
Acta Informatica 34, 597–635 (1997)

c© Springer-Verlag 1997

Code generation based on formal BURS theory
and heuristic search

A. Nymeyer, J.-P. Katoen

University of Twente, Department of Computer Science, P.O. Box 217, 7500 AE Enschede, The Netherlands

Received 20 November 1995 / 26 June 1996

Abstract. BURS theory provides a powerful mechanism to efficiently generate pat-
tern matches in a given expression tree. BURS, which stands forbottom-up rewrite
system, is based on term rewrite systems, to which costs are added. We formalise the
underlying theory, and derive an algorithm that computes all pattern matches. This
algorithm terminates if the term rewrite system isfinite. We couple this algorithm with
the well-known search algorithm A∗ that carries out pattern selection. The search al-
gorithm is directed by a cost heuristic that estimates the minimum cost of code that
has yet to be generated. The advantage of using a search algorithm is that we need to
compute only those costs that may be part of an optimal rewrite sequence (and not
the costs of all possible rewrite sequences as in dynamic programming). A system
that implements the algorithms presented in this work has been built.

1 Introduction

Compiler building is a time-consuming and error-prone activity. Building the front-
end (i.e. scanner, parser and intermediate-code generator) is relatively straightforward
– the theory is well established, and there is ample tool support. The main problem
lies with the back-end, namely the code generator and optimiser – there is little theory
and even less tool support. Generating a code generator from an abstract specification,
also called automatic code generation, in an efficient way is a very difficult problem.

Pattern matching and selection is a general class of code-generation technique that
has been studied in many forms. The most successful form uses a code generator that
works predominantly bottom-up; a so-calledbottom-up pattern matcher(BUPM). A
variation of this technique is based on term rewrite systems. This technique, popu-
larised under the name BURS, and developed by Pelegri-Llopart and Graham [36],
has arguably been considered the state of the art in automatic code generation. BURS,
which stands forbottom-up rewrite system, has an underlying theory. However, to this
day, BURS theory is poorly understood. Evidence of this statement are:

Correspondence to: A. Nymeyer (e-mail: nymeyer@cs.utwente.nl)

598 A. Nymeyer, J.-P. Katoen

– There has been no further development of BURS theory since its initial publi-
cation [35]. Research in so-called BURS theory has been mainly concerned with
improved table-compression methods.

– Researchers who claim to use BURS theory (e.g. [17, 37]) generally use ‘weaker’
tree grammars instead of term rewrite systems.

– Researchers often equate a BURS with a system that does a static cost analysis
(e.g. [16]).

We argue that a static cost analysis is neither necessary nor sufficient to qualify as
BURS, and that a system that is based on tree grammars cannot be BURS.

In this work we present a lucid but concise and formal derivation of BURS theory
that is based on the (semi-formal) work of Pelegri-Llopart and Graham. However, we
differ in that we do not use the instruction costs to make optimal choices statically.
Instead we use a heuristic search algorithm that only needs to dynamically compute
costs for those patterns that may contribute to optimal code. A result of this dynamic
approach is that we do not require involved table-compression techniques. Note that
we do not address register allocation in this work; we are only interested in pattern
matching and selection, and optimal code generation.

We begin in the following section with a literature survey. This survey traces the
development of BUPMs and BURSs, and places our research in context. In Sect. 3
we describe the heuristic search algorithm A∗ that is used to select optimal code.
The algorithm A∗ is all-purpose – it can be used to solve all kinds of ‘shortest-path’
problems. In our case the search graph consists of all the possible reductions of an
expression tree, and we wish to find the least expensive.

In Sect. 4 we define aterm rewrite system, and derive an algorithm that generates
the input and output sets of an expression tree. These sets contain the patterns that
match the expression tree. To select the ‘optimal’ patterns, we use the search algorithm
A∗. This algorithm uses asuccessor function(algorithm) to select patterns and apply
rewrite rules. The successor function, which is presented in Sect. 5, provides the
search algorithm with a set of possibly-optimal selections. In this sense, the successor
function couples A∗ and BURS. In the implementation, the algorithm that generates
input and output sets, and the successor function, are modules that can be simply
‘plugged’ into A∗ to produce a code generator. The implementation is also briefly
described in Sect. 5. Finally, in Sect. 6, we present our conclusions.

2 Literature survey

In 1977 R. Glanville submitted a thesis [20] that provided a major impetus to the
field of automatic code generation. Under the supervision of Susan Graham [22],
he developed a technique that in the decade that followed was the subject of much
scrutiny and refinement. Major players in this period include Henry, Ganapathi and
Fischer (see [33] for a review). In the Graham-Glanville technique, as it has become
known, the intermediate representation generated by the front-end of the compiler is
specified by a context-free string grammar, and an LR-parser generator is used as a
code-generator generator. Target-machine instructions are generated as a side effect
of parsing the input expression. Unfortunately, while the technique is conceptually
elegant, it proved unworkable in a production environment. The non-ambiguous LR
formalism is inappropriate and too restrictive to specify the inherently ambiguous
mapping from an intermediate representation to target code. As the popularity of

Code generation based on formal BURS theory and heuristic search 599

the Graham-Glanville technique waned in the mid-1980s, interest turned to another
technique, calledbottom-up pattern matching.

2.1 Bottom-up pattern matchers

In this technique, we represent the input expression and target-machine instructions
as trees, where the instruction trees are referred to as patterns. Corresponding to
each pattern is a result (leaf or node), a target-machine instruction and a cost. If
a pattern matches a subtree of the input tree, then we can replace the subtree by
its result node. During code generation, we traverse the input tree bottom-up and
find all pattern matches. In a subsequent top-down traversal, we choose the least-
expensive series of pattern matches that reduce the input tree into a single node.
In a final bottom-up traversal, we generate the instructions that correspond to the
selected patterns. The code-generator generator in this technique reads the patterns,
instructions and costs, and generates a code generator that consists of a combined
pattern matcher and instruction generator. This is referred to as thestatic phase. In
the dynamicphase, the code generator reads the input expression tree and generates
target-machine instructions. What makes the problem hard is that there can be very
many ways of reducing the input tree. Further, the cost analysis that is necessary to
determine the least-expensive reduction can be very time consuming.

Early work on this technique was done by Kron [31], and by Hoffmann and
O’Donnell [29]. The latter in particular have provided the basic theory for early
implementations of BUPMs. Chase [10], for example, implemented a BUPM using
the theory developed by Hoffmann and O’Donnell. Chase specified the patterns using
a regular tree grammar(RTG). A RTG is a context-free grammar with prefix notation
on the right-hand sides of the productions representing trees. Chase found that the
tables generated by the pattern matcher were enormous, requiring extensive use of
compression techniques. Like Hoffmann and O’Donnell, Chase did not consider the
problem of selecting patterns, hence he had no need for costs. A formal, concise and
lucid description of Chase’s table-compression technique can be found in Hemerik
and Katoen [24], who formally developed naive and optimised bottom-up pattern-
matching algorithms. An asymptotic improvement in both space and time to Chase’s
algorithm is given by Cai et al. [6].

Hatcher and Christopher [23] went further than Chase and built a complete BUPM
for a VAX-11. Their work was a milestone in that they carried outstaticcost analysis,
which is a cost analysis carried out at code-generator generation time. In adynamic
cost analysis, the code generator itself performs the cost analysis. This is a space-
time trade-off. Static cost-analysis makes the code-generator generator more complex
and requires a lot of space for tables. In effect, pattern selection is encoded into the
tables. The resulting code generator, however, is simple and fast. This means that
compilation is faster. We refer to a BUPM that does static (dynamic) cost analysis
as a static (dynamic) BUPM. The approach of Hatcher and Christopher does not
guarantee that the (statically) selected code will always be optimal. In those cases
where this occurs, however, the compiler builder is warned.

In both the static and dynamic BUPMs, the cost analysis is usually carried out
usingdynamic programming. Dynamic programming has had a long association with
the field of code generation. Early theoretical work by Aho and Johnson [2, 3] for
example, considered globally optimal code generation for idealised register machines

600 A. Nymeyer, J.-P. Katoen

and a restricted class of input expression trees. This work used the dynamic pro-
gramming algorithm [4] to generate provably optimal code. A top-down dynamic
programming algorithm was used by Aho, Ganapathi and Tjiang [1] to build a code-
generator generator calledtwig, and by Christopher et al. [11], and Weisgerber and
Wilhelm [39]. The advantages of this top-down technique is that it is intuitive and
that it has theoretical roots. Its disadvantage is that, because dynamic programming is
done during code generation, the code generator can be slow. More recently, Fraser
et al. [16] have reported thattwig has problems processing large grammars.

In a tour de force, Henry and Damron [28, 27] compared the static and dynamic
performance of the bottom-up and top-down methods, and also the Graham-Glanville
and two brute-force methods, using a system called CODEGEN [25]. They found
that the code generators for both the static and dynamic BUPM produce (locally)
optimal code. The static BUPM had the slowest and most complex code-generator
generator, but the code generator carried out pattern matching 3 times faster than
its dynamic counterpart. Henry and Damron [28] remark, however, that at the time
of their research, bottom-up technology was still “immature.” In [26], Henry found
similar differences in performance between static and dynamic BUPMs.

