern-matching and
table-compression techniques from Chase, and, most importantly, term rewrite systems

Code generation based on formal BURS theory and heuristic search 601

rather than tree grammars to develop a BURS. A BURS is, in fact, a generalisation
of a BUPM, and is more powerful. The term rewrite system in a BURS consists of
rewrite rules that define transformations betwésms A term, which is represented

by a tree, consists of operators and operands (which are analogous to nonterminals
and terminals in context-free grammars). Howewarrjablesthat can match any tree

are also allowed. The advantage of using a term rewrite system is that, as well as the
usual rewrite rules that reduce the expression tree, we can use rules that transform
the expression tree. Algebraic properties of terms can therefore be incorporated into
the code-generation process. The BURS ‘theory’ that Pelegri-Llopart and Graham
developed is quite complex, however.

Pelegri-Llopart and Graham [36] compared the performance of a BURS with
other techniques as part of an early (1987) implementation of Henry and Damron’s
CODEGEN system (see above). They found that the tables were smaller and the code
generator much faster. Henry [26] also compared a BURS with a static BUPM using
the CODEGEN system. He found that the static BUPM code-generator generator was
2% times faster but used a surprising 4 times as much space.

In 1991 Emmelmann [13] used a term rewrite system to specify a mapping from
intermediate to target code, and a tree grammar to specify the target terms and their
costs. This idea of using different formalisms to specify the target code, and the
mapping from intermediate to target code originates from Giegerich [19, 18], who has
carried out extensive, mainly theoretical research into this approach. Emmelmann’s
ambitious work pursued this approach further, and resulted in a large complex system
that is unlikely ever to be completely implementable. It demonstrates that power of
specification must be weighed up against practicality.

The difficulty researchers had with BURS theory is reflected in the work of Bal-
achandran et al., described above, who conceded that term rewrite systems are more
powerful, but argued that RTGs are simpler, and more easily understood and imple-
mented than term rewrite systems, and that better table-compression techniques could
be applied.

In 1992, Fraser, Henry and Proebsting [17] presented a new implementation of so-
called ‘BURS technology’. Their system, called BURG, accepts a tree grammar (and
not a term rewrite system) and generates a ‘BURS’. The algorithm for generating the
‘BURS'’ tables is described by Proebsting in [37]. Proebsting compares this algorithm
with a table-generation algorithm from Henry [26], described above, and reports an
impressive performance gain (an order of magnitude). It is not clear, however, what
the relationship is between the table-generation algorithms in BURG and Pelegri-
Llopart's BURS, given that they are based on different formalisms.

2.3 Heuristic search techniques

The PQCC (Production-Quality Compiler Compiler) Project [40] was an early and
ambitious project that aimed at automating the process of generating high-performance
compilers. This work paid particular attention to the problempbfse ordering

(The phase-ordering problem relates to the inter-dependence and order of the various
code-generation activities like storage allocation, common-subexpression elimination,
instruction selection and scheduling, (peephole) optimisation and register allocation.)
Together with the Graham-Glanville and pattern-matching techniques, it was also
one of the first works that separated the target-machine description from the code-
generation algorithm.

602 A. Nymeyer, J.-P. Katoen

The construction of the code generator and the code-generator generator in PQCC
are reported by Cattell in [7, 8, 9]. There are 2 aspects of Cattell's work that are
relevant to our work.

— Cattell uses a means-ends analysis to determine an optimal code match. This
involves selecting a set of instruction templates thatsemmantically clos¢o a
given pattern in the input expression tree. For each of these templates, rewrite rules
(Cattell calls themaxiomg are used to transform the template recursively into the
pattern. The least-expensive template is chosen from those that are successful.
The heuristicsemantic closenegwseans that either the root operators match, or
that there is an axiom that rewrites the root operator of the template into the root
operator of the pattern.

Note that the search procedure is not bounded — both the depth of the recursion
and the number of semantically-close templates need to be restricted.

— For performance reasons, the ‘major part’ of the search procedure is carried out
statically on a set of heuristically generated pattern trees that the code generator is
likely to encounter. All the templates generated by the code-generator generator,
together with the associated instruction sequences, are stored in a table for use by
the code generator.

The (‘minor’) part of the search procedure carried out by the code generator
involves only 1 rule, called ‘fetch decomposition’ by Cattell. This rule basically
allocates temporary storage (or registers) to those operands that are not matched.

2.4 Summing up

Much recent research in automatic code generation has been aimed at improving the
performance of the code generator by doing a static cost analysis. This research is
often carried out under the name BURS, in spite of the fact that an underlying tree-
grammar formalism is used. Term rewrite systems, and the ‘theory’ developed by
Pelegri-Llopart, has received scant attention in the literature. Furthermore, researchers
have encountered the following problems with a static cost analysis:

1. A static cost analysis requires extensive table-compression techniques.
2. The resulting code-generator generator is complex.

3. Costs cannot depend on run-time (dynamic) parameters.

4. The cost analysis can fail (due ¢ost divergencesee for example [17]).

However, the overriding benefit of doing a static cost analysis is that it results in a

simpler and faster code generator. To the authors’ knowledge, the only application
of search techniques to code generation to date has been the work of Cattell in the
PQCC project. Cattell's technique, however, is related to dynamic programming, and

his use of heuristics is different.

3 Heuristic-search methods

Search techniques are used extensively in artificial intelligence [34, 30] where data is

dynamically generated. In a search technique, we represent a given state in a system
by a node. The system begins in an initial state. Under some action, the state can
change — this is represented by an edge. Associated with an action (or edge) is a cost.

Code generation based on formal BURS theory and heuristic search 603

By carrying out a sequence of actions, the system will eventually reach a certain goal

state. The aim of the search technique is to find the least-cost series of actions from
the initial state to one of the goal states. In most problems of practical interest, the

number of states in the system is very large. The representation of the system in terms
of nodes, edges and costs is called the search graph.

Definition 1 (Search graphs).A search graph G is defined by a quadruple
(N, E,ng, Ng) with:

— N, a set of nodes

— E C N x N, a set of directed edges each labelled with a d@@¢t,m) € R,
(n,m) e FE

— ng € N, an initial node

— Ny C N, a set of goal nodes

such that the following conditions are satisfied:

— @ is connected
- Ny 70
—V(n,m)e E:n¢ N,

Note that R denotes the set of real numbers.

Traditionally, the search graph is drawn ‘top-down’, i.e., with the initial nage
at the top and the set of goal nod®g at the bottom. We adopt this convention. All
edges in an acyclic search graph can therefore be assumed to point ‘down’. Given a
search graph, the aim is to find the least-cost path frgrio a node inv,.

A brute-force technique that acts as a basis for finding such a least-cost path is
called breadth-first searchActually, this technique determines a shortest path from
no to a node inN,. In this technique, we initialise a set of nodes{tay}. At each
step we compute theuccessor noded all the nodes in the set. The successor nodes
of a given node are those nodes that can be reached with a path of length one from
the node. The algorithm terminates when we find a successor node that is a goal node.
This algorithm computes all the nodes in the search graph at a certain depth, before
proceeding further. At some point we will reach a depth that contains a goal node.

We can use the breadth-first search technique to determineakecostpath by
computing the successor nodes of only the ‘cheapest’ node in our set at each step.
We determine the cheapest node by determining the costs of the paths:§réan
each node in our set. The successors of the chosen node are then added to our set.
This technique is calletdest-first searchWe can improve this technique even more
if we include theestimatedcost to the goal in the cost of a node. This estimated cost
is obtained by using heuristic domain knowledge that is available during traversal of
the search graph. By using this heuristic knowledge, we can avoid searching some
unnecessary parts of the search graph. Careful choice of the heuristic can therefore
reduce the number of paths that the search technique tries in an attempt to find a goal
node.

The best known search technique that uses this technique is‘thkgérithm. The
letter ‘A’ here stands for ‘additive’ (an additive cost function is used), and the asterisk
signifies that a heuristic is used in the algorithm. The algorithm uses the following
two cost functions to direct the search:

— g(n), which is the minimum cost of reaching the nadérom the initial nodeny,
and

604 A. Nymeyer, J.-P. Katoen

— h*(n), which is theestimatedminimum cost of reaching a goal node from node
n.

Associated with each node is a costf*(n) = g(n) + h*(n). The actual cost of
reaching a goal node from is calledh(n). The relationship betweekr (n) and h(n)
is important. We consider the following cases:

1. ~*(n) =0 If we do not use a heuristic, then the search will only be directed by
the costs on the edges. This is callebest-firstsearch.

2. 0< h*(n) < h(n) If we always underestimate the actual cost, then the algorithm
will always find a minimal path (if there is one). A search algorithm with this
property is said to badmissible

3. h*(n) = h(n) If the actual and estimated costs are the same, then the algorithm
will always choose correctly. As we do not need to choose between nodes, no
search is necessary.

4. h*(n) > h(n) If the heuristic can overestimate the actual cost to a goal node,
then the A algorithm may settle on a path that is not minimal.

Example 1.In this example we show what can happen when a heuristic that overesti-
mates the actual cost is used. Consider the search graph in Fig. 1. ABnibeevalue

of the heuristic is 3. This overestimates the actual cost to a goal ddenpich is

1. At nodesD and FE the values of the heuristic happen to be correct. Starting at the
initial node A, if we always choose the node with the lowest valueftfn), then,
since f*(D) < f*(B) and f*(F) < f*(B), we will determine that the minimum path

is, incorrectly, ADEF.

Fig. 1. A search graph including the value of some heuristic at each node

Note, however, that in some applications (code generation, for example) it may
not be important that we find a path that is not (quite) minimal. It may be the case, for
example, that a heuristic that occasionally overestimates the actual cost has superior
performance than a heuristic that always plays safe. Furthermore, a heuristic that
occasionally overestimates may only generate a non-minimum path in a very small
number of cases.

The A* algorithm is shown in Fig. 2. The algorithm computes the minimum path
from the initial node to a goal node. In this algorithm, we maintain two sets of nodes;
open nodesV, C N and closed noded’. C N. The algorithm begins by initialising
N, to {no}, andN.. to (). Further, the path and cost of the initial nodeare initialised.

We execute the main loop as long as we have not found a goal node. In the main
loop, we use the cost functiofi*(n) = g(n) + h*(n) to computeN,, which is the
set of nodes inV, with smallest cost. If this set contains a goal node, then we are

Code generation based on formal BURS theory and heuristic search

[l con G = (N, E,ng, Ng): SearchGraph;

func Astar: N*

[var No, N¢, N : #(N);
n,m: N,
g,h* . N - R;
C:N2 S R;
Path: N — N*;
Successor N — #(N);

proc Propagatép : N,q : N)
[var r: N;
if g(p) + C(p,q) = g(g) — skip
[9(p) + C(p, @) < g(g) —|[Path(g) := Path(p) & ¢;
9(q) = g(p) + C(p, 9);
for all r» € Successdy) N (No U N¢)
do if Path(r) # Path(q) ® r — skip
| Path(r) = Path(q) & r — Propagatéq, r)
fi
od
Il
fi
1
Ne = 0;
Ny = {no };
Path(ng) = no;
g(no) = 0.0;
Ns := Ny,
do (Ns N Ng=0) —
|l choosen € Ng;
No:=No—{n};
Ne:=N.U{n}
for all m € Successgn)
doif m & No UN. —|[No :=NoU{m};
Path(m) := Path(n) & m,;
g(m) := g(n) + C(n, m)

| m € N, U N. — Propagatén, m)
fi
od;
Ns :={n € No | Ym € Ny : g(n) + h*(n) < g(m)+h*(m) }
Il
od;
choosen € (Ns N Ny);
return Path(n)
Il
1.