In 1990, Balachandran et al. [5] used a RTG and techniques based on the work
of Chase, Hatcher and Christopher to build a static BUPM. Unlike the system of
Hatcher and Christopher, however, no user intervention was needed to achieve optimal
code. Very recently, Ferdinand et al. [15] reformulated the (static) bottom-up pattern-
matching algorithms (based on RTGs) in terms of finite tree automata. This theoretical
work was based on the work of Kron [31]. To determine the patterns that match
an input tree, they use a subset-construction algorithm. This algorithm, which is
developed in a step-wise fashion, does a static cost analysis, and generalises the
table-compression technique of Chase.

There have been a number of notable attempts to improve the efficiency of the
dynamic (BUPM) code generator, namely Emmelmann et al. [14] who developed
the BEG system, Fraser et al. [16] who developed the IBURG system, and very
recently Gough [21] who developed the MBURG system. All used a hard-coded
dynamic cost analysis. Emmelmann et al. found that their dynamic code generator
outperformed the standard SUN-workstation (Modula-2) code generator by almost an
order of magnitude, and generated code of comparable quality. Fraser et al. compared
their dynamic code generator with a code generator from the BURG system (described
below). The BURG-system code generator does not perform a cost analysis. They
found that their dynamic code generator was something like an order of magnitude
slower. However, the code generator’s slowness was compensated by the fact that
IBURG was simpler and more intuitive in structure. In fact, it was found to be
useful as a ‘test tool’ in developing the more complex, static BURG system. Gough’s
MBURG system is a variant of IBURG, and more developed.

2.2 Bottom-up rewrite systems

A decade to the month after Glanville submitted his thesis, E. Pelegri-Llopart, who
was also a student of Susan Graham, submitted a thesis [35] that attracted much
attention. In his thesis, Pelegri-Llopart developed a code-generation system using a
semi-formal approach referred to as BURS theory [36]. Pelegri-Llopart combined the
static cost analysis concept from Hatcher and Christopher, the pattern-matching and
table-compression techniques from Chase, and, most importantly, term rewrite systems

Code generation based on formal BURS theory and heuristic search 601

rather than tree grammars to develop a BURS. A BURS is, in fact, a generalisation
of a BUPM, and is more powerful. The term rewrite system in a BURS consists of
rewrite rules that define transformations betweenterms. A term, which is represented
by a tree, consists of operators and operands (which are analogous to nonterminals
and terminals in context-free grammars). However,variablesthat can match any tree
are also allowed. The advantage of using a term rewrite system is that, as well as the
usual rewrite rules that reduce the expression tree, we can use rules that transform
the expression tree. Algebraic properties of terms can therefore be incorporated into
the code-generation process. The BURS ‘theory’ that Pelegri-Llopart and Graham
developed is quite complex, however.

Pelegri-Llopart and Graham [36] compared the performance of a BURS with
other techniques as part of an early (1987) implementation of Henry and Damron’s
CODEGEN system (see above). They found that the tables were smaller and the code
generator much faster. Henry [26] also compared a BURS with a static BUPM using
the CODEGEN system. He found that the static BUPM code-generator generator was
21

2 times faster but used a surprising 4 times as much space.
In 1991 Emmelmann [13] used a term rewrite system to specify a mapping from

intermediate to target code, and a tree grammar to specify the target terms and their
costs. This idea of using different formalisms to specify the target code, and the
mapping from intermediate to target code originates from Giegerich [19, 18], who has
carried out extensive, mainly theoretical research into this approach. Emmelmann’s
ambitious work pursued this approach further, and resulted in a large complex system
that is unlikely ever to be completely implementable. It demonstrates that power of
specification must be weighed up against practicality.

The difficulty researchers had with BURS theory is reflected in the work of Bal-
achandran et al., described above, who conceded that term rewrite systems are more
powerful, but argued that RTGs are simpler, and more easily understood and imple-
mented than term rewrite systems, and that better table-compression techniques could
be applied.

In 1992, Fraser, Henry and Proebsting [17] presented a new implementation of so-
called ‘BURS technology’. Their system, called BURG, accepts a tree grammar (and
not a term rewrite system) and generates a ‘BURS’. The algorithm for generating the
‘BURS’ tables is described by Proebsting in [37]. Proebsting compares this algorithm
with a table-generation algorithm from Henry [26], described above, and reports an
impressive performance gain (an order of magnitude). It is not clear, however, what
the relationship is between the table-generation algorithms in BURG and Pelegri-
Llopart’s BURS, given that they are based on different formalisms.

2.3 Heuristic search techniques

The PQCC (Production-Quality Compiler Compiler) Project [40] was an early and
ambitious project that aimed at automating the process of generating high-performance
compilers. This work paid particular attention to the problem ofphase ordering.
(The phase-ordering problem relates to the inter-dependence and order of the various
code-generation activities like storage allocation, common-subexpression elimination,
instruction selection and scheduling, (peephole) optimisation and register allocation.)
Together with the Graham-Glanville and pattern-matching techniques, it was also
one of the first works that separated the target-machine description from the code-
generation algorithm.

602 A. Nymeyer, J.-P. Katoen

The construction of the code generator and the code-generator generator in PQCC
are reported by Cattell in [7, 8, 9]. There are 2 aspects of Cattell’s work that are
relevant to our work.

– Cattell uses a means-ends analysis to determine an optimal code match. This
involves selecting a set of instruction templates that aresemantically closeto a
given pattern in the input expression tree. For each of these templates, rewrite rules
(Cattell calls themaxioms) are used to transform the template recursively into the
pattern. The least-expensive template is chosen from those that are successful.
The heuristicsemantic closenessmeans that either the root operators match, or
that there is an axiom that rewrites the root operator of the template into the root
operator of the pattern.
Note that the search procedure is not bounded – both the depth of the recursion
and the number of semantically-close templates need to be restricted.

– For performance reasons, the ‘major part’ of the search procedure is carried out
statically on a set of heuristically generated pattern trees that the code generator is
likely to encounter. All the templates generated by the code-generator generator,
together with the associated instruction sequences, are stored in a table for use by
the code generator.
The (‘minor’) part of the search procedure carried out by the code generator
involves only 1 rule, called ‘fetch decomposition’ by Cattell. This rule basically
allocates temporary storage (or registers) to those operands that are not matched.

2.4 Summing up

Much recent research in automatic code generation has been aimed at improving the
performance of the code generator by doing a static cost analysis. This research is
often carried out under the name BURS, in spite of the fact that an underlying tree-
grammar formalism is used. Term rewrite systems, and the ‘theory’ developed by
Pelegri-Llopart, has received scant attention in the literature. Furthermore, researchers
have encountered the following problems with a static cost analysis:

1. A static cost analysis requires extensive table-compression techniques.
2. The resulting code-generator generator is complex.
3. Costs cannot depend on run-time (dynamic) parameters.
4. The cost analysis can fail (due tocost divergence, see for example [17]).

However, the overriding benefit of doing a static cost analysis is that it results in a
simpler and faster code generator. To the authors’ knowledge, the only application
of search techniques to code generation to date has been the work of Cattell in the
PQCC project. Cattell’s technique, however, is related to dynamic programming, and
his use of heuristics is different.

3 Heuristic-search methods

Search techniques are used extensively in artificial intelligence [34, 30] where data is
dynamically generated. In a search technique, we represent a given state in a system
by a node. The system begins in an initial state. Under some action, the state can
change – this is represented by an edge. Associated with an action (or edge) is a cost.

Code generation based on formal BURS theory and heuristic search 603

By carrying out a sequence of actions, the system will eventually reach a certain goal
state. The aim of the search technique is to find the least-cost series of actions from
the initial state to one of the goal states. In most problems of practical interest, the
number of states in the system is very large. The representation of the system in terms
of nodes, edges and costs is called the search graph.

Definition 1 (Search graphs).A search graph G is defined by a quadruple
(N,E, n0, Ng) with:

– N , a set of nodes
– E ⊆ N × N , a set of directed edges each labelled with a costC(n,m) ∈ IR,

(n,m) ∈ E
– n0 ∈ N , an initial node
– Ng ⊆ N , a set of goal nodes

such that the following conditions are satisfied:

– G is connected
– Ng /= ∅
– ∀(n,m) ∈ E : n 6∈ Ng

Note that IR denotes the set of real numbers.
Traditionally, the search graph is drawn ‘top-down’, i.e., with the initial noden0

at the top and the set of goal nodesNg at the bottom. We adopt this convention. All
edges in an acyclic search graph can therefore be assumed to point ‘down’. Given a
search graph, the aim is to find the least-cost path fromn0 to a node inNg.

A brute-force technique that acts as a basis for finding such a least-cost path is
called breadth-first search. Actually, this technique determines a shortest path from
n0 to a node inNg. In this technique, we initialise a set of nodes to{n0}. At each
step we compute thesuccessor nodesof all the nodes in the set. The successor nodes
of a given node are those nodes that can be reached with a path of length one from
the node. The algorithm terminates when we find a successor node that is a goal node.
This algorithm computes all the nodes in the search graph at a certain depth, before
proceeding further. At some point we will reach a depth that contains a goal node.