Fig. 2. The A* algorithm

605

606 A. Nymeyer, J.-P. Katoen

finished, and we return the path of this node. Otherwise we choose a node @it of
remove it fromN,, add it to N., and compute its successors. If a successosay,
is neither inN, nor N., then we addn to N,, and compute its path and cost. If we
have visitedm before, and the ‘new’ cost ot is less than the cost on the previous
visit, then we will need to ‘propagate’ the new cost. This involves visiting all nodes
on paths emanating frome and recomputing the cost (this is done by a recursive call
to Propagate.

The algorithm uses the functioiccessoandPath These functions are defined
below.

Definition 2 (Successor nodes)Given a search graply = (N, E, ng, Ny), we define
the set of successor nodes Succesgor °(N) of a noden € N as

Successor() = {m € N | (n,m) € E}
Note that ifn € N, then Successatf = 0.

Definition 3 (Paths). Given a search graplt; = (IV, £, no, N,), we define a path
Path(z) € N* to a noden € N as a string of nodes in the following way:

Path(n) = nony...ng
such thatvl < i < k : n; € Successoff;_1) A nx =n,k > 0.

Note that there may be more than one path that leads to a node. Furthermore, if
Path(n) = ngny...n; andm € Successdn) then we can append the nogdeto the
path Path(n) using the append operatar. We write

Path(m) Pathin) & m

nony...nm

Example 2.To demonstrate the ‘Aalgorithm, and the effect of the heuristic, we have
considered the 8-puzzle. The 8-puzzle is a game consisting of3ak®ard, and 8

tiles numbered 1 to 8. Initially the tiles are placed in some (presumably arbitrary)
configuration on the board. The aim is to re-arrange the tiles until some final con-
figuration is reached, making as few moves as possible. The only room we have to
move a tile is the vacant square on the board. The initial and goal configurations that
we use are shown below (on the left and right respectively).

12
o) o
o F4lS)

1%
4

[ESIS

WN

Notice that tile 1 is already in its correct square. To reach the goal configuration,
we could first move tile 6 to the vacant square, and then move tile 2 to the square
just vacated by tile 6. We would then have tile 2 in its correct position. Continuing
on in this way with the other tiles we would eventually reach the goal configuration.
Note that at each step, we will have to choose between at least two tiles to move to
the vacant square.

For simplicity, we let the cost of moving a tile be 1, so the cost of a configuration
is the number of moves required to reach the configuration. Note that tiles are not
moved to the (vacant) square from which they came from in the previous move. Such
a move would be redundant. A node in the search graph represents a configuration,

Code generation based on formal BURS theory and heuristic search 607

and an edge represents the action of moving a tile to the vacant square on the board.
We apply the A algorithm and the following two heuristics:

1. ho(n) = 0. This corresponds to a best-first search, and because the costs of all
edges are all equal to 1, it also corresponds to a breadth-first search.

2. () =0 | ph— g | +]| pi, — gi, |, wherepl, is the x-coordinate of til in
the present configuration (similary’y), andg’ is the x-coordinate of tilé in the
goal configuration (similarlwé). This heuristic, called the Manhattan distance,
computes the number of moves that each of the eight tiles needs to make to reach
its goal square, assuming no other tiles stand in the way. It usually underestimates
the actual number of moves that will be required.

16
725
438

/\

165 16

72 725

/438\ 438
165 165 126 16
728 7 2 75 725
43 438 438 438

N DN

165 1 5 165 165 126 126 126 716
728 762 732 72 735 75 75 25
4 3 438 4 8 438 4 8 438 438 438

Fig. 3. Part of the search graph for the 8-puzzle

Part of the resulting breadth-first (i.e. corresponding to heurigi{@)) search
graph for the 8-puzzle is depicted in Fig. 3. The initial configuration is shown as the
root, and we show all configurations up to three moves. We can read in this figure
the number of nodes at depths 1, 2 and 3, namely 2, 4 and 8 (resp.). Ultimately, 22
moves are needed before the goal configuration is found (the goal is configuration
number 8271 at depth 22). The total number of nodes at each defR)(is shown
in Table 1 (columnhg). In total, the breadth-first search generated 103309 (open)
nodes.

The performance with the heuristig(n) was a very different story. If we compare
the two columns in Table 1 we see that at first there is little difference between the
number of nodes at each depth. By depth 6, however, the ratio is approximately 2
to 1. From depth 10, the heuristic begins to home in on the goal node. This is most
dramatic at depth 19, at which time it ‘knows’ the path to the goal. In total, this
heuristic generated 655 (open) nodes. Bbghand k1 generated the same path, by
the way.

Other heuristics were also tried. The coarser (i.e. less accurate) a heuristic is,
the more nodes that are generated, and the longer it takes to find the goal. Even a
very coarse heuristic, however, is an improvement on the breadth-first search in this
application. Heuristics that occasionally overestimate the actual cost were also tried.

608 A. Nymeyer, J.-P. Katoen

Table 1. The number of closed nodes in the search graph for the 2 heuristics in the 8-puzzle

Depth ho h1 Depth ho h1
1 2 2 12 748 | 39
2 4 3 13 1024 | 29
3 8 7 14 1893 | 26
4 16 | 13 15 2512 | 23
5 20 | 12 16 4485 | 18
6 39 | 19 17 5638 | 11
7 62 | 25 18 9529 4
8 116 | 40 19 || 10878 1
9 152 | 34 20 || 16993 1

10 || 286 | 44 21 || 17110 1
11 || 396 | 41 22 8271 1

These also performed well, and interestingly, these generated different paths (but with
the same cost, 22) frorhg, h1 and other heuristics that underestimated the cost.

Code generation considered as template or pattern matching also lends itself to
the A* technique. The transformations in code generation are specified by rewrite
rules. Each rule consists of a match pattern, result pattern, cost and an associated
machine instruction. A node is an expression tree. The initial node consists of
a given expression tree. From a given node, we can compute successor nodes by
transforming sub-trees that are matched by match patterns. If a match occurs, we
rewrite the matched sub-tree by the corresponding result pattern. The aim is to rewrite
the expression tree (node) into a goal using the least-expensive sequence of rules. The
associated sequence of machine instructions forms the code that corresponds to the
expression tree. In the following example we illustrate this process.

Example 3.Consider the following set of rewrite rules, with corresponding costs and
machine instructions.

rule cost machine instruction
| oad #c, r

| oad (ri) N

| oad #c(r;), rj
store r;, (rj)

(r) c¢—r

(r2) m(r;) — r;

(r3) m(+(c,ri)) — 7;
(ra) 7y — m(Tj)

(rs) +(ri,ry) — 15 add r;, r;
(re) +(c,7)—r add #c, r
(r7) +(c,m(r)) — m(r) add #c, (r)

QOWWNANPMPE

(rg) +(x,y) — +(y,x)

The machine instructions consist of 3 load instructions, a store instruction and
3 add instructions. The addressing modes are register, immediate, register deferred
and index. The letter stands for constantp for memory access, andfor register.
The memory access takes one argument, and addition takes two arguments. The last
rule, which expresses commutativity, contains ¥aeiablesxz andy. A variable may
be substituted by any pattern representing an expression tree. Note that the match
and result patterns are written in prefix notation, and that we differentiate between
different instances of the same symbol in a rule by using the subscrgntd ;. (We
only do this in this example — in the rest of this paper we omit the subscripts.)

Code generation based on formal BURS theory and heuristic search 609

Let the initial expression tree be m(+(cy, ¢2)), +(m(r1), c3)), and the goal be.
We can rewrite this tree using the above rules in the following way:

+H(m(+(c1, 2)), H(m(r1), c3)) == +(m(+(c1, 72)), +(m(r1), c3))
=55 +(r3, +(m(r1), c3))
=% +(r3, +(r4, c3))
=L +(r3, +(c3, 74))
== +(rs, 14)
== 1y
The cost of this rewrite sequence is 17. We could also have rewritten the tree in (very)
many other ways. We now apply the* Aalgorithm. The heuristic that we use is the

following:
h*(n) =4 |m| +2x [+ + |d

where|s| denotes the number of times the symbalppears in the expression tree at

n. The heuristic is derived from the costs of the instructions. Instructions that access
memory (n) are deemed to be ‘expensive’ (contributing a factor 4); an addition (+)
is also moderately expensive (a factor 2); and finally a constantvhich uses the
immediate addressing mode, also contributes (a factor 1).

Fig. 4. The nodes in the heuristic search graph for the expression treé+1, cp)), +(m(r1), c3))

The steps that the *Aalgorithm takes to reduce the initial expression tree are
shown in Table 2. The steps are also indicated in Fig. 4, by shaded boxes. Each edge
in the graph is labelled by the rule that was applied. To make identification easier,
each node is labelled by a letter.

In step one of the algorithm, we initialise the 963 to { Ag+17}, whereg(A) =0
and h*(A) = 2*x4+3%2+3 =17, andN, to (). We choose the nodd, add its
successord3116 and Cy.16 to the setNV,, and moveA to N.. In step two, the nodes

610 A. Nymeyer, J.-P. Katoen

Table 2. The steps that the Aprocedure takes to reducerm(+(c1, ¢2)), +(m(r1), c3)). The subscripts are
the costsg + h* at the nodes

Step || No Nc Choose

1 Ap+17 € A
2 Bi+16C1+16 A C
3 Bi+16Ds+20F4+13F8+9 AC F
4 Bi+16Ds+20E4+13G8+9H12+5 ACF H
5 Bi+16D5+20E4+413Gg+9l13+4J12+5 | ACFH J
6 Bi1+16D5+20E4+13Gg+9l13+4K15+2 | ACFHJ K
7 Bi1+16D5+20E4+13Gg+9l13+4L17+0 | ACFHJK

in N, have the same cost, so we must choose between them. We adopt the policy that,
when there is more than one node with the same (minimum) cost, we choose the last
computed node. In this case that(is We add the successors 6fto N,, moveC' to

N, and again choose the last, least expensive nodé,irThe process continues until

step seven when we encounter the goal ndéd&he optimal pathA, C, F, H, J,

K and L is returned by the algorithm. This path corresponds to the rewrite sequence
shown above. The code that is emitted by this sequence is the following:

| oad #c,, 1o

| oad #Cl(rz),rg
load (ri),rg4
add #c3, ry4

add rg3, ry

4 BURS theory

In this section we derive the theory of a BURS. We first define some basic concepts,
and we define a costed term rewrite system. For a more elaborate treatment of (term)
rewrite systems we refer to [12].