We can use the breadth-first search technique to determine theleast-costpath by
computing the successor nodes of only the ‘cheapest’ node in our set at each step.
We determine the cheapest node by determining the costs of the paths fromn0 to
each node in our set. The successors of the chosen node are then added to our set.
This technique is calledbest-first search. We can improve this technique even more
if we include theestimatedcost to the goal in the cost of a node. This estimated cost
is obtained by using heuristic domain knowledge that is available during traversal of
the search graph. By using this heuristic knowledge, we can avoid searching some
unnecessary parts of the search graph. Careful choice of the heuristic can therefore
reduce the number of paths that the search technique tries in an attempt to find a goal
node.

The best known search technique that uses this technique is the A∗ algorithm. The
letter ‘A’ here stands for ‘additive’ (an additive cost function is used), and the asterisk
signifies that a heuristic is used in the algorithm. The algorithm uses the following
two cost functions to direct the search:

– g(n), which is the minimum cost of reaching the noden from the initial noden0,
and

604 A. Nymeyer, J.-P. Katoen

– h∗(n), which is theestimatedminimum cost of reaching a goal node from node
n.

Associated with each noden is a costf∗(n) = g(n) + h∗(n). The actual cost of
reaching a goal node fromn is calledh(n). The relationship betweenh∗(n) andh(n)
is important. We consider the following cases:

1. h∗(n) = 0 If we do not use a heuristic, then the search will only be directed by
the costs on the edges. This is called abest-firstsearch.

2. 0< h∗(n) < h(n) If we always underestimate the actual cost, then the algorithm
will always find a minimal path (if there is one). A search algorithm with this
property is said to beadmissible.

3. h∗(n) = h(n) If the actual and estimated costs are the same, then the algorithm
will always choose correctly. As we do not need to choose between nodes, no
search is necessary.

4. h∗(n) > h(n) If the heuristic can overestimate the actual cost to a goal node,
then the A∗ algorithm may settle on a path that is not minimal.

Example 1.In this example we show what can happen when a heuristic that overesti-
mates the actual cost is used. Consider the search graph in Fig. 1. At nodeB the value
of the heuristic is 3. This overestimates the actual cost to a goal node (C), which is
1. At nodesD andE the values of the heuristic happen to be correct. Starting at the
initial nodeA, if we always choose the node with the lowest value off∗(n), then,
sincef∗(D) < f∗(B) andf∗(E) < f∗(B), we will determine that the minimum path
is, incorrectly,ADEF .

Fig. 1. A search graph including the value of some heuristic at each node

Note, however, that in some applications (code generation, for example) it may
not be important that we find a path that is not (quite) minimal. It may be the case, for
example, that a heuristic that occasionally overestimates the actual cost has superior
performance than a heuristic that always plays safe. Furthermore, a heuristic that
occasionally overestimates may only generate a non-minimum path in a very small
number of cases.

The A∗ algorithm is shown in Fig. 2. The algorithm computes the minimum path
from the initial node to a goal node. In this algorithm, we maintain two sets of nodes;
open nodesNo ⊆ N and closed nodesNc ⊆ N . The algorithm begins by initialising
No to {n0}, andNc to ∅. Further, the path and cost of the initial noden0 are initialised.
We execute the main loop as long as we have not found a goal node. In the main
loop, we use the cost functionf∗(n) = g(n) + h∗(n) to computeNs, which is the
set of nodes inNo with smallest cost. If this set contains a goal node, then we are

Code generation based on formal BURS theory and heuristic search 605

|[con G = (N,E, n0, Ng): SearchGraph;

func A star : N∗

|[var No, Nc, Ns : P (N);
n,m : N ;
g, h∗ : N → IR;
C : N2 → IR;
Path : N → N∗;
Successor: N → P (N);

proc Propagate(p : N, q : N)
|[var r : N ;

if g(p) + C(p, q) ≥ g(q) −→ skip
[] g(p) + C(p, q) < g(q) −→|[Path(q) := Path(p) ⊕ q;

g(q) := g(p) + C(p, q);
for all r ∈ Successor(q) ∩ (No ∪ Nc)
do if Path(r) /= Path(q) ⊕ r −→ skip

[] Path(r) = Path(q) ⊕ r −→ Propagate(q, r)
fi

od
]|

fi
]|;

Nc := ∅;
No := {n0 };
Path(n0) := n0;
g(n0) := 0.0;
Ns := No;
do (Ns ∩ Ng = ∅) −→

|[choosen ∈ Ns;
No := No − {n };
Nc := Nc ∪ {n };
for all m ∈ Successor(n)
do if m 6∈ No ∪ Nc −→|[No := No ∪ {m };

Path(m) := Path(n) ⊕m;
g(m) := g(n) + C(n,m)

]|
[] m ∈ No ∪ Nc −→ Propagate(n,m)

fi
od;
Ns := {n ∈ No | ∀m ∈ No : g(n) + h∗(n) ≤ g(m) + h∗(m) }

]|
od;
choosen ∈ (Ns ∩ Ng);
return Path(n)

]|
]|.

Fig. 2. The A∗ algorithm

606 A. Nymeyer, J.-P. Katoen

finished, and we return the path of this node. Otherwise we choose a node out ofNs,
remove it fromNo, add it toNc, and compute its successors. If a successor,m say,
is neither inNo nor Nc, then we addm to No, and compute its path and cost. If we
have visitedm before, and the ‘new’ cost ofm is less than the cost on the previous
visit, then we will need to ‘propagate’ the new cost. This involves visiting all nodes
on paths emanating fromm and recomputing the cost (this is done by a recursive call
to Propagate).

The algorithm uses the functionsSuccessorandPath. These functions are defined
below.

Definition 2 (Successor nodes).Given a search graphG = (N,E, n0, Ng), we define
the set of successor nodes Successor(n) ∈ P (N) of a noden ∈ N as

Successor(n) = {m ∈ N | (n,m) ∈ E}

Note that ifn ∈ Ng then Successor(n) = ∅.

Definition 3 (Paths). Given a search graphG = (N,E, n0, Ng), we define a path
Path(n) ∈ N∗ to a noden ∈ N as a string of nodes in the following way:

Path(n) = n0n1 . . . nk

such that∀1 ≤ i ≤ k : ni ∈ Successor(ni−1) ∧ nk = n, k ≥ 0.

Note that there may be more than one path that leads to a node. Furthermore, if
Path(n) = n0n1 . . . nk andm ∈ Successor(n) then we can append the nodem to the
pathPath(n) using the append operator⊕. We write

Path(m) = Path(n) ⊕m
= n0n1 . . . nkm

Example 2.To demonstrate the A∗ algorithm, and the effect of the heuristic, we have
considered the 8-puzzle. The 8-puzzle is a game consisting of a 3×3 board, and 8
tiles numbered 1 to 8. Initially the tiles are placed in some (presumably arbitrary)
configuration on the board. The aim is to re-arrange the tiles until some final con-
figuration is reached, making as few moves as possible. The only room we have to
move a tile is the vacant square on the board. The initial and goal configurations that
we use are shown below (on the left and right respectively).

16
7 2 5
3 84 76

4
3

5

21
8

Notice that tile 1 is already in its correct square. To reach the goal configuration,
we could first move tile 6 to the vacant square, and then move tile 2 to the square
just vacated by tile 6. We would then have tile 2 in its correct position. Continuing
on in this way with the other tiles we would eventually reach the goal configuration.
Note that at each step, we will have to choose between at least two tiles to move to
the vacant square.

For simplicity, we let the cost of moving a tile be 1, so the cost of a configuration
is the number of moves required to reach the configuration. Note that tiles are not
moved to the (vacant) square from which they came from in the previous move. Such
a move would be redundant. A node in the search graph represents a configuration,

Code generation based on formal BURS theory and heuristic search 607

and an edge represents the action of moving a tile to the vacant square on the board.
We apply the A∗ algorithm and the following two heuristics:

1. h0(n) = 0. This corresponds to a best-first search, and because the costs of all
edges are all equal to 1, it also corresponds to a breadth-first search.

2. h1(n) =
∑8

i=1 | pix − gix | + | piy − giy |, wherepix is the x-coordinate of tilei in
the present configuration (similarlypiy), andgix is the x-coordinate of tilei in the
goal configuration (similarlygiy). This heuristic, called the Manhattan distance,
computes the number of moves that each of the eight tiles needs to make to reach
its goal square, assuming no other tiles stand in the way. It usually underestimates
the actual number of moves that will be required.

Fig. 3. Part of the search graph for the 8-puzzle

Part of the resulting breadth-first (i.e. corresponding to heuristich0(n)) search
graph for the 8-puzzle is depicted in Fig. 3. The initial configuration is shown as the
root, and we show all configurations up to three moves. We can read in this figure
the number of nodes at depths 1, 2 and 3, namely 2, 4 and 8 (resp.). Ultimately, 22
moves are needed before the goal configuration is found (the goal is configuration
number 8271 at depth 22). The total number of nodes at each depth (≤ 22) is shown
in Table 1 (columnh0). In total, the breadth-first search generated 103309 (open)
nodes.

The performance with the heuristich1(n) was a very different story. If we compare
the two columns in Table 1 we see that at first there is little difference between the
number of nodes at each depth. By depth 6, however, the ratio is approximately 2
to 1. From depth 10, the heuristic begins to home in on the goal node. This is most
dramatic at depth 19, at which time it ‘knows’ the path to the goal. In total, this
heuristic generated 655 (open) nodes. Bothh0 and h1 generated the same path, by
the way.

Other heuristics were also tried. The coarser (i.e. less accurate) a heuristic is,
the more nodes that are generated, and the longer it takes to find the goal. Even a
very coarse heuristic, however, is an improvement on the breadth-first search in this
application. Heuristics that occasionally overestimate the actual cost were also tried.

608 A. Nymeyer, J.-P. Katoen

Table 1. The number of closed nodes in the search graph for the 2 heuristics in the 8-puzzle

Depth h0 h1

1 2 2
2 4 3
3 8 7
4 16 13
5 20 12
6 39 19
7 62 25
8 116 40
9 152 34

10 286 44
11 396 41

Depth h0 h1

12 748 39
13 1024 29
14 1893 26
15 2512 23
16 4485 18
17 5638 11
18 9529 4
19 10878 1
20 16993 1
21 17110 1
22 8271 1

These also performed well, and interestingly, these generated different paths (but with
the same cost, 22) fromh0, h1 and other heuristics that underestimated the cost.

Code generation considered as template or pattern matching also lends itself to
the A∗ technique. The transformations in code generation are specified by rewrite
rules. Each rule consists of a match pattern, result pattern, cost and an associated
machine instruction. A noden is an expression tree. The initial node consists of
a given expression tree. From a given node, we can compute successor nodes by
transforming sub-trees that are matched by match patterns. If a match occurs, we
rewrite the matched sub-tree by the corresponding result pattern. The aim is to rewrite
the expression tree (node) into a goal using the least-expensive sequence of rules. The
associated sequence of machine instructions forms the code that corresponds to the
expression tree. In the following example we illustrate this process.

Example 3.Consider the following set of rewrite rules, with corresponding costs and
machine instructions.

rule cost machine instruction

(r1) c −→ r 1 load #c, r
(r2) m(ri) −→ rj 4 load (ri), rj

(r3) m(+(c, ri)) −→ rj 7 load #c(ri), rj

(r4) ri −→ m(rj) 4 store ri, (rj)
(r5) + (ri, rj) −→ rj 2 add ri, rj

(r6) + (c, r) −→ r 3 add #c, r
(r7) + (c,m(r)) −→ m(r) 9 add #c, (r)
(r8) + (x, y) −→ +(y, x) 0

The machine instructions consist of 3 load instructions, a store instruction and
3 add instructions. The addressing modes are register, immediate, register deferred
and index. The letterc stands for constant,m for memory access, andr for register.
The memory access takes one argument, and addition takes two arguments. The last
rule, which expresses commutativity, contains thevariablesx andy. A variable may
be substituted by any pattern representing an expression tree. Note that the match
and result patterns are written in prefix notation, and that we differentiate between
different instances of the same symbol in a rule by using the subscriptsi andj. (We
only do this in this example – in the rest of this paper we omit the subscripts.)

Code generation based on formal BURS theory and heuristic search 609

Let the initial expression tree be +(m(+(c1, c2)),+(m(r1), c3)), and the goal ber.
We can rewrite this tree using the above rules in the following way:

+(m(+(c1, c2)),+(m(r1), c3))
r1====⇒ +(m(+(c1, r2)),+(m(r1), c3))
r3====⇒ +(r3,+(m(r1), c3))
r2====⇒ +(r3,+(r4, c3))
r8====⇒ +(r3,+(c3, r4))
r6====⇒ +(r3, r4)
r5====⇒ r4

The cost of this rewrite sequence is 17. We could also have rewritten the tree in (very)
many other ways. We now apply the A∗ algorithm. The heuristic that we use is the
following:

h∗(n) = 4 ∗ |m| + 2 ∗ |+| + |c|

where|s| denotes the number of times the symbols appears in the expression tree at
n. The heuristic is derived from the costs of the instructions. Instructions that access
memory (m) are deemed to be ‘expensive’ (contributing a factor 4); an addition (+)
is also moderately expensive (a factor 2); and finally a constant (c), which uses the
immediate addressing mode, also contributes (a factor 1).

Fig. 4. The nodes in the heuristic search graph for the expression tree +(m(+(c1, c2)), +(m(r1), c3))

The steps that the A∗ algorithm takes to reduce the initial expression tree are
shown in Table 2. The steps are also indicated in Fig. 4, by shaded boxes. Each edge
in the graph is labelled by the rule that was applied. To make identification easier,
each node is labelled by a letter.

In step one of the algorithm, we initialise the setNo to {A0+17}, whereg(A) = 0
and h∗(A) = 2 ∗ 4 + 3∗ 2 + 3 = 17, andNc to ∅. We choose the nodeA, add its
successorsB1+16 andC1+16 to the setNo, and moveA to Nc. In step two, the nodes

610 A. Nymeyer, J.-P. Katoen

Table 2. The steps that the A∗ procedure takes to reduce +(m(+(c1, c2)), +(m(r1), c3)). The subscripts are
the costsg + h∗ at the nodes

Step No Nc Choose
1 A0+17 ǫ A
2 B1+16C1+16 A C
3 B1+16D5+20E4+13F8+9 AC F
4 B1+16D5+20E4+13G8+9H12+5 ACF H
5 B1+16D5+20E4+13G8+9I13+4J12+5 ACFH J
6 B1+16D5+20E4+13G8+9I13+4K15+2 ACFHJ K
7 B1+16D5+20E4+13G8+9I13+4L17+0 ACFHJK

in No have the same cost, so we must choose between them. We adopt the policy that,
when there is more than one node with the same (minimum) cost, we choose the last
computed node. In this case that isC. We add the successors ofC to No, moveC to
Nc and again choose the last, least expensive node inNo. The process continues until
step seven when we encounter the goal nodeL. The optimal pathA, C, F , H, J ,
K andL is returned by the algorithm. This path corresponds to the rewrite sequence
shown above. The code that is emitted by this sequence is the following:

load #c2,r2
load #c1(r2),r3
load (r1),r4
add #c3,r4
add r3,r4

4 BURS theory

In this section we derive the theory of a BURS. We first define some basic concepts,
and we define a costed term rewrite system. For a more elaborate treatment of (term)
rewrite systems we refer to [12].

Given a term rewrite system and an expression tree, we can define rewrite se-
quences and permutations of rewrite sequences. Typically, the total number of rewrite
sequences for a given expression tree is enormous. In Sect. 4.2 and 4.3 we show
how the number of rewrite sequences that need to be considered can be reduced. We
do this in Sect. 4.2 by defining normal-form decorations of the expression tree. In a
decoration, we label each node in the tree with a (possibly empty) rewrite sequence.
Such a rewrite sequence is called a local rewrite sequence. A decoration is in normal
form if rewrite rules are applied as low as possible in the expression tree. Rewrite
sequences that correspond to decorations that are not in normal form do not need to
be considered.

In Sect. 4.3, we define strong normal-form decorations. These decorations have
the extra property that nodes in sub-terms that match variables must be rewritten
before substitution takes place. By considering only strong normal-form decorations
we attempt to contain the explosion of possible rewrite sequences that can occur due
to the action of variables.

Finally, in Sect. 4.4, we present an algorithm that determines the strong normal-
form decorations of an expression tree. In this algorithm, we compute the input and
output sets of each node in the given expression tree. The input set of a node lists all
patterns that match the sub-term rooted at that node. The output set lists the results

Code generation based on formal BURS theory and heuristic search 611

of matching the sub-term with each of the input patterns. We also highlight in this
section the similarities and differences between the theory that we have developed
and the work of Pelegri-Llopart and Graham [36]. We refer to their work using the
abbreviation PLG.

4.1 Costed term rewrite systems

We denote the set of natural numbers by IN, the set IN\{0} by IN+, and the set of
non-negative reals by IR+.

Definition 4 (Ranked alphabet). A ranked alphabetΣ is a pair (S, r) with S a finite
set andr ∈ S → IN.

Elements ofS are calledfunction symbolsandr(a) is called therank of symbola.1

Function symbols with rank 0 are calledconstants. Σn denotes the set of function
symbols with rankn, that is,Σn = { a ∈ S | r(a) = n }.

We assumeV is an infinite universe of variable symbols, andV ⊆ V .

Definition 5 (Terms). For Σ a ranked alphabet andV a set of variable symbols, the
set of terms,TΣ(V) is the smallest set satisfying the following:

– V ⊆ TΣ(V) ∧ Σ0 ⊆ TΣ(V)
– ∀ a ∈ Σn : t1, . . . , tn ∈ TΣ(V) ⇒ a(t1, . . . , tn) ∈ TΣ(V), for n ≥ 1

For termt, Var(t) denotes the set of variables int. Termst for which Var(t) = ∅ are
calledground terms.