Given a term rewrite system and an expression tree, we can define rewrite se-
guences and permutations of rewrite sequences. Typically, the total number of rewrite
sequences for a given expression tree is enormous. In Sect.4.2 and 4.3 we show
how the number of rewrite sequences that need to be considered can be reduced. We
do this in Sect. 4.2 by defining normal-form decorations of the expression tree. In a
decoration, we label each node in the tree with a (possibly empty) rewrite sequence.
Such a rewrite sequence is called a local rewrite sequence. A decoration is in normal
form if rewrite rules are applied as low as possible in the expression tree. Rewrite
sequences that correspond to decorations that are not in normal form do not need to
be considered.

In Sect. 4.3, we define strong normal-form decorations. These decorations have
the extra property that nodes in sub-terms that match variables must be rewritten
before substitution takes place. By considering only strong normal-form decorations
we attempt to contain the explosion of possible rewrite sequences that can occur due
to the action of variables.

Finally, in Sect. 4.4, we present an algorithm that determines the strong normal-
form decorations of an expression tree. In this algorithm, we compute the input and
output sets of each node in the given expression tree. The input set of a node lists all
patterns that match the sub-term rooted at that node. The output set lists the results

Code generation based on formal BURS theory and heuristic search 611

of matching the sub-term with each of the input patterns. We also highlight in this
section the similarities and differences between the theory that we have developed
and the work of Pelegri-Llopart and Graham [36]. We refer to their work using the
abbreviation PLG.

4.1 Costed term rewrite systems

We denote the set of natural numbers by N, the sat{D} by N., and the set of
non-negative reals by R

Definition 4 (Ranked alphabet). A ranked alphabel’ is a pair (.S,) with S a finite
setandr € S — N.

Elements ofS are calledfunction symbolsandr(a) is called therank of symbola.t
Function symbols with rank O are callenstants X,, denotes the set of function
symbols with rankn, that is, >, = {a € S | r(a) =n }.

We assumeZ” is an infinite universe of variable symbols, adC 7.

Definition 5 (Terms). For X a ranked alphabet anl” a set of variable symbols, the
set of termsT’s;(V) is the smallest set satisfying the following:

-V CTs(V) N Xg CTs(V)
—Vae X, tr,....t, €Tx(V) = alty,...,t,) € Tx(V),forn>1

For termt, Var(t) denotes the set of variables inTermst for which Var(t) = () are
calledground terms

A sub-term of a term can be indicated by a path, represented as a string of positive
naturals separated by dots, from the outermost symbol of the term (the ‘root’) to the
root of the sub-term. FaP a set of sequences anda natural number, lei-P denote
{n-p|p € P}. The position of the root is denoted by

Definition 6 (Positions). The set of positions Pas T'>;(V) — °(N) of a termt¢ is
defined as:

— Podt)={e},ifte ZpuV
— Poda(ty,. .., t,)) ={¢e,1-Pogty),...,n-Pogt,) }
A trailing € in a position is usually omitted; for example,12= is written as 21. By

definition, Pogt) is prefix-closed for all terms. Positiong is ‘higher than’p if ¢ is
a proper prefix ofp. The sub-term of a termat positionp € Pogt) is denoted|,.

Definition 7 (Costed term rewrite system). A costed term rewrite system (CTRS) is
a triple (X, V), R, C') with

— X, a non-empty ranked alphabet

— V, afinite set of variables

— R, a non-empty, finite subset @f; (V) x T'x(V)
— C € R — R", a cost function

such that, for all(¢, ') € R, the following conditions are satisfied:

—t' £t

1 The termarity is sometimes used instead of rank.

612 A. Nymeyer, J.-P. Katoen

-t¢V
— Var(t') C Var(t)

Elements ofR are calledrewrite rules An element {,t') € R is usually written
ast — t’ wheret is called the left-hand side, and the right-hand side of the
rewrite rule. Elements ok are usually uniquely identified as, r,, and so on. The
cost functionC' assigns to each rewrite rule a non-negative cost. This cost reflects the
cost of the instruction associated with the rewrite rule and may take into account, for
instance, the number of instruction cycles, or the number of memory accesses. When
C' is irrelevant it is omitted from the CTRS. A term rewrite system (TRS) is in that
case a tuple ((, V), R).

The first constraint in Definition 7 says th&tshould be irreflexive, and the second
constraint that the left-hand side of a rewrite rule may not consist of a single variable.
The last constraint says that no new variables may be introduced by a rewrite rule. A
CTRS is calledgroundif all left-hand sides of rewrite rules are ground terms.

The CTRS defined in the following example is a slightly modified version of an
example taken from PLG, and will be used as a running example throughout this
section.

Example 4.Let (X, V), R,C) be a CTRS, wherel = (S,r), S = {+,¢,a,7,0},
r(+) =2,7(c) =r(r) =r(a) =r(0) =0, andV ={ z,y }. Herec represents a constant,

a represents an address register angpresents a general register. The set of rules
R is defined as follows:

R={ (r1) *az,y)— +@y,)

(r2) +(,0)— =

(r3) +(a,a) —r

(ra) +(,r) —a

(rs) 0—c

(re) c—a

(r) a—r

(re) r—a}

An alternative representation of the first four elementsRois given in Fig.5. The
cost functionC' is defined as followsC(r1) = C(r,) = C(rs) = 0, C(r3) = C(re) = 3,
C(T7) = C(Tg) =1 andC’(m) =5,

(r1) (r2)

/NN N\

(r3) 4+
/N =

(r4) +
a a c

/N -

Fig. 5. The tree representation of some term rewrite rules

Code generation based on formal BURS theory and heuristic search 613

Some example terms are +tfc,c)), a, and +@,+(0,+(c,y))). For t =
+(z, +(0, +(c, y))) we have thatPodt) = {,1,2,2-1,2-2,2-2-1,2-2-2}. Some
sub-terms of aret|.=t,t/1= x, andi|»= +(c, y).

Definition 8 (Substitution). Leto € V — T (V). For t € T';(V), ¢t under substitu-
tion o, denoted?, is defined as:

_ 4o = t, ift € X
T o), ifteV
—a(ty, ..., tn)? =a(t,...,t%

r'n

Rewrite rules that are identical, except for variable symbols, are considered to be the
same.

Definition 9 (Rewrite rule equivalence). Rewrite rulesr; : t; — t] and r;p :
t, — t, are equivalent if and only if there is a bijection € Var(t1)— Var(t2)
such thatt = ¢, andty” =t5.

In this work we consider rewrite rules modulo rewrite equivalence.
For our purposes it suffices to informally define the notion of a rewrite step.

Definition 10 (Rewrite step). Given the TR%(X,V),R),r .t — t' € R, t1,t5 €
Ts (V) andp € Pogt;), thent; % to if and only ift, can be obtained frony by
replacingti|, by ¢ in ¢, and using the substitution with ¢” = ¢|,. We can also
write (r, p) t1 = ta.

(PLG refer to a rewrite step as a rewrite application.) A rewrite rulkat is applied
at the root position, i.e(r,), is usually abbreviated ta A sequence of rewrite steps,
called arewrite sequencgeconsists of rewrite steps that are applied one after another.

Definition 11 (Rewrite sequence).Lett % t" if and only if there exists

f. ... 1,1 such that ey 4 Lrepa - by

S() = (r1,p1) ... (rn,pn) is called arewrite sequencef ¢. We can also write5(¢) ¢ =
.

When convenient, we denote a rewrite sequesi@® by . Further, we writet ==>

if and only if 3¢ : t ==> ¢’. The empty rewrite sequence is denotetiencet == ¢

for all termst.

The cost of a rewrite sequeneeis defined as the sum of the costs of the rewrite
rules inT. The length ofr is denoted 7| and indicates the number of rewrite rules
in 7. A rewrite step is a rewrite sequence of length 1. For rewrite sequeraw
rewrite ruler, 7\ r denotes sequence with r deleted, andr € 7 denotes that
occurs int.

A rewrite sequence; is calledcyclicif it contains a proper prefix, such that for

some terme, t == t’ andt ==> t'. In the rest of this paper we assume all rewrite

sequences to be acyclic. #f= (ry,p1) ... (rn, pn) then we define- = {r,...,r, },
that is,7 is the set of rewrite rules in. Actually, 7 is a multiset as the same rewrite
rule may (and often does) occur more than once.in —

2 This operation is only used whencan be uniquely identified im.

614 A. Nymeyer, J.-P. Katoen

Definition 12 (Permutations). Given a termt, rewrite sequences and 7’ are per-
mutations of each other, denoted>; 7/, if and only if all elements i and 7’ have

the same cardinality, antl== ' <= t == ' for all termst¢’.

Example 5.Consider the CTRS shown in Example 4, anddet +(0, +(r, ¢)). We

. 71,2 . .
can writet % ', with ¢/ = +(0, +(c, r)). We can also write(r1,2)¢ = t’. The

term¢’ is obtained from by replacingt|, by +(y, z)? in ¢, using substitutiornr with
o(x) =r ando(y) = ¢ such that £, y)? = t|,. Two derivations starting with’ are:

1 +(0+(e, 7)) 2225 +(0,a) 222 +(0,r) 22 4(,0) 2L

2. +(@+(e,) 222 +(0,0) L2y +(0,0) L2 4, 0) L2,

These rewrite sequences are permutations of each other and both have cost 6.

A permutation defines an equivalence relation on rewrite sequences. In the next
section we will use this fact to reduce the number of rewrite sequences that we need
to consider. Note that all permutations of a rewrite sequence have the same cost.
This is a stipulation for our approach, and a property of a BURS. If we use a cost
function that does not satisfy this property (for example, if the cost of an instruction
includes the number of registers that are free at a given moment), then the reduction, or
optimisation, that we consider in the next section will lead to legal rewrite sequences
being discarded. This property is therefore a restriction on the cost function and is
necessary to keep the number of rewrite sequences manageable.

4.2 Normal-form decorations

Given a CTRS (L, V), R,C) and two ground terms, ¢ € T, we now wish to
determine a rewrite sequencesuch thatt ==s ¢’ with minimal cost. If we assume

that such a rewrite sequence exists, then PLG refer to this as the C-REACHABILITY

problem. In practice, term rewrite systems in code generation are rather extensive
and allow for many possible rewrite sequences to transfointo ¢'. Fortunately,

an optimisation is possible so that we do not need to consider all possible rewrite
seguences.

This optimisation is based on an equivalence relation on rewrite sequences. The
equivalence relation is based on the observation that rewrite sequences can be trans-
formed into permuted sequences of a certain form, catiednal form Permuted
rewrite sequences yield the same result for térof. Definition 12), and they have
identical costs, hence we only need to consider rewrite sequences in normal form.
Normal-form rewrite sequences consist of consecutive subsequences such that each
subsequence can be applied to a sub-term of

In Definition 11 we defined the rewrite sequeng@) of a termt. We now go
a step further and label, or decorate, a term with rewrite sequences. Such a rewrite
sequence is calledlacal rewrite sequenceand is denoted by.(t|,), wheret|, is the
sub-term oft at positionp at which the local rewrite sequence occurs. Of coupse,
may bes (denoting the root). Note that all the positions in the local rewrite sequence
L(t|,,) are relative top.