A sub-term of a term can be indicated by a path, represented as a string of positive
naturals separated by dots, from the outermost symbol of the term (the ‘root’) to the
root of the sub-term. ForP a set of sequences andn a natural number, letn·P denote
{n·p | p ∈ P }. The position of the root is denoted byε.

Definition 6 (Positions). The set of positions Pos∈ TΣ(V) → P (IN∗
+) of a termt is

defined as:

– Pos(t) = { ε }, if t ∈ Σ0 ∪ V
– Pos(a(t1, . . . , tn)) = { ε,1·Pos(t1), . . . , n·Pos(tn) }

A trailing ε in a position is usually omitted; for example, 2·1·ε is written as 2·1. By
definition, Pos(t) is prefix-closed for all termst. Positionq is ‘higher than’p if q is
a proper prefix ofp. The sub-term of a termt at positionp ∈ Pos(t) is denotedt|p.

Definition 7 (Costed term rewrite system).A costed term rewrite system (CTRS) is
a triple ((Σ,V), R,C) with

– Σ, a non-empty ranked alphabet
– V , a finite set of variables
– R, a non-empty, finite subset ofTΣ(V) × TΣ(V)
– C ∈ R → IR+, a cost function

such that, for all(t, t′) ∈ R, the following conditions are satisfied:

– t′ /= t

1 The termarity is sometimes used instead of rank.

612 A. Nymeyer, J.-P. Katoen

– t 6∈ V
– Var(t′)⊆Var(t)

Elements ofR are calledrewrite rules. An element (t, t′) ∈ R is usually written
as t −→ t′ where t is called the left-hand side, andt′ the right-hand side of the
rewrite rule. Elements ofR are usually uniquely identified asr1, r2, and so on. The
cost functionC assigns to each rewrite rule a non-negative cost. This cost reflects the
cost of the instruction associated with the rewrite rule and may take into account, for
instance, the number of instruction cycles, or the number of memory accesses. When
C is irrelevant it is omitted from the CTRS. A term rewrite system (TRS) is in that
case a tuple ((Σ,V), R).

The first constraint in Definition 7 says thatR should be irreflexive, and the second
constraint that the left-hand side of a rewrite rule may not consist of a single variable.
The last constraint says that no new variables may be introduced by a rewrite rule. A
CTRS is calledground if all left-hand sides of rewrite rules are ground terms.

The CTRS defined in the following example is a slightly modified version of an
example taken from PLG, and will be used as a running example throughout this
section.

Example 4.Let ((Σ,V), R,C) be a CTRS, whereΣ = (S, r), S = {+, c, a, r,0},
r(+) = 2, r(c) = r(r) = r(a) = r(0) = 0, andV = {x, y }. Herec represents a constant,
a represents an address register andr represents a general register. The set of rules
R is defined as follows:

R = { (r1) +(x, y) −→ +(y, x)
(r2) +(x,0) −→ x
(r3) +(a, a) −→ r
(r4) +(c, r) −→ a
(r5) 0 −→ c
(r6) c −→ a
(r7) a −→ r
(r8) r −→ a }

An alternative representation of the first four elements ofR is given in Fig. 5. The
cost functionC is defined as follows:C(r1) = C(r2) = C(r5) = 0, C(r3) = C(r6) = 3,
C(r7) = C(r8) = 1 andC(r4) = 5.

Fig. 5. The tree representation of some term rewrite rules

Code generation based on formal BURS theory and heuristic search 613

Some example terms are +(0,+(c, c)), a, and +(x,+(0,+(c, y))). For t =
+(x,+(0,+(c, y))) we have thatPos(t) = { ε,1,2,2 ·1,2 ·2,2 ·2 ·1,2 ·2 ·2}. Some
sub-terms oft are t|ε= t, t|1= x, andt|2·2= +(c, y).

Definition 8 (Substitution). Let σ ∈ V → TΣ(V). For t ∈ TΣ(V), t under substitu-
tion σ, denotedtσ, is defined as:

– tσ =

{

t, if t ∈ Σ0
σ(t), if t ∈ V

– a(t1, . . . , tn)σ = a(tσ1 , . . . , t
σ
n)

Rewrite rules that are identical, except for variable symbols, are considered to be the
same.

Definition 9 (Rewrite rule equivalence). Rewrite rulesr1 : t1 −→ t′1 and r2 :
t2 −→ t′2 are equivalent if and only if there is a bijectionσ ∈Var(t1)→ Var(t2)
such thattσ1 = t2 and t′σ1 = t′2.

In this work we consider rewrite rules modulo rewrite equivalence.
For our purposes it suffices to informally define the notion of a rewrite step.

Definition 10 (Rewrite step). Given the TRS((Σ,V), R), r : t −→ t′ ∈ R, t1, t2 ∈

TΣ(V) andp ∈ Pos(t1), thent1
〈r,p〉

=====⇒ t2 if and only if t2 can be obtained fromt1 by

replacing t1|p by t′σ in t1, and using the substitutionσ with tσ = t1|p. We can also
write 〈r, p〉 t1 = t2.

(PLG refer to a rewrite step as a rewrite application.) A rewrite ruler that is applied
at the root position, i.e.〈r, ε〉, is usually abbreviated tor. A sequence of rewrite steps,
called arewrite sequence, consists of rewrite steps that are applied one after another.

Definition 11 (Rewrite sequence).Let t
〈r1,p1〉...〈rn,pn〉

=================⇒ t′ if and only if there exists

t1, . . . , tn−1 such thatt
〈r1,p1〉

=======⇒ t1
〈r2,p2〉

=======⇒ . . . tn−1
〈rn,pn〉

========⇒ t′.

S(t) = 〈r1, p1〉 . . . 〈rn, pn〉 is called arewrite sequenceof t. We can also writeS(t) t =
t′.

When convenient, we denote a rewrite sequenceS(t) by τ . Further, we writet
τ

====⇒

if and only if ∃ t′ : t
τ

====⇒ t′. The empty rewrite sequence is denotedε, hencet
ε

====⇒ t

for all termst.
The cost of a rewrite sequenceτ is defined as the sum of the costs of the rewrite

rules inτ . The length ofτ is denoted| τ | and indicates the number of rewrite rules
in τ . A rewrite step is a rewrite sequence of length 1. For rewrite sequenceτ and
rewrite ruler, τ \ r denotes sequenceτ with r deleted2, and r ∈ τ denotes thatr
occurs inτ .

A rewrite sequenceτ1 is calledcyclic if it contains a proper prefixτ2 such that for
some termt, t

τ1====⇒ t′ and t
τ2====⇒ t′. In the rest of this paper we assume all rewrite

sequences to be acyclic. Ifτ = 〈r1, p1〉 . . . 〈rn, pn〉 then we define ¯τ = { r1, . . . , rn },
that is, ¯τ is the set of rewrite rules inτ . Actually, τ̄ is a multiset as the same rewrite
rule may (and often does) occur more than once in ¯τ .

2 This operation is only used whenr can be uniquely identified inτ .

614 A. Nymeyer, J.-P. Katoen

Definition 12 (Permutations). Given a termt, rewrite sequencesτ and τ ′ are per-
mutations of each other, denotedτ ∼=t τ

′, if and only if all elements in̄τ and τ̄ ′ have

the same cardinality, andt
τ

===⇒ t′ ⇐⇒ t
τ ′

===⇒ t′ for all termst′.

Example 5.Consider the CTRS shown in Example 4, and lett = +(0,+(r, c)). We

can write t
〈r1,2〉

======⇒ t′, with t′ = +(0,+(c, r)). We can also write〈r1,2〉 t = t′. The

term t′ is obtained fromt by replacingt|2 by +(y, x)σ in t, using substitutionσ with
σ(x) = r andσ(y) = c such that (x, y)σ = t|2. Two derivations starting witht′ are:

1. +(0,+(c, r))
〈r4,2〉

======⇒ +(0, a)
〈r7,2〉

======⇒ +(0, r)
〈r1,ε〉

======⇒ +(r,0)
〈r2,ε〉

======⇒ r

2. +(0,+(c, r))
〈r4,2〉

======⇒ +(0, a)
〈r1,ε〉

======⇒ +(a,0)
〈r7,1〉

======⇒ +(r,0)
〈r2,ε〉

======⇒ r

These rewrite sequences are permutations of each other and both have cost 6.

A permutation defines an equivalence relation on rewrite sequences. In the next
section we will use this fact to reduce the number of rewrite sequences that we need
to consider. Note that all permutations of a rewrite sequence have the same cost.
This is a stipulation for our approach, and a property of a BURS. If we use a cost
function that does not satisfy this property (for example, if the cost of an instruction
includes the number of registers that are free at a given moment), then the reduction, or
optimisation, that we consider in the next section will lead to legal rewrite sequences
being discarded. This property is therefore a restriction on the cost function and is
necessary to keep the number of rewrite sequences manageable.

4.2 Normal-form decorations

Given a CTRS ((Σ,V), R,C) and two ground termst, t′ ∈ TΣ , we now wish to
determine a rewrite sequenceτ such thatt

τ
====⇒ t′ with minimal cost. If we assume

that such a rewrite sequence exists, then PLG refer to this as the C-REACHABILITY
problem. In practice, term rewrite systems in code generation are rather extensive
and allow for many possible rewrite sequences to transformt into t′. Fortunately,
an optimisation is possible so that we do not need to consider all possible rewrite
sequences.

This optimisation is based on an equivalence relation on rewrite sequences. The
equivalence relation is based on the observation that rewrite sequences can be trans-
formed into permuted sequences of a certain form, callednormal form. Permuted
rewrite sequences yield the same result for termt (cf. Definition 12), and they have
identical costs, hence we only need to consider rewrite sequences in normal form.
Normal-form rewrite sequences consist of consecutive subsequences such that each
subsequence can be applied to a sub-term oft.

In Definition 11 we defined the rewrite sequenceS(t) of a term t. We now go
a step further and label, or decorate, a term with rewrite sequences. Such a rewrite
sequence is called alocal rewrite sequence, and is denoted byL(t|p), wheret|p is the
sub-term oft at positionp at which the local rewrite sequence occurs. Of course,p
may beε (denoting the root). Note that all the positions in the local rewrite sequence
L(t|p) are relative top.

Code generation based on formal BURS theory and heuristic search 615

A term in which each sub-term is labelled by a (possibly empty) local rewrite
sequence is called a decorated term, ordecoration. From now on all terms that we
consider will beground terms.

Definition 13 (Decorations). A decorationD(t) is a term in which each sub-term of
t at positionp ∈ Pos(t) is labelled with a local rewrite sequenceL(t|p).

We can usually decorate a given term in many ways. If we wish to differentiate
between the rewrite sequences in different decorations, then we use the notation
LD(t|p).

Given a decorationD(t) of a termt, the corresponding rewrite sequenceS(t) can
be obtained by a post-order traversal oft. Again, different decorations may lead to
different rewrite sequences, so we denote the rewrite sequence of a decorationD by
SD(t).

Definition 14 (The rewrite sequence corresponding to a decoration).The rewrite
sequenceSD(t) corresponding to a decorationD(t) is defined as:

SD(t) =

{

LD(t|ε), if t ∈ Σ0
(1·SD(t1) . . . n·SD(tn))LD(t|ε), if t = a(t1, . . . , tn)

Here,n ·τ for rewrite sequenceτ and (positive) natural numbern denotesτ where
each positionpi in τ is prefixed withn·.

Decorations are considered to be the same if and only if their corresponding
rewrite sequences are permutations of each other.

Definition 15 (Decoration equivalence).The decorationsD(t) andD′(t) are equiv-
alent, denoted byD(t) ≡ D′(t), if and only ifSD(t) andSD′ (t) are permutations of
each other, i.e.SD(t) ∼=t SD′ (t).

Example 6.Consider our running example again, and lett = +(0,+(c, c)). Two deco-
rationsD(t) andD′(t) of t are depicted in Fig. 6, on the left and right, respectively.
The corresponding rewrite sequences are as follows:

SD(t) = 〈r6,2·1〉〈r7,2·1〉〈r1,2〉〈r4,2〉〈r7,2〉〈r1, ε〉〈r2, ε〉

SD′ (t) = 〈r6,2·1〉〈r7,2·1〉〈r1,2〉〈r4,2〉〈r1, ε〉〈r7,1〉〈r2, ε〉

The decorationsD(t) andD′(t) are equivalent becauseSD(t) ∼=t SD′ (t).

Fig. 6. Equivalent decorationsD(t) andD′(t) of a termt

We can define an ordering relation≺ on equivalent decorations. The intuitive idea
behind this ordering is thatD(t) ≺ D′(t) for equivalent decorationsD(t) andD′(t)

616 A. Nymeyer, J.-P. Katoen

if their associated local rewrite sequences fort are identical, except for one rewrite
rule r that can be moved from a higher positionq in D′(t) to a lower positionp in
D(t). We formally state this in the next definition.

Definition 16 (Precedence relation).For termt and equivalent decorationsD(t) and
D′(t) the precedence relation≺ is defined asD(t) ≺ D′(t) if and only if ∃ p, q ∈
Pos(t), such thatq is a proper prefix ofp, and the following holds:

– ∀ s /= p, q : LD(t|s) = LD′ (t|s)
– ∃ r ∈ LD(t|p) ∩ LD′ (t|q) : LD(t|p) \ r = LD′ (t|p) ∧ LD(t|q) = LD′ (t|q) \ r

≺+ is the transitive closure of≺. It follows quite easily that≺+ is a strict partial order
(i.e. irreflexive, anti-symmetric and transitive) on equivalent decorations (under≡).
The minimal elements under≺+ constitute an interesting class of decorations. These
decorations are said to be in normal form. Normal forms need not be unique as≺+

does not need to have a least element.

Definition 17 (Normal-form decoration). A decorationD(t) of a termt is in normal
form if and only if¬ (∃D′(t) : D′(t) ≺+ D(t)).

We let NF(t) denote the set of decorations oft that are in normal form.

Example 7.In Example 6 we haveD(t) ≺ D′(t) because rewrite ruler7 associated
with the root position oft in D′(t) can be moved to a lower position oft in D(t).
As all local rewrite rules inD(t) are applied to the root position of the sub-term with
which they are associated, they cannot be moved to a lower position, henceD(t) is
in normal form.

Example 8.The two decorations shown in Fig. 7 are equivalent, and are both in
normal form. This illustrates that normal forms need not be unique.

Fig. 7. Two equivalent, normal-form decorations of a termt

The following theorem allows us to consider only normal-form decorations of a
term t, and not the entire universe of decorations oft.

Theorem 1 (Normal-form existence).Given a rewrite sequenceτ and termt, we
have that

t
τ

===⇒ ⇒ (∃D(t) ∈ NF(t) : SD(t) ∼=t τ)

Code generation based on formal BURS theory and heuristic search 617

Proof. Let τ be an arbitrary rewrite sequence andt some term such thatt
τ

====⇒.

A simple decorationD0(t) corresponding toτ can be obtained by decorating the
root of t with τ and all other sub-terms with the empty rewrite sequence. Suppose
D0(t) is not in normal form. We informally describe a procedure to obtain from
D0(t) an equivalent decoration which is in normal form. The decorationD0(t) can be
modified intoD1(t) by moving a single rewrite rule from a higher position int to a
lower position int, so thatSD0(t) ∼=t SD1(t). This procedure can be repeated, until
no rewrite rules can be moved to a lower position. The procedure must terminate
successfully asτ is finite, at which time there cannot be a decorationD′(t) such that
D′(t) ≺ Dn+1(t). The result is a chain of decorationsD0(t), D1(t), D2(t), etc. so that
Dn+1(t) ≺ Dn(t), for all n ≥ 0. By construction, the last obtained decoration is a
minimal element under≺+.

The consequence of the existence of a normal-form decoration is that the local
write sequence at each position must always begin with a rewrite step that is applied
to the root of the subtree rooted at that position.

Lemma 4.1

For all D(t) ∈ NF(t), andp ∈ Pos(t) : LD(t|p) /= ε ⇒ LD(t|p) = 〈r, ε〉 τ , for some
r ∈ R and rewrite sequenceτ .

Proof. By contradiction. Let us assumeD(t) ∈ NF(t) and for somep ∈ Pos(t),
LD(t |p) = 〈r, q〉 τ with q = n.q′, n ∈ IN+. Let D(t) be identical toD′(t) with
the exception thatL′

D(t |p) = τ and L′
D(t |p.n) = LD(t |p.n)〈r, q′〉. By construction

D′(t) ≺ D(t), contradicting thatD(t) ∈ NF(t).

The approach that has been used in this section is different from that of PLG. PLG
first define a normal-form rewrite sequence, and then a local rewrite sequence and
assignment. Their local rewrite assignment is the same as our decoration. We have
reversed this order. Further, our approach is more formal and concise. In particular, the
explicit use of the ordering relation≺ is very helpful in characterising normal-form
decorations.

4.3 Strong normal-form decorations

The idea behind a strong normal form is to reduce the number of local rewrite se-
quences that we need to consider. In the strong normal form, we do not permit
positions in sub-terms of the expression tree that have matched variables in an ap-
plied rewrite rule to be rewritten again. These positions are said to have become
non-rewriteable. By avoiding rewriting these positions, we avoid generating local
rewrite sequences that are simply permutations of each other.

All definitions in this section are with respect to a CTRS ((Σ,V), R,C). We begin
by defining the set of positions in a term at which a variable occurs.

Definition 18 (Variable positions). The set VP of variable positions of a termt ∈
TΣ(V) is defined as the set of positions at which a variable occurs. In other words,
VP(t) = { p ∈ Pos(t) | t|p ∈ V }.

We say that each position in a term is eitherrewriteableor non-rewriteable. A
rewriteable position is a position in a term at which a rewrite rule may be applied. A

618 A. Nymeyer, J.-P. Katoen

rewrite rule may not be applied to a non-rewriteable position. If a term is rewritten
using a rewrite rule that does not contain a variable, then the rewriteability of the
positions in the rewritten term does not change. If the rewrite rule does contain
a variable, then the positions in the term substituted for the variable become non-
rewriteable. This leads us to the following definition.