Code generation based on formal BURS theory and heuristic search 615

A term in which each sub-term is labelled by a (possibly empty) local rewrite
sequence is called a decorated termdecoration From now on all terms that we
consider will begroundterms.

Definition 13 (Decorations). A decorationD(t) is a term in which each sub-term of
t at positionp € Pog¢) is labelled with a local rewrite sequendgt],,).

We can usually decorate a given term in many ways. If we wish to differentiate
between the rewrite sequences in different decorations, then we use the notation
Lp(t]p).

Given a decoratiorD(¢) of a termt, the corresponding rewrite sequertgg) can
be obtained by a post-order traversaltofAgain, different decorations may lead to
different rewrite sequences, so we denote the rewrite sequence of a decardion
Sp(t).

Definition 14 (The rewrite sequence corresponding to a decoration)The rewrite
sequencep(t) corresponding to a decoratioP(t) is defined as:

Sr(t) = LD(t‘s)r iftGZo
PO =\ (19p(tr) ... n-Sp(t)) Lo, it ¢ =alts,. ..)

Here,n-7 for rewrite sequence and (positive) natural number denotesr where
each positiorp; in 7 is prefixed withn-.

Decorations are considered to be the same if and only if their corresponding
rewrite sequences are permutations of each other.

Definition 15 (Decoration equivalence).The decorationd(t) and D’(t) are equiv-
alent, denoted by)(t) = D’(t), if and only if Sp(t) and Sp.(t) are permutations of
each other, i.eSp(t) =; Sp/(t).

Example 6.Consider our running example again, andtlet+(0, +(c, ¢)). Two deco-
rations D(t) and D’(t) of ¢ are depicted in Fig. 6, on the left and right, respectively.
The corresponding rewrite sequences are as follows:

Sp(?) (re, 2:1)(r7,2:1)(r1, 2)(ra, 2)(r7, 2)(r1,€)(r2,€)

Sp(t) (re, 2:1)(r7,2:1)(r1, 2)(ra, 2) (r1,) (r7, 1)(r2,€)

The decorationd(t) and D’(t) are equivalent becauses(t) =; Sp/(t).

7+ r1(?7,1)7+\
e O T174TT + e 0 T4 +
TeTT C E C TeT7 C € c

Fig. 6. Equivalent decoration®(t) and D’(t) of a termt

We can define an ordering relatienon equivalent decorations. The intuitive idea
behind this ordering is thab(¢t) < D’(t) for equivalent decoration®(t) and D’(t)

616 A. Nymeyer, J.-P. Katoen

if their associated local rewrite sequences ff@re identical, except for one rewrite
rule r that can be moved from a higher positigrin D’(t) to a lower positiorp in
D(t). We formally state this in the next definition.

Definition 16 (Precedence relation).For term¢ and equivalent decoration3(¢) and
D'(t) the precedence relatior is defined asD(t) < D’(¢) if and only if3p,q €
Pogt), such thaty is a proper prefix op, and the following holds:

— Vs #p,q : LD(tls) = LD’(t‘s)
— 3r e Lp(tlp) N Lp(tlg) : Lp(tlp) \ 7 = Lp(tlp) A Lp(tlg) = Lo (tg) \ 7

<* is the transitive closure of. It follows quite easily thatk* is a strict partial order
(i.e. irreflexive, anti-symmetric and transitive) on equivalent decorations (uayler
The minimal elements undet* constitute an interesting class of decorations. These
decorations are said to be in normal form. Normal forms need not be uniqué as
does not need to have a least element.

Definition 17 (Normal-form decoration). A decorationD(t) of a termt¢ is in normal
form if and only if = (3 D’(¢) : D'(t) <* D(2)).

We letNF(¢) denote the set of decorations tofhat are in normal form.

Example 7.In Example 6 we haveD(t) < D’'(t) because rewrite rule; associated
with the root position oft in D’(t) can be moved to a lower position ofin D(t).
As all local rewrite rules inD(t) are applied to the root position of the sub-term with
which they are associated, they cannot be moved to a lower position, hEncées

in normal form.

Example 8.The two decorations shown in Fig.7 are equivalent, and are both in
normal form. This illustrates that normal forms need not be unique.

7 + 7 +\
rsTe 0 T4 +\ rg O 7 +\
€ C TeT7 C Te € Te C

Fig. 7. Two equivalent, normal-form decorations of a tetm

The following theorem allows us to consider only normal-form decorations of a
termt, and not the entire universe of decorations.of

Theorem 1 (Normal-form existence).Given a rewrite sequence and term¢, we
have that
t== = (3D(t) e NF(t): Sp(t) = 1)

Code generation based on formal BURS theory and heuristic search 617

Proof. Let 7 be an arbitrary rewrite sequence ahdome term such that ==>.

A simple decorationDy(t) corresponding tor can be obtained by decorating the
root of ¢ with 7 and all other sub-terms with the empty rewrite sequence. Suppose
Dq(t) is not in normal form. We informally describe a procedure to obtain from
Do(t) an equivalent decoration which is in normal form. The decoraidg(t) can be
modified into D1(t) by moving a single rewrite rule from a higher positiontito a
lower position int, so thatSp,(t) =: Sp,(t). This procedure can be repeated, until
no rewrite rules can be moved to a lower position. The procedure must terminate
successfully as is finite, at which time there cannot be a decorati®fft) such that
D'(t) < D,+1(t). The result is a chain of decoratiof¥(t), D1(t), D2(t), etc. so that
D,+(t) < Dy(t), for all n > 0. By construction, the last obtained decoration is a
minimal element undex™.

The consequence of the existence of a normal-form decoration is that the local
write sequence at each position must always begin with a rewrite step that is applied
to the root of the subtree rooted at that position.

Lemma 4.1

For all D(t) € NK(t), andp € Pogt) : Lp(t|,) #e = Lp(t|,) = (r,e) 7, for some
r € R and rewrite sequence.

Proof. By contradiction. Let us assumB(t) € NF() and for somep € Pogt),
Lp(t|y) = (r,q¢) T with ¢ = n.¢, n € N,. Let D(¢) be identical toD’(t) with
the exception thatl,(t|,) = 7 and L', (t|p.n) = Lp(t]p.n){(r,¢'). By construction
D'(t) < D(t), contradicting thatD(t) € NF(z).

The approach that has been used in this section is different from that of PLG. PLG
first define a normal-form rewrite sequence, and then a local rewrite sequence and
assignment. Their local rewrite assignment is the same as our decoration. We have
reversed this order. Further, our approach is more formal and concise. In particular, the
explicit use of the ordering relatior is very helpful in characterising normal-form
decorations.

4.3 Strong normal-form decorations

The idea behind a strong normal form is to reduce the number of local rewrite se-
guences that we need to consider. In the strong normal form, we do not permit
positions in sub-terms of the expression tree that have matched variables in an ap-
plied rewrite rule to be rewritten again. These positions are said to have become
non-rewriteable. By avoiding rewriting these positions, we avoid generating local
rewrite sequences that are simply permutations of each other.

All definitions in this section are with respect to a CTRS ({/), R, C). We begin
by defining the set of positions in a term at which a variable occurs.

Definition 18 (Variable positions). The set VP of variable positions of a terme
Tx(V) is defined as the set of positions at which a variable occurs. In other words,
VP(@) = {p € Pogt) | t|, € V }.

We say that each position in a term is eitliewriteable or non-rewriteable A
rewriteable position is a position in a term at which a rewrite rule may be applied. A

618 A. Nymeyer, J.-P. Katoen

rewrite rule may not be applied to a non-rewriteable position. If a term is rewritten

using a rewrite rule that does not contain a variable, then the rewriteability of the
positions in the rewritten term does not change. If the rewrite rule does contain
a variable, then the positions in the term substituted for the variable become non-
rewriteable. This leads us to the following definition.

Definition 19 (Rewriteable positions). The set RPof rewriteable positions in a term
t after the application of the rewrite sequenceand rewrite step(ty — t2,p) is
defined as:

— RP,(¢) = Pogt)

— RP(7(t1 — t2,p)) = (RP,(7) — Pog?'|,)) U Pogt"|,,)
—{Pogt"].q) | ¢ € VP(t2)}

(ti—t2,p)

wheret == ¢/ .

In Fig. 8 we depict how rewriteable positions are computed. Assume that we have
some rewrite sequen¢e==s ¢'. If the left-hand side of the rule, — ¢, matches a

sub-term at positionp in ¢/, then we can rewrit¢’ into ¢t”. We do this by replacing
the matched sub-term itf (shown lightly shaded in the termi in Fig.8) by the
right-hand side, (shown lightly shaded in the ternf). If ¢; also contains variables,
then we must substitute for these variableg.irffthe matching sub-terms are shown
in black int’ andt”).

t' "
p
PR AN (t1——t2,p)
q1
g2
matched matched by
t2

by t1 variables in ¢;

Fig. 8. Computing the rewriteable positions in a term after the applicatioftof— t2, p)

In the definition above, we see that the set of rewriteable position$ donsists
of the rewriteable positions iff (given by RP.(7)), minus the positions in the sub-
term that has been matched fay(Pogt’|,,)), plus the positions in the sub-termthat
replacedt; (Pogt”|,)), and minus the positions in the sub-terms that are substituted
for the variables (if any) itz ({Pogt"|,,.q) | ¢ € VP(t2)}).

Example 9.We are given a TRS withS = {x,+,¢,7,2}, corresponding ranks
{2,2,0,0,0}, V = {z} and R defined as follows:

R={ (r1) #(2z)— +(,2)
(r2) H(c,0) —r
(r3) (1) —r}

Code generation based on formal BURS theory and heuristic search 619

Assume that we have some tetnF x(2, +(c, ¢)). Initially, the rewriteable positions
in t are given byRP,(c) = {¢,1,2,2:1,2-2}. If we now apply the rewrite rulér;, 2),
then we generate the tertfi = x(2,) with rewriteable positions:

RP.((r2,2)) (RPy(¢) — Pogt|2)) U Pogt"|5) — 0
{e,1,2}

In other words, each of the positions in the tex(R, r) is rewriteable. Note that the
rule r, does not contain a variable.

We now apply the rewrite rulérq,) and generat¢’ = +(r, 7). Note that we are
allowed to do this because the positieris rewriteable, and that = %(2,r). The
rewriteable positions in this new term are:

RP;((r2,2)(r1,¢)) (RP:((r2, 2)) — Pog#'|.)) U Pogt"|.)

—{Pogt"|,) | ¢=1,2}
({57 17 2} - {57 17 2}) U {57 13 2} - {1a 2}
{e}

Because the root position in the termr:Hf) is rewriteable, we can now apply the
rewrite rule(rs,) and generate the goal term Summing up, we have reduced the
term ¢ using the following sequence:

*(27 +(07 C)) % *(2’ 7‘) jTl_Z—ﬁA} +(7’, ,,,) Ar3e) r

Example 10.Instead of beginning with the rulér,, 2) in the above example, we
could have begun with the rulg,). This results in

#(2, +(e,) T2 +(+(c.). +(c.)
The only rewriteable position in the new term is the root position. To reduce the term
further we need to reduce the sub-terms, #) at positions 1 and 2. These positions,
however, are non-rewriteable, hence we cannot proceed any further. Intuitively, we

say that the term +(c¢) should have been rewritten before it was substituted for a
variable. (This is the strong-normal-form property.)