Definition 19 (Rewriteable positions).The set RPt of rewriteable positions in a term
t after the application of the rewrite sequenceτ and rewrite step〈t1 −→ t2, p〉 is
defined as:

– RPt(ε) = Pos(t)
– RPt(τ〈t1 −→ t2, p〉) = (RPt(τ) − Pos(t′|p)) ∪ Pos(t′′|p)

− {Pos(t′′|p·q) | q ∈ VP(t2)}

wheret
τ

===⇒ t′
〈t1−→t2,p〉

===========⇒ t′′.

In Fig. 8 we depict how rewriteable positions are computed. Assume that we have
some rewrite sequencet

τ
====⇒ t′. If the left-hand side of the rulet1 −→ t2 matches a

sub-term at positionp in t′, then we can rewritet′ into t′′. We do this by replacing
the matched sub-term int′ (shown lightly shaded in the termt′ in Fig. 8) by the
right-hand sidet2 (shown lightly shaded in the termt′′). If t1 also contains variables,
then we must substitute for these variables int2 (the matching sub-terms are shown
in black in t′ and t′′).

Fig. 8. Computing the rewriteable positions in a term after the application of〈t1 −→ t2, p〉

In the definition above, we see that the set of rewriteable positions int′′ consists
of the rewriteable positions int′ (given by RPt(τ)), minus the positions in the sub-
term that has been matched byt1 (Pos(t′|p)), plus the positions in the sub-termt2 that
replacedt1 (Pos(t′′|p)), and minus the positions in the sub-terms that are substituted
for the variables (if any) int2 ({Pos(t′′|p·q) | q ∈ VP(t2)}).

Example 9.We are given a TRS withS = { ∗,+, c, r,2}, corresponding ranks
{2,2,0,0,0}, V = {x } andR defined as follows:

R = { (r1) ∗(2, x) −→ +(x, x)
(r2) +(c, c) −→ r
(r3) +(r, r) −→ r }

Code generation based on formal BURS theory and heuristic search 619

Assume that we have some termt = ∗(2,+(c, c)). Initially, the rewriteable positions
in t are given byRPt(ε) = {ε,1,2,2·1,2·2}. If we now apply the rewrite rule〈r2,2〉,
then we generate the termt′′ = ∗(2, r) with rewriteable positions:

RPt(〈r2,2〉) = (RPt(ε) − Pos(t|2)) ∪ Pos(t′′|2) − ∅
= ({ε,1,2,2·1,2·2} − {2,2·1,2·2}) ∪ {2}
= {ε,1,2}

In other words, each of the positions in the term∗(2, r) is rewriteable. Note that the
rule r2 does not contain a variable.

We now apply the rewrite rule〈r1, ε〉 and generatet′′ = +(r, r). Note that we are
allowed to do this because the positionε is rewriteable, and thatt′ = ∗(2, r). The
rewriteable positions in this new term are:

RPt(〈r2,2〉〈r1, ε〉) = (RPt(〈r2,2〉) − Pos(t′|ε)) ∪ Pos(t′′|ε)
−{Pos(t′′|q) | q = 1,2}

= ({ε,1,2} − {ε,1,2}) ∪ {ε,1,2} − {1,2}
= {ε}

Because the root position in the term +(r, r) is rewriteable, we can now apply the
rewrite rule〈r3, ε〉 and generate the goal termr. Summing up, we have reduced the
term t using the following sequence:

∗(2,+(c, c))
〈r2,2〉

======⇒ ∗(2, r)
〈r1,ε〉

======⇒ +(r, r)
〈r3,ε〉

======⇒ r

Example 10.Instead of beginning with the rule〈r2,2〉 in the above example, we
could have begun with the rule〈r1, ε〉. This results in

∗(2,+(c, c))
〈r1,ε〉

======⇒ +(+(c, c),+(c, c))

The only rewriteable position in the new term is the root position. To reduce the term
further we need to reduce the sub-terms +(c, c) at positions 1 and 2. These positions,
however, are non-rewriteable, hence we cannot proceed any further. Intuitively, we
say that the term +(c, c) should have been rewritten before it was substituted for a
variable. (This is the strong-normal-form property.)

As a convenience, we now define a boolean functionPermittedt that determines
whether rules in a rewrite sequence are only applied at rewriteable positions in a term
t.

Definition 20 (Permitted). Given the rewrite sequenceτ and termt, the predicate
Permittedt is true if each rewrite ruler in τ is applied at a rewriteable positionp, and
false otherwise. Formally,

– Permittedt(ε) = true
– Permittedt(τ〈r, p〉) = p ∈ RP(τ) ∧ Permittedt(τ)

Definition 21 (Strong-normal-form decoration). A normal-form decorationD(t) is
in strong normal form if and only if Permittedt(LD(t|p)) is true, for all p ∈ Pos(t).

We let SNF(t) denote the set of decorations oft that are in strong normal form.

Example 11.Let ((Σ,V), R) be a TRS withS = { ∗, a, b, c, d, e, f }, r(∗) = 2 and all
others with rank 0,V = {x }, andR defined as follows:

620 A. Nymeyer, J.-P. Katoen

R = { (r1) ∗(a, b) −→ ∗(c, d)
(r2) ∗(c, x) −→ ∗(e, x)
(r3) d −→ f }

Let t = ∗(a, b), and define a decorationD(t) by local rewrite sequencesLD(t) =
r1 r2 〈r3,2〉 andLD(t|1) = LD(t|2) = ε. The decorationD(t) is in normal form, but
not in strong normal form, becauser2 makes position 2 non-rewriteable. Ruler3 may
not be applied to this position. The value ofPermittedt(r1 r2 〈r3,2〉) is therefore false.

Note, however, that the decorationD′(t) with LD′ (t) = r1 〈r3,2〉 r2 andLD′ (t|1)
= LD′ (t|2) = ε is in strong normal form.

The following theorem means that we only need to consider strong-normal-form
decorations of a termt, and not the entire universe of normal-form decorations oft.
This theorem is analogous to Theorem 1.

Theorem 2 (Strong normal-form existence).Given a rewrite sequenceτ and term
t, we have that

t
τ

===⇒ ⇒ (∃D(t) ∈ SNF(t) : SD(t) ∼=t τ)

Proof. Let τ be an arbitrary rewrite sequence andt some term such thatt
τ

====⇒.

From Theorem 1 it follows that there exists a normal-form decorationD(t) corre-
sponding toτ . If D(t) is not in strong normal form, then there is somep such that
¬Permittedt(LD(t|p)). This means that we can write

LD(t|p) = · · · t′
〈t1−→t2,p

′〉
============⇒ t′′

τ1====⇒ t′′′
〈ta−→tb,p

′′′〉
==============⇒ · · ·

wheret1 (andt2) contain at least one variablev, andta is a sub-term of the sub-term
tv of t′ that matchesv. We depict the above rewrite sequence in Fig. 9. In this figure,
t′ = t|p. The application of the rewrite ruleta −→ tb at positionp′′′ in the termt′′′

in this figure is not permitted because the (earlier) application of the rulet1 −→ t2
at positionp′ in t′ resulted in all the positions intv, including ta, becoming non-
rewriteable int′′. In Fig. 9, the termst1 andt2 are shown lightly shaded,tv is shown
heavily shaded, andta is shown in black. Without loss of generality, we assume that
the positions inta are rewriteable before the application of〈t1 −→ t2, p

′〉 (note that,
by definition, all positions are initially rewriteable), and thatPermittedt′′ (τ1) is true.

We now move the instance of the rewrite ruleta −→ tb to beforethe rulet1 −→ t2.
This results in the rewrite sequence shown in Fig. 10. In this figure we see that the rule
ta −→ tb is applied at positionpo in term to, before the rewrite step〈t1 −→ t2, p

′〉.
If we now apply the rulet1 −→ t2, we find that the sub-termtv that matches variable
v will contain tb (instead ofta). Note that the ruleta −→ tb is applied at position
p′′′ in the sequence in Fig. 9, and at positionpo in the sequence in Fig. 10. The new
rewrite sequence in Fig. 10 is quite obviously a permutation of the sequence in Fig. 9.

The above procedure moves a rewrite step that is applied to a sub-term that is
non-rewriteable to before the rewrite step that made the sub-term non-rewriteable.
Applying this procedure repeatedly will result in a local rewrite sequenceLD(t |p)
that is permissible.

Given a normal-form decorationD(t), therefore, we can now make each local
rewrite sequenceLD(t|p), for all p ∈ Pos(t), permissible. This results in a strong-
normal-form decoration. This completes the proof.