As a convenience, we now define a boolean funcBenmitted that determines
whether rules in a rewrite sequence are only applied at rewriteable positions in a term
t.

Definition 20 (Permitted). Given the rewrite sequence and termt, the predicate
Permitted is true if each rewrite rule- in 7 is applied at a rewriteable positiop, and
false otherwise. Formally,

— Permitted(c) = true
— Permitted(r(r,p)) =p € RA(7) A Permitted(r)

Definition 21 (Strong-normal-form decoration). A normal-form decoratiorD(t) is
in strong normal form if and only if Permitte(. (¢|,)) is true, for allp € Pog).

We let SNHt) denote the set of decorations ofhat are in strong normal form.

Example 11.Let (¥, V), R) be a TRS withS = { %, a,b,¢,d,e, f }, r(x) = 2 and all
others with rank Oy = {z }, and R defined as follows:

620 A. Nymeyer, J.-P. Katoen

R={ (r1) =*(a,b)— x(c,d)
(r2) *(c,x) — *(e,x)

(r3) d—f}

Let ¢t = %(a,b), and define a decoratioP(t) by local rewrite sequencesp(t) =
rir2{(rs,2) and Lp(t|1) = Lp(t|2) = . The decorationD(¢) is in normal form, but
not in strong normal form, becausg makes position 2 non-rewriteable. Rutemay
not be applied to this position. The valueRérmitted(r, 2 (r3, 2)) is therefore false.

Note, however, that the decoratidd (t) with Lp/(¢) = r1 (r3, 2) r» and Lp/(t]1)
= Lp/(t|]2) = € is in strong normal form.

The following theorem means that we only need to consider strong-normal-form
decorations of a term, and not the entire universe of normal-form decorations. of
This theorem is analogous to Theorem 1.

Theorem 2 (Strong normal-form existence).Given a rewrite sequence and term
t, we have that
t==> = (3D(t) € SNR¢t): Sp(t) = 7)

Proof. Let 7 be an arbitrary rewrite sequence ahdome term such that ==>.

From Theorem 1 it follows that there exists a normal-form decorafigt) corre-
sponding tor. If D(t) is not in strong normal form, then there is someuch that
- Permitted(L p(t|,)). This means that we can write

t1—to,p’ {ta—tp,p"")
LD(t|p)="'t/ N N """

wheret; (andt,) contain at least one variable andt, is a sub-term of the sub-term
t, of ¢’ that matches. We depict the above rewrite sequence in Fig. 9. In this figure,
t' = t|,. The application of the rewrite rule, — ¢, at positionp”’ in the term¢"”
in this figure is not permitted because the (earlier) application of thetiue— t;
at positionp’ in ' resulted in all the positions in,, including ¢,, becoming non-
rewriteable int”. In Fig. 9, the termg; andt, are shown lightly shaded, is shown
heavily shaded, ang, is shown in black. Without loss of generality, we assume that
the positions in., are rewriteable before the application @f — ¢, p’) (note that,
by definition, all positions are initially rewriteable), and thiRermitted. (r;) is true.
We now move the instance of the rewrite rtje— ¢, to beforethe rulet; — t,.
This results in the rewrite sequence shown in Fig. 10. In this figure we see that the rule
to — tp is applied at positiop® in term¢°, before the rewrite steft; — ¢, p’).
If we now apply the rule¢; — ¢,, we find that the sub-term, that matches variable
v will contain ¢, (instead oft,). Note that the rule, — ¢, is applied at position
p"" in the sequence in Fig. 9, and at positighin the sequence in Fig. 10. The new
rewrite sequence in Fig. 10 is quite obviously a permutation of the sequence in Fig. 9.
The above procedure moves a rewrite step that is applied to a sub-term that is
non-rewriteable to before the rewrite step that made the sub-term non-rewriteable.
Applying this procedure repeatedly will result in a local rewrite sequehgé|,)
that is permissible.
Given a normal-form decoratio®(t), therefore, we can now make each local
rewrite sequencd p(t|,), for all p € Pogt), permissible. This results in a strong-
normal-form decoration. This completes the proof.

Code generation based on formal BURS theory and heuristic search 621

t' o

t///

III)

(t1—t3,p’) (ta——tp,p

t2
Fig. 9. A sequence that is not in strong normal form

t° t! "

(ta—t5,0°) (t1—ta,p")
— ——

tg

t2
Fig. 10. A sequence that is in strong normal form

Example 12.Consider the TRS &, V), R) with S = {+,¢,r,a}, r(+) = 2 and all
others with rank Oy = {z,y }, and R defined as follows:

R={ (r) +(c*(c) — +(c,z)
(7'2) +(ZL‘, y) — +(ya .I')
(r3) a—r
(ra) *(ryr) —r
(rs) +(,r)— 1}

Let t/ = +(+(c, +(c, +(a,1))), c), and consider the sequence shown in Fig.11. This
sequence, which isot in strong normal form, rewrites the terthinto the goal term

r. In the first step in this sequendg,is rewritten intot” by (r1,1). In this step, the
sub-termt,, (indicated in the figure) i’ is matched by the variable in ¢;, and as a
result, all the corresponding positions in the teffnincluding¢,, have become non-
rewriteable (indicated by the circled nodes). The rewrite stgpsare then applied,
resulting in the term’”’, where all positions are non-rewriteable except the root. The
next rewrite step(rs, 21), is not permitted because positiotl 2which is the position

of term¢t,, is non-rewriteable.

The node corresponding to positiorldn ¢ became non-rewriteable as a result

of the first step{ri, 1). Following the strategy outlined in the proof of Theorem 2, we

622 A. Nymeyer, J.-P. Katoen
¢! ¢

"
t

N AN N
\+ c (’1-1)\+ ¢ 21 @{ 5 (r3,2-1) c/\ (rs,2)
ty

c/ \+ c/ permitted / \ c/ \r -
r T
C / \+ /tv AN @ O
/\ e
a r a
A
ta

Fig. 11. A sequence that isot in strong normal form

+ t1 + t
Cosrazy, K€ ran, (r4.2) rs
C/ pe?x%"xttedc T

VAN AV

/\ /\

\ \

to tp
Fig. 12. Another sequence that it in strong normal form

now move the rule-3 that we were not permitted to apply above, to before this step.
The resulting sequence is shown in Fig.12. In this sequence we begin by applying
the rewrite stegrs, 1.2-2:1). This step rewrites, into ¢,. We then apply rewrite step
(r1,1), which results in the positions in the sub-tetgnbecoming non-rewriteable.

We can next apply stepsri, but we cannot apply rule; at position 2 because it is
non-rewriteable. As before, this node has became non-rewriteable as a result of the
earlier step(r1, 1). Repeating the above procedure, and moving the application of rule
r4 10 before this step, results in the sequence shown in Fig.13. This sequence is in
strong normal form. Notice that in moving the rulesandr, forward, the positions

at which these rules are applied change.

/ \c (r3,1-2:2-1) +/ \c (re,1-2:2) +/ \c (r1,1) / \ r27175
/ \ /\ /\ c
c + c + / }D
c/ N\ J \+ / '\ c
/\ /\r ©

Fig. 13. This sequence is in strong normal form

Code generation based on formal BURS theory and heuristic search 623

In this section we have formalised the concept of rewriteable positions and strong-
normal-form decorations. Rewriteable positions are related to Pt@ished posi-
tions, which PLG only treats cursorily. PLG does not explicitly define a strong normal
form.

4.4 Input and output sets

As a direct generalisation of bottom-up tree pattern matching methods (see e.qg. [24]),

sets of patterns, called input and output sets, can be computed from the strong-normal-
form decorations of. These sets define the patterns that match the expression tree.

We begin by defining the inputs and outputs of a decoration.

Definition 22 (Inputs of a decoration). Let D(t) € SNK¢) such that, for some given

goal termg, ¢ M—t—> g. For each sub-ternt’ of ¢, the possible inputs, denotdg (¢'),

are defined as follows:

N7 ift e Xy
Ip(t) = { a(ty,...,t,) ift=a(ts,... t,)

wherelp(t;) Lolid), forl1<i<m.

Definition 23 (Outputs of a decoration). Let D(t) € SNHKt) such that, for some
given goal termg, t M——Q g. For each sub-termt’ of ¢, the possible outputs are
defined a<0p (1) = ¢/ with Ip(t) ==L ¢,

Using the inputs and outputs, we can now defineitipait setand output setof a
term¢ for some goal terny. The input set/.S,(t) is the union of all possible inputs
for all strong-normal-form decorations afSimilarly for theoutput setD.S,(t). More
formally:

IS,(t) = {Ip(t)|D(t)c SNRY) A t =25 g)
08,(f) = {Op(t)| D(t) € SNRt) A t 22 g}

Note that the sets are defined for a specific goal tgrm

Example 13.Consider again our running example and the tegiven by +(Q +(c, c)).
A normal-form decoratiorD(¢) for this term is shown on the left in Fig. 6. The inputs
Ip(t) and outputOp(t) of this decoration for goal term are depicted in Fig. 14a.
In this figure, inputs and outputs are given on the left and right side (resp.) of each
node.

The input setd S,.(t) and output set®S,.(t) of this termt for goal termr are
shown in Fig. 14b, on the left and right side (resp.) of each node.

An algorithm to calculate input and output sets for temand g, and the corre-
sponding local rewrite sequences is given in Fig. 15. This algorithm consists of two
passes. In the first, bottom-up pass (see the fun@iemeraté sets oftriples, denoted
by W(t), are computed for all possible goal terms. A triple, writtgh D(t), ot),

624 A. Nymeyer, J.-P. Katoen

(a) (b)
[+(On)] +[r] {+(@a),+(0x),+(cn} +{r}
[0] 6[0] {0} 0{0,ca}
[+(ro] +]r] {+(@a),+(r,0),+(c,n} + {ar}
[clc [l [c I[c] {c} c{car} {c} c{car}

Fig. 14. alnputs and outputs of a decoration for the term,#@, c)). b The input and output sets of this
term

consists of an inpuit, decorationD(t), and outputot such thatt =, ot, and

L c .
it % ot. For convenience, we use the typperm to denoteT’s;, SetOfTerms

to denote=’(Term), Triple to denoteTerm xDecorationx Term, and SetOfTriples
to denote=”(Triple).

In the second, top-down pass (the functioim), these sets of triples are ‘trimmed’
using the desired goal tergn The root node is trimmed by removing each triple whose
output term is not identical to the goal term. Other nodes in the expression tree are
trimmed by removing each triple whose output term is not identical to an input term
of its parent node. The resulting trimmed sets of triples, denoted (8y; consist of
the input and output sets, and the associated decorations. Under some circumstances it
may be possible to trim the nodes in the expression tree while they are being generated
(see for example [38]). We do not consider that aspect further here however.

Example 14.Let us apply the algorithm shown in Fig. 15 to our running example.
The set of tripled/(t) for ¢ = +(0, +(c, ¢)) is shown below. Note that all rewrite rules
are applied at the root.

V(t|1) = {<07 €, 0>’ <07 s, C>' <05 T'sTe, CL>}

V(t|2|-) = {<C7 & C>1 <C, 6, a>’ <C7 TeT7, 'I">}

V(t|22) = {<C,E,C>, <C, 7“6,@>, <Ca TGT'7,T>}

V(t|2) = {<+(a7 a)a T3, T>' <+(a7 a)a r3rs, a>* <+(T7 C)a riTa, a>*
<+(7’7 C)a r1rary, T>, <+(Ca T), T4, Cl>, <+(Cv ’f'), 477, 7’>}

V(t|€) = {<+((1, CL), T3, T>1 <+(07 T)a rir2, T>’ <+(Ca 7‘), rar7, T>}

To guarantee termination of this algorithm the length of each local rewrite se-
guence must be finite. A TRS that has this property is referred fonids and one
that does not aifinite. More specifically, a TRS is finite if and only Ep(t|,) is
finite for all D(¢t) € SNKRt), t € Tx(V) andp € Pog?t).

Intuitively, infinite TRSs occur because the right-hand side of a rewrite rule can be
more complex than the left-hand side. In that case, sequences can continue indefinitely.

625

Code generation based on formal BURS theory and heuristic search

|[eon ((2,V), R): TermRewriteSystem;
t,g : Term;
var W (t),V (t): SetOfTriples;
func Generate (t : Term): SetOfTriples
[var H,Z(t): SetOfTriples; ¢ : IN;
H:=2(t):=0;
ift:a— Z(t) :={(t,D.,t)};

[tealty,... te) —

[for all 1 <i<ndo Z(t;) := Generate(t;) od;
(* Let O(ti) = {Otki | <itki ’ Dkiﬂotki> € Z(ti) } *)
for all (tkl, e 7tkn) € O(t1) X ... X O(tn)
do Z(t) := Checknf(Z(t),(a(tkys--->tkn); Dy ® ... ® Dg,,a(tky,. .., tk,))) od

1l
fi;
do H # Z(t) —| H := Z(t);
for all (it, D, ot) € Z(t)
do for all p € RP,(Sp) A (Lp(tls) =¢ = p=¢)
do for all r € R A Sp(r,p) is acyclic

(r,p)
do if ot == — skip
1ot =22 o — Z(t) == Checknf(Z(t), (it, D ® (r,p),ot'))

fi
od
od
od
|

od;
return Z(t)
I
func Checknf(Z: SetOfTriples, (it, D, ot) : Triple): SetOfTriples

[var ezit: Bool;
ezit := false;
for all (it',D',ot'y € Z N —emit
doif D=D' A D <D —| exit:=true; Z :=(Z\ {(it',D',ot') }) U {(it,D,ot) }]|
| D=D" A D' <D — ezit := true
| D# D' — skip
fi
od;
if —ezit — Z :=Z U {(it,D,ot) } | ezit — skip fi;

return 7

Ii
func Trim (t : Term,t, : SetOfTerms): SetOfTriples
[var Z(t): SetOfTriples; i : IN;
Z(t) = {(it,D,ot) € W(t) | ot €ty };
if t :: a — skip
| t:a(ty,... tn) — for all 1 <i < ndo Z(t;) := Trim(t:,{t|; | (it,D,ot) € Z(t) }) od

fi;
return Z(t)

Ii

W (t) := Generate(t);
V(t) := Trim(t,{g})

Fig. 15. A two-pass algorithm to calculate the input sets, decorations and output sets

626 A. Nymeyer, J.-P. Katoen

Example 15.Consider the TRS with rules:

(r) ¢ —m(c)
(r2) mlc) —a
(r3) mla) —r

The TRS is infinite because we can generate the following local rewrite sequence for
the input terme:

¢ =25 m(c) 222 n(m(e)) L2 po(m(m(e))) L .

A successful rewrite sequence for this input term involves (only) 2 applications of
rule 1, as shown below:

c == m(c) A—H—lﬁ m(m(c)) l—% m(a) ==> r

The maximum length of local rewrite sequences in a finite TRS may not be
bounded. In that case the length will be dependent on the input term.

Example 16.Consider the TRS with rules:

(r1) m(+(c, X)) — m(X)
(r2) m(r) —r

wherer is the goal term. Local rewrite sequences for this TRS will be finite in length,
but unbounded. For example:

m(+(c, 7)) =L m(r) =%
m(+(c, +(c, 7)) == m(+(c, 7)) == m(r) == r

m(+e, +(e, +(¢, 7)) == m(+(e, +(¢, 1)) == m(+(c, 7)) == m(r) == r

If the length of local rewrite sequences for a given TRS is bounded,day, then
PLG say that the TRS satisfies the BURS property. (Note that our running example
satisfies the BURS property with= 3.)

PLG define the following sufficient syntactic condition for a finite TRS:

Theorem 3. A TRS((X, V), R) is finite if for all (¢,¢') € R one of the following
conditions holds:

1. Var(t) =0 and¢’ € X

2. t=aflty,...,t,) andt’ =b(ty,...,t,) forn >0anda,b € X,

3. t=af(t,...,t,) andt’ = a(t), - - - , tx(n)) With T @ permutation orf1, n]
4.t = f(x,t") andt’ = z with Var(t”) =0

This result has been confirmed, in a somewhat different context, by Kurtz [32]. It
would be interesting to identify a coarser classification of finite TRSs.

PLG define inputs and outputs, as we do, and use these to logéd rewrite
graphsfor each sub-term of the given expression tree. These graphs represent the
local rewrite sequences of all ‘normal-form rewrite sequences’ that are applicable.
We directly encode the inputs, outputs and local rewrite sequences into the expression
tree (in the form of triples attached to each node).

Code generation based on formal BURS theory and heuristic search 627

5 Coupling A* and BURS

The search grapli = (IV, E, ng, N,) consists of a set of node¥, edgesE and
goal nodesV,, and an initial nodey,. A node represents a state of the system, and is
denoted by a quadruple, p, 7, t") wheret is the current termp is the current position
in that term,r the local rewrite sequence appliedzatand¢’ the (chosen) input tree
at p.

The initial nodeng is given by the quadruplée {, po, €, t1]p,)- The termt; is the
input expression tree for which we want to generate code. The initial pogigias
the lowest left-most position in this tree, and is of the formlt...

Example 17.Consider our running example (Example 4). The initial node is the
qguadruple (+(0+(c, ©)), 1,¢,0). The lowest left-most position ity = +(0, +(c, ¢)) is
1, andt;|; is 0. The set of goal terms is the singleton &e}.

To determine the search graph, we need to compute the successor nodes of a
given node. This is carried out by the functiSuccessgrwhich is shown in Fig. 16.
As in Fig. 15, we use the typBetOfTriples. We also denote the typeR(x N})* by
RewriteSequence, and ’(Ts; x NI x (R x N)* x Ts) by SetOfQuadruples.

The (standard) functiondext Parentand Child are used to position ourselves in
the search graph. These functions are defined below.

Definition 24 (Next, Parent and Child). Given a positiorp € Pogt) \ {e} in a term
t:

— Nex{p,t) € N} is the next position of in a post-order traversal of.
— Parentp, t) € N is the position of the parent gfin ¢.
— Child(p,t) € N, is the child-number op in ¢.

If a positionp in treet has childrenp-1, ..., p-n then thechild-numberof position
p-i is i. Further,Parente,t) = Child(e,t) = €, but Nex{e,t) is undefined, for any.
Note thatp = Paren{p,t)-Child(p,t).

Example 18.In the termt = +(0, +(c, ¢)), we haveNex{(1,t) = 2-1, Nex(2-1t) = 2:2,
Nex(2-2;t) = 2 andNex(2,t) = e. FurthermoreParen(2-1,t) = 2 andChild(2-1t) =
1.

The basic idea behind the successor function is the following. If we can add a
rewrite step (r,p’) in the algorithm) to a local rewrite sequence @t the current
position), and there exists a rewrite sequeneér(p’)7’) whose output treeof)
matches a corresponding child of an input trié€) (of the parent (ofp), and all the
younger sibling®f the current position also match corresponding children of the same
input tree, then we have found a successor node. If positiathe i-th child (of
a node) then the younger siblings are the children 1 untill. The first child has
no younger siblings of course. The functi®uccessois called recursively, using
the next post-order position, for as long as the sub-term at the current position, and
all the younger siblings of the current position, match corresponding children of an
input tree of the parent. The functidvatch carries out the task of matching a node
(sub-tree) and its siblings with the children of an input tree of the parent.

When the algorithm reaches the root positiprs ¢, the recursion will stop, and
the functionMatch will always vyield true. The algorithm will return with the empty
set when it reaches the root position and the terV,.

628 A. Nymeyer, J.-P. Katoen

[con ((X£,V), R): TermRewriteSystem;
V (t): SetOfTriples;

func Successor (t : Ts,p : IN', T : RewriteSequence, it : Tx): SetOfQuadruples
|[var S: SetOfQuadruples;

func Match(p' : N}, t': Tx): Bool
|| var Z:SetOfTerms;
it': Term;

: =e€);
Z(t) = {lt | <1t7 D, 0t> € V(t|Parent(p')) A 7/t| Child(p') = t' };
(% if p' is the i-th child, then Z is the set of input trees of its
parent such that the i-th child of each term in Z equals ¢’ *)
do Z#0 A —b—>| choose it' € Z;
Z = Z\{it'};
b:=(V1<i< Child(p'):it'= t\Pmem(p:) 3
|
od;
return b

I;

(* body of function Successor)
if (p =€) V —Match(p, t|,) — S:=10
[(p#€) N Match(p, t|,) — S := Successor(t, Next(p), €, t|Newt(p))
fi;
for allr € R
do for all p’ € Pos(it)
do for all (it,D,ot) € V(t|,) A Sp =7(r,p')7" (% loop over 7’ and ot %)
do if - Match(p, ot) — skip
| Match(p, of) — § =S U { ('), p, 7(r,8), it)}
fi
od
od
od;
return S
|
I

Fig. 16. The successor function that computes a set of new search nodes

Example 19.Consider our running example again. Let us compute the successor
nodes of the initial node, i.e. we compuBuccessd(0, +(c, c)), 1, ¢,0). Because

p # e andMatch(1, ¢|;) = true, we recursively call the function again with the next
position,p = 2-1. That is, we callSuccessd(0, +(c, ¢)), 2-1, €, ¢) where the last ar-
gumente = t|.1. Again, p # e and Match(2-1, t|,.1) = true, so we recursively call
Successgrthis time withp = 2.2, That is, we callSuccessdi(0, +(c, ¢)), 2-2, ¢, ¢)
where the last argument= t|,.,. The recursion now stops becaudatch(2-2, ¢|,.2)

= false (there is no input tredt’ of ¢|, in which it’|;= ¢ A it'|,= ¢). We therefore

let S := (), and inspect all the triples oF (¢|,.,). The triples at each position in

t were computed in Example 14. The triple, rr7,r) satisfies the loop condition,
withit = ¢, 7 =€, r =1, 7 =r7 andot = r. We also findMatch(2-2, r) = true (for

it" = +(c, r)), hence we generate the search node (@ a)), 2-2, s, c). The call of
Successofor p = 2-2 is now complete, so we need to inspect the triples associated

Code generation based on formal BURS theory and heuristic search 629

with the previous positionV/ (¢|2.1). The triple (c,r¢r7,r) (again) satisfies the loop
condition,Match(2-1,) = true (this time forit’ = +(r, ¢)), and we generate the search
node (+(Q+(a, ¢)), 2-1, rg, ¢) The call of Successofor p = 2.1 is also now complete.
Inspecting the triples associated with the initial positidf(¢|1), we find that triple
(0, 7576, a) satisfies the loop condition, and thdatch(1, a) = true (for it’ = +(a, a)).
We therefore generate the search node,(#(, ¢)), 1, s, 0). The result of the above
computation is that we have generated the following set of search nodes:

{(+(07 +(C, a))! 22: 6, C)v (+(O7 +(G7C)), 211 76, C)v (+(C, +(Cv C)), 1- 5, 0)}

In Fig. 17 we see the complete search graph for the expression treg(d@).

Note that instead of the lengthy quadruple notation, we have used the first argument
of the quadruple (the term) as node name, and we have labelled the edges with the
rule number concatenated with the position at which the rule must be applied. For
the sake of convenience, we have also named some of the nodes. For example, if we
are at noded, which is the term +(0+(c, ¢)), and apply the rules at position 1, then

we generate nod&, which is +¢, +(c, ¢)).

We can construct more nodes in the search graph by computing the suc-
cessors ofB, C' and D. We will consider just the nodd3 here, and compute
Successdt(c, +(c, c)), 1,75, 0). Because 7 ¢ andMatch(1, t|;) = true, we must first
recursively callSuccessdi(c, +(c, ¢)), 2-1, ¢, ¢). Again,p # ¢ andMatch(2-1, ¢|,.1)
= true, so we callSuccessdft(c, +(c, c)), 2-2, €,). The triple{c,rs,a) € V(t|2.2)
hence this last call generates the node (+(c, a)), 2-2, r¢, a). The same triple results
in the previous call generating the noded+(a, c)), 2-1, rs, a). This leaves us with
only the initial call of SuccessorForit =0, 7 =75, r =16, 7/ = ¢ andot = a we find
that the triple(0, rsrg,a) € V(¢|1), and hence generate the nodea(#(c, c)), 2-1,
rsre, 0). Note thatr # ¢ here — this is the first time that we have built-on a rewrite
sequence. The end result is that the set of successor nodes:of(¢+¢€)), 1, 5, 0)
is:

{(*(c, +(c,a)), 2:2, 16, ¢), (*(c, +(a,), 2-1, rg, ¢), (+(a, *(c,), 1, rsre, 0)}

These nodes correspond to the nodgst” and E in Fig. 17, respectively.

We arrive at a goal node when a node consists of a goal term. A goal node has
no successor nodes. Note that there are a total of 11 paths leading from the initial
node to a goal node in Fig. 17.

Table 3. The initial steps that the A procedure takes to reduce +{fc, c)) using a best-first search
strategy (the subscripts are the cogfs

Step || No Nc Choose
1 Aog € A
2 BoC3D3 A B
3 C3D3E3F3G3 AB G
4 C3D3E3F304 ABG F
5 C3D3E304M4Ng ABGF E
6 C3D304MsNeKeLg ABGFE D
7 C304MaNgKgLgJa ABGFED C
8 O4MyNeKeLeJaHals | ABGFEDC H
9 O4MyNeKeLgJslgPy | ABGFEDCH
10 . .

630 A. Nymeyer, J.-P. Katoen

E@a+cc) G@c+cd H&O+ro 1G¢0+ad) JG0+cr
2-1rg *2rg 2-1ry 2-2rg 2:2r7 211 | 2r3 o4

K@a+ac) L@FarcaMGc+roNGe+ad OG—c+cr) PG-()+cr) Q&0p RG0a

2: 1r7 2216 2:2r7 2ry 2r3 €ry 2ry, €r1
(+a+rc)(+a+a@ (+a+cb Gc+en) et SGr® +0r +al
4 4 €Ty €rg €ry €ry
Fa+cr) - G&cd r +a0 T@) +0 a
€rg 2r7 ﬁ?ﬁ €T4 l£r1 €rp !erz €ry
+aa r +cr 1 a +0 a r r
er3 €rg €Ty €ry €ry €ry
r a T T r

€ry

r
Fig. 17. For the expression tree +(®(c, c)), the (a) complete search graph, (b) best-first search graph (in
boxes), and (c) heuristic search graph (in shaded boxes)

In the example above, we have shown how the successor function shown in Fig. 16
can be used to compute the complete search graph for a given rewrite system and
expression tree. Calling the successor function for each and every newly created node
can result in a very large tree, and is wasteful as we only wish to find one least-cost
path. We could instead call the successor function from thes@arch algorithm,
shown in Fig.2. The A algorithm will compute successors for only those nodes
that potentially lie on a least-cost path from the initial nodeto some goal node.

The costg(n) of a path fromng to some node is simply the sum of the costs of the
rewrite rules applied along the path. For the moment we let the heuristic cost function
h*(n) = 0, hence the cost that*Auses,f*(n) = g(n). This corresponds to best-first
search.

Example 20.We now apply the best-first search algorithm to our running example. We
begin by initialising the set®/.. to () and N, to the initial node{ A}. The successors

of A are By, C3 and D3, where the subscripts are the values of the costs of the nodes.
Hence, in step 2N, = { By, C3, D3} and we moveA to N.. The nodeB is the least
expensive, so we compute its successors, which are negleg; and Gz, add them

to N,, and moveB to N.. The first 9 steps in this process are shown in Table 3.
Note that we always choose the last computed least-expensive node. The resulting
best-first search graph is shown in Fig.17. The rewrite sequence associated with the
optimal path toT" is (2-1,r6)(2-2,16)(2,73) (€, r1) (€, r2). This sequence rewrites the
expression tree +(8(c, ¢)) into r for a total cost of 9.

Code generation based on formal BURS theory and heuristic search 631

In the example above, we still had to compute a large part of the search tree
to determine a least-cost path. We can do better by using theldorithm with a
non-zero cost heuristie*(n). In principle, of course, we cannot predict how much it
will cost to rewrite a given node to a goal node. However, we can provide an (under)
estimate of the cost. In particular we are interested in predicting when ‘expensive’
rewrite rules will be necessary to rewrite a term.

Example 21.Let us deduce a heuristic function that will ‘predict’ the cost for our
running example. For convenience, the rewrite rules are shown again below. The
column on the right are the costs.

(Tl) + (1’, y) B +(y7 LL’)
(r2) +(z,0)—=

(r3) t(a,a) —r

(ra) +(c,r) —a

(rs) 0—c

(re) c—a

(r7) a—r

(rs) r—a

PP WOUOIWOO

The heuristic cost is a function of the temin a noden. The first observation that

we make is that a +-node that does not have a 0-node as child will cost at least 3 to
rewrite to our goal~. The second observation is that a nedeill also cost at least

3 to rewrite. Note the special casec;+f) satisfies both conditions and costs 5+1 to
rewrite tor. Combining these observations, we produce the following heuristic:

h*(n) =3 x ([+ |d)

wheren = (¢,p,7,t'), |+o| denotes the number of nodes labelled + and with no
children labelled 0, anft| denotes the number of nodes labelted his heuristic cost
under-estimates, or is equal to, the actual cost. For exarhple,0 for ¢t = a (actual
costis 1),h* = 3 fort = +(0, ¢) (actual cost 4) an&* = 6 fort = +(c, a) (actual cost

6).

Table 4. The steps that the Aprocedure takes to reduce +{c, c)) using a heuristic search (the subscripts
are the costg + h*)

Step || No N, Choose
1 Ap+g € A
2 Bo+15C3+6D3+6 A D
3 Bo+15C3+6J4+6 AD C
4 Bo+1sJareHarelors | ADC I
5 Bo+1sJa+6Har6Qo+0 | ADCI Q
6 Bo+15J4+6Har6S9+0 | ADCIQ S
7 Bo+15J4+6HareTor0 | ADCIQS goal

We now apply the A search algorithm with this heuristic to our running example.
The steps that the algorithm takes are shown in Table 4. The nod¥s this time
have subscriptg + h*. The goal nodel’, with a (minimum) cost ofy = 9, is found
in 7 steps. The resulting heuristic search graph is shown in Fig.17. In total, only 10
nodes needed to be visited before the optimal path was discovered.

Implementation. The A", pattern-matching and successor-function algorithms have
been implemented in C. The*Aalgorithm is almost completely application-indepen-
dent. An application can be the 8-puzzle, or the BURS pattern matcher, for example.

632 A. Nymeyer, J.-P. Katoen

The A* algorithm calls a) a routine to initialise the application, b) the successor
function to determine new nodes, and c) a simple cost function that returns with the
cost of an ‘edge’ (i.e. rewrite rule). These 3 routines comprise the interface between
A* and the application. The *Aalgorithm (i.e. Algorithm 2) required approximately
500 lines of code.

Implementing BURS (Algorithm 15) and the successor function (Algorithm 16)
was an involved task. It required approximately 2500 lines of code, and consists of
mainly intricate tree-manipulation routines. TRSs for real machines have not, as yet,
been developed, hence meaningful performance figures cannot be given. However,
the implementation has revealed the strength and validity of the theory. Consider,
for example, the role that the strong normal form plays in reducing the number of
rewrite sequences that need to be generated in the BURS. In a rewrite sequence that
is in strong normal form, rewrite steps are not applied at positions that result from
the substitution of a variable. Without this restriction, the number of (local) rewrite
sequences can grow exponentially. This growth is caused by the rewrite rules that
contain variables.

Example 22.Consider the term +(+(a, a)), and the rewrite rules from our running
example. The number of local rewrite sequences in strong normal form that can be
applied at the root of this term is 1, and the length of this sequence is also 1. The

sequence is +(+(a, a)) ==> +(+(a, a),). We cannot apply any more rewrite steps to

the output term here because the sub-termsd(andr have become non-rewriteable.

Now consider the local rewrite sequences that are not in strong normal form (SNF).
With no restriction on where we apply rewrite steps, we can generate many rewrite
sequences. For example, we could apply 1-1), or (r;, 1-2), or (rg, 2) to the output
term above. If we continue this process, we will quickly find that a combinatorial
explosion ensues. In fact, the total number of non-SNF local rewrite sequences turns
out to be 335,481! The lengths of these rewrite sequences range between 1 and 21. In
Fig. 18 we show an example of one of the longest sequences. Notice that the rewrite
rule r1 is applied a total of 8 times in this sequence.

Note that the sequences that we referred to in the previous example have not been
trimmed In other words, and to be more specific, these are the sequenodd’(t)
that are generated by the routi@enerate()in Algorithm 15, where the non-SNF
sequences have been generated by not enforcing the restpotidRP, (7).

We chose the term #(+(a, a)) in the previous example because the number of
non-SNF rewrite sequences for our ‘running’ term #(, c)) is too large to be
easily computed. In the table below we show the number of sequences, both strong
and non-strong, for each node in the term #(@, ¢)). For completeness, we also
show the number of sequences after trimming (c.f. Example 14).

position non-trimmed | trimmed
SNF non-SNF

tl1 4 4 3
t|21 3 3 3
tl2 3 3 3
tl 21 215 6
te 101 >10° 3

Code generation based on formal BURS theory and heuristic search 633

AN N / \ Lon, S \ L) AN AN
/ \ { \ / N / \ / \
a a a a a r a r

a/ +\+ N / \ (r1,2) / \ r/+\+ (ra22) / \ (r1,2)
/ \ / \ / \ / \ / \
r r T g r a

IN s SN e N e /N a /N e
VAN NVANEAN N\

+

/ \, <r3,2>)/+\ <r7,1>)/+\ (rs,2) /+\ (rs,1) /+\ rpos g
/ \ a r r r r a a a
a a

Fig. 18. A rewrite sequence of length 21

6 Conclusions

In this work we have derived BURS theory, and used this theory to construct an
algorithm that determines all the pattern matches (in the form of input and output
sets) of a given expression tree. BURS theory is based on term rewrite systems,
which provide a more powerful formalism in the field of code generation than the
more popular regular tree grammars. Given the input and output sets,*teeafch
algorithm is used to select patterns. Instead of computing the cost of all possible
matches, the Aalgorithm uses a heuristic best-first technique that applies only those
rewrite rules that may form part of an optimal rewrite sequence. The cost criterion
that is used is based on the costs of the rewrite rules and a heuristic that estimates
the cost of rewriting a term into a goal term.

The main contributions of this work are threefold:

— We have provided a theoretical framework for BURS and presented an algorithm
for pattern matching based on this framework.

— We have coupled this pattern-matching algorithm with a search algorithm to pro-
duce a code generator that generates optimal code.

— We have introduced the novel concept of a heuristic that predicts the minimum
(future) cost of rewriting a term into a goal term.

The algorithms presented in this work have all been implemented. This has demon-
strated the correctness of the approach, and allowed experimentation with the heuristic
cost function. Note that, like the term rewrite system itself, the cost heuristic is de-
termined by the compiler writer. We should emphasise that only when the heuristic

634 A. Nymeyer, J.-P. Katoen

cost under-estimates the actual cost is optimality guaranteed. In that case the search
algorithm is said to be admissible (see Sect. 3).
There are a number of directions for future research:

— Develop term rewrite systems for real machines, and test the performance of the
prototype.

— Develop a systematic technique of constructing a heuristic cost function. Further,
determine the sufficient and necessary conditions under which a given heuristic
will not over-estimate the real cost.

— Investigate whether code optimisation and register allocation can be expressed in
terms of a term rewrite system.

— Investigate whether certain parts of the pattern-matching algorithm can be done
statically.

— Consider how to determing priori whether a term rewrite system is finite.

AcknowledgementYmte Westra and Henk Alblas were involved in the initial phase of this work. Many
thanks to the referees for their helpful suggestions.

References

1. Aho, A.V., Ganapathi, M., Tjiang, S.W.K.: Code generation using tree matching and dynamic pro-
gramming. ACM Trans. on Prog. Lang. and S$4(4), 491-516 (1989)

2. Aho, A.V., Johnson, S.C.: Optimal code generation for expression trees. J.28(3)] 488-501
(1976)

3. Aho, A.V,, Johnson, S.C., Ullman, J.D.: Code generation for machines with multiregister operations.
In Proc. of the Fourth Ann. ACM Symp. on Principles of Progr. Lang., 21-28 (1977)

4. Aho, AV., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools. Reading, MA:
Addison-Wesley (1986)

5. Balachandran, A., Dhamdhere D.M., Biswas, S.: Efficient retargetable code generation using bottom-up
tree pattern matching. Comput. Lari(3), 127-140 (1990)

6. Cai, J., Paige, R., Tarjan, R.: More efficient bottom-up multi-pattern matching in trees. Theoret.
Comput. Sci.106, 21-60 (1992)

7. Cattell, R.G.G.: Code generation in a machine-independent compiler. Proc. of the ACM SIGPLAN
1979 Symp. on Compiler Construction, ACM SIGPLAN Notice%8), 65—75 (1979)

8. Cattell, R.G.G.: Automatic derivation of code generators from machine descriptions. ACM Trans. on
Prog. Lang. and Sy(2), 173-190 (1980)

9. Cattell, R.G.G.: Formalization and Automatic Derivation of Code Generators. UMI Research Press,
Ann Arbor, Michigan (1982)

10. Chase, D.R.: An improvement to bottom-up tree pattern matching. In Proc. of the Fourteenth Ann.
ACM Symp. on Principles of Progr. Lang., 168-177 (1987)

11. Christopher, T.W., Hatcher, P.J., Kukuk, R.C.: Using dynamic programming to generate optimised
code in a Graham-Glanville style code generator. Proc. of the ACM SIGPLAN 1984 Symp. on
Compiler Construction, ACM SIGPLAN NoticeE)(6), 25—-36 (1984)

12. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. Handbook of Theoretical Computer Science (Vol.
B: Formal Models and Semantics), Leeuwen, J. van (ed), 245-320. Amsterdam: Elsevier (1990)

13. Emmelmann, H.: Code selection by regularly controlled term rewriting. Code generation — concepts,
tools, techniques, Giegerich, R., Graham, S.L. (eds), (Workshops in Computing Series, 3—29) Berlin,
Heidelberg, New York: Springer 1991

14. Emmelmann, H., Scber, F.W., Landwehr, R.: BEG — a generator for efficient back ends. ACM
SIGPLAN Notices24(7), 246-257 (1989)

15. Ferdinand, C., Seidl, H., Wilhelm, R.: Tree automata for code selection. Acta Inforn3i{i®p
741-760 (1994)

16. Fraser, C.W., Hanson, D.R., Proebsting, T.A.: Engineering a simple, efficient code-generator generator.
ACM Letters on Progr. Lang. and Sy§3), 213-226 (1992)

Code generation based on formal BURS theory and heuristic search 635

17. Fraser, C.W., Henry, R.R., Proebsting, T.A.: BURG - fast optimal instruction selection and tree
parsing. ACM SIGPLAN Notice®7(4), 68-76 (1992)

18. Giegerich, R.: Code selection by inversion of order-sorted derivors. Theoret. Compu8, 37211
(1990)

19. Giegerich, R., Schmal, K.: Code selection techniques: pattern matching, tree parsing, and inversion
of derivors. Proc. 2nd European Symp. on Programming, Ganzinger, H. (ed) (Lect. Notes in Comput.
Sci. vol. 300, 247-268). Berlin, Heidelberg, New York: Springer 1988

20. Glanville, R.S.: A machine independent algorithm for code generation and its use in retargetable
compilers. Ph.D. thesis, University of California, Berkeley (1977)

21. Gough, K.J.: Bottom-up tree rewriting tool MBURG. ACM Sigplan Notigdfl), 28—31 (1996)

22. Glanville, R.S., Graham, S.L.: A new method for compiler code generation. Proc. of the Fifth Ann.
ACM Symp. on Principles of Progr. Lang., 231-240 (1978)

23. Hatcher, P.J., Christopher, T.W.: High-quality code generation via bottom-up tree pattern matching.
Proc. of the Thirteenth Ann. ACM Symp. on Principles of Progr. Lang., 119-130 (1986)

24. Hemerik, C., Katoen, J.P.: Bottom-up tree acceptors. Sci. of Comput. R&d1-72 (1990)

25. Henry, R.R.: The CODEGEN user’'s manual. Technical report 87-08-04, Computer Science Depart-
ment, University of Washington (1988)

26. Henry, R.R.: Encoding optimal pattern selection in a table-driven bottom-up tree-pattern matcher.
Technical Report 89-02-04, Computer Science Department, University of Washington (1989)

27. Henry, R.R, Damron, P.C.: Algorithms for table-driven generators using tree-pattern matching. Tech-
nical Report 89-02-03, Computer Science Department, University of Washington (1989)

28. Henry, R.R, Damron, P.C.: Performance of table-driven code generators using tree-pattern matching.
Technical Report 89-02-02, Computer Science Department, University of Washington (1989)

29. Hoffmann, C.M., O'Donnell, M.J.: Pattern matching in trees. J. AZ¥IL), 68-95 (1982)

30. Kanal, L., Kumar, V., (eds): Search in Artificial Intelligence. Berlin, Heidelberg, New York: Springer
(1988)

31. Kron, H.: Tree templates and subtree transformational grammars. Ph.D. thesis, Information Sciences
Department, University of California at Santa Cruz (1975)

32. Kurtz, S: Narrowing and Basic Forward Closures. Technical Report 5, TechnischeaEalniversiét
Bielefeld (1992)

33. Nijmeijer, A: Review of the Graham-Glanville code-generation scheme. Technical Report 88-61,
Department of Computer Science, University of Twente (1988)

34. Nilsson, N.: Principles of Artificial Intelligence. Palo Alto: Morgan Kaufmann (1980)

35. PelegrLlopart, E.: Rewrite systems, pattern matching, and code generation. Ph.D. thesis, University
of California, Berkeley (1987) (also as Technical Report CSD-88-423)

36. PelegrLlopart, E., Graham, S.L.: Optimal code generation for expression trees: An application of
BURS theory. Proc. of the Fifteenth Ann. ACM Symp. on Principles of Progr. Lang., 294—-308 (1988)

37. Proebsting, T.A.: BURS automata generation. ACM Trans. on Prog. Lang. an8(5y)s.461-486
(1995)

38. Proebsting, T.A., Whaley, B.R.: One-pass, optimal tree parsing — with or without trees. Compiler
construction, Gyirathy, T. (ed) (Lect. Notes in Comput. Sci. vol. 1060, 294-308) Berlin, Heidelberg,
New York: Springer 1996

39. Weisgerber, B., Wilhelm, R.: Two tree pattern matchers for code selection. Compiler compilers and
high speed compilation, Hammer, D. (ed) (Lect. Notes in Comput. Sci. vol. 371, 215-229) Berlin,
Heidelberg, New York: Springer 1989

40. Wulf, W.A,, Leverett, B.W., Cattell, R.G.G., Hobbs, S.O., Newcomer, J.M., Reiner, A.H., Schatz,
B.R.: An overview of the production-quality compiler compiler project. IEEE Compl®), 38—49
(1980)

Note added in proofln the functionGenerateshown in Fig. 15, the decoratiai; &
...® D, is obtained by decorating the rootwith an empty rewrite sequence (i.e.,
Lp(tle) =€), and Lp(t |np) = Lp,(t|,) elsewhere. Furthermord) & (r,p) is
obtained by appending-, p) to the local rewrite sequence at the root (ikp(t|.)).
The remaining local rewrite sequencesiinare unaffected.

The functionChecknfeliminates triples (fron¥) that contain decorations that are
not in normal form (these decorations have a higher precedence). The strong-normal-
form property is imposed by considering positigns RP;(Sp) only.