Code generation based on formal BURS theory and heuristic search 621

Fig. 9. A sequence that is not in strong normal form

Fig. 10. A sequence that is in strong normal form

Example 12.Consider the TRS ((Σ,V), R) with S = {+, c, r, a }, r(+) = 2 and all
others with rank 0,V = {x, y }, andR defined as follows:

R = { (r1) +(c,+(c, x)) −→ +(c, x)
(r2) +(x, y) −→ +(y, x)
(r3) a −→ r
(r4) +(r, r) −→ r
(r5) +(c, r) −→ r }

Let t′ = +(+(c,+(c,+(a, r))), c), and consider the sequence shown in Fig. 11. This
sequence, which isnot in strong normal form, rewrites the termt′ into the goal term
r. In the first step in this sequence,t′ is rewritten intot′′ by 〈r1,1〉. In this step, the
sub-termtv (indicated in the figure) int′ is matched by the variablex in t1, and as a
result, all the corresponding positions in the termt′′, including ta, have become non-
rewriteable (indicated by the circled nodes). The rewrite stepsr2r1 are then applied,
resulting in the termt′′′, where all positions are non-rewriteable except the root. The
next rewrite step,〈r3,2·1〉, is not permitted because position 2·1, which is the position
of term ta, is non-rewriteable.

The node corresponding to position 2·1 in t′′′ became non-rewriteable as a result
of the first step,〈r1,1〉. Following the strategy outlined in the proof of Theorem 2, we

622 A. Nymeyer, J.-P. Katoen

Fig. 11. A sequence that isnot in strong normal form

Fig. 12. Another sequence that isnot in strong normal form

now move the ruler3 that we were not permitted to apply above, to before this step.
The resulting sequence is shown in Fig. 12. In this sequence we begin by applying
the rewrite step〈r3,1·2·2·1〉. This step rewritesta into tb. We then apply rewrite step
〈r1,1〉, which results in the positions in the sub-termtv becoming non-rewriteable.
We can next apply stepsr2r1, but we cannot apply ruler4 at position 2 because it is
non-rewriteable. As before, this node has became non-rewriteable as a result of the
earlier step〈r1,1〉. Repeating the above procedure, and moving the application of rule
r4 to before this step, results in the sequence shown in Fig. 13. This sequence is in
strong normal form. Notice that in moving the rulesr3 andr4 forward, the positions
at which these rules are applied change.

Fig. 13. This sequence is in strong normal form

Code generation based on formal BURS theory and heuristic search 623

In this section we have formalised the concept of rewriteable positions and strong-
normal-form decorations. Rewriteable positions are related to PLG’stouched posi-
tions, which PLG only treats cursorily. PLG does not explicitly define a strong normal
form.

4.4 Input and output sets

As a direct generalisation of bottom-up tree pattern matching methods (see e.g. [24]),
sets of patterns, called input and output sets, can be computed from the strong-normal-
form decorations oft. These sets define the patterns that match the expression tree.
We begin by defining the inputs and outputs of a decoration.

Definition 22 (Inputs of a decoration). LetD(t) ∈ SNF(t) such that, for some given

goal termg, t
SD(t)

======⇒ g. For each sub-termt′ of t, the possible inputs, denotedID(t′),

are defined as follows:

ID(t) =

{

t, if t ∈ Σ0
a(t′1, . . . , t

′
n) if t = a(t1, . . . , tn)

whereID(ti)
LD(ti)

=======⇒ t′i, for 1 ≤ i ≤ n.

Definition 23 (Outputs of a decoration). Let D(t) ∈ SNF(t) such that, for some

given goal termg, t
SD(t)

======⇒ g. For each sub-termt′ of t, the possible outputs are

defined asOD(t) = t′ with ID(t)
LD(t)

======⇒ t′.

Using the inputs and outputs, we can now define theinput setandoutput setof a
term t for some goal termg. The input setISg(t) is the union of all possible inputs
for all strong-normal-form decorations oft. Similarly for theoutput setOSg(t). More
formally:

ISg(t) = { ID(t) | D(t) ∈ SNF(t) ∧ t
SD(t)

======⇒ g }

OSg(t) = {OD(t) | D(t) ∈ SNF(t) ∧ t
SD(t)

======⇒ g }

Note that the sets are defined for a specific goal termg.

Example 13.Consider again our running example and the termt given by +(0,+(c, c)).
A normal-form decorationD(t) for this term is shown on the left in Fig. 6. The inputs
ID(t) and outputsOD(t) of this decoration for goal termr are depicted in Fig. 14a.
In this figure, inputs and outputs are given on the left and right side (resp.) of each
node.

The input setsISr(t) and output setsOSr(t) of this termt for goal termr are
shown in Fig. 14b, on the left and right side (resp.) of each node.

An algorithm to calculate input and output sets for termst andg, and the corre-
sponding local rewrite sequences is given in Fig. 15. This algorithm consists of two
passes. In the first, bottom-up pass (see the functionGenerate) sets oftriples, denoted
by W (t), are computed for all possible goal terms. A triple, written〈it,D(t), ot〉,

624 A. Nymeyer, J.-P. Katoen

(a)

[r]+

+ [r]

c

0 [0][0]

[c] [c]

(b)

{c} cc

+

+

0{0} {0,c,a}

{c,a,r} {c} {c,a,r}

{r}

{+(a,a),+(r,c),+(c,r)}

[+(0,r)]

[+(r,c)]

[r] [c]

{+(a,a),+(0,r),+(c,r)}

{a,r}

Fig. 14. a Inputs and outputs of a decoration for the term +(0, +(c, c)). b The input and output sets of this
term

consists of an inputit, decorationD(t), and outputot such thatt
SD====⇒ ot, and

it
LD(t|ε)

========⇒ ot. For convenience, we use the typeTerm to denoteTΣ , SetOfTerms

to denoteP (Term), Triple to denoteTerm×Decoration×Term, andSetOfTriples
to denoteP (Triple).

In the second, top-down pass (the functionTrim), these sets of triples are ‘trimmed’
using the desired goal termg. The root node is trimmed by removing each triple whose
output term is not identical to the goal term. Other nodes in the expression tree are
trimmed by removing each triple whose output term is not identical to an input term
of its parent node. The resulting trimmed sets of triples, denoted byV (t), consist of
the input and output sets, and the associated decorations. Under some circumstances it
may be possible to trim the nodes in the expression tree while they are being generated
(see for example [38]). We do not consider that aspect further here however.

Example 14.Let us apply the algorithm shown in Fig. 15 to our running example.
The set of triplesV (t) for t = +(0,+(c, c)) is shown below. Note that all rewrite rules
are applied at the root.

V (t|1) = {〈0, ε,0〉, 〈0, r5, c〉, 〈0, r5r6, a〉}
V (t|2·1) = {〈c, ε, c〉, 〈c, r6, a〉, 〈c, r6r7, r〉}
V (t|2·2) = {〈c, ε, c〉, 〈c, r6, a〉, 〈c, r6r7, r〉}
V (t|2) = {〈+(a, a), r3, r〉, 〈+(a, a), r3r8, a〉, 〈+(r, c), r1r4, a〉,

〈+(r, c), r1r4r7, r〉, 〈+(c, r), r4, a〉, 〈+(c, r), r4r7, r〉}
V (t|ε) = {〈+(a, a), r3, r〉, 〈+(0, r), r1r2, r〉, 〈+(c, r), r4r7, r〉}

To guarantee termination of this algorithm the length of each local rewrite se-
quence must be finite. A TRS that has this property is referred to asfinite, and one
that does not asinfinite. More specifically, a TRS is finite if and only ifLD(t|p) is
finite for all D(t) ∈ SNF(t), t ∈ TΣ(V) andp ∈ Pos(t).

Intuitively, infinite TRSs occur because the right-hand side of a rewrite rule can be
more complex than the left-hand side. In that case, sequences can continue indefinitely.

Code generation based on formal BURS theory and heuristic search 625j[con ((�; V); R): TermRewriteSystem;t; g : Term;var W (t); V (t): SetOfTriples;func Generate (t : Term): SetOfTriplesj[var H;Z(t): SetOfTriples; i : IN;H := Z(t) := ;;if t :: a �! Z(t) := f ht;D"; ti g;[] t :: a(t1; : : : ; tn) �!j[for all 1 � i � n do Z(ti) := Generate(ti) od;(� Let O(ti) = f otki j hitki ; Dki ; otkii 2 Z(ti) g �)for all (tk1 ; : : : ; tkn) 2 O(t1)� : : :�O(tn)do Z(t) := Checknf (Z(t); ha(tk1 ; : : : ; tkn); Dk1 � : : :�Dkn ; a(tk1 ; : : : ; tkn)i) od]j� ;do H 6= Z(t) �!j[H := Z(t);for all hit;D; oti 2 Z(t)do for all p 2 RPt(SD) ^ (LD(tj") = ") p = ")do for all r 2 R ^ SDhr; pi is acyclicdo if ot hr;pi===6) �! skip[] ot hr;pi===) ot0 �! Z(t) := Checknf (Z(t); hit;D
 hr; pi; ot0i)�ododod]jod;return Z(t)]j;func Checknf (Z: SetOfTriples, hit;D; oti : Triple): SetOfTriplesj[var exit: Bool;exit := false;for all hit0; D0; ot0i 2 Z ^ : exitdo if D � D0 ^ D � D0 �!j[exit := true; Z := (Z n f hit0; D0; ot0i g) [f hit;D; oti g]j[] D � D0 ^ D0 � D �! exit := true[] D 6� D0 �! skip�od;if : exit �! Z := Z [f hit;D; oti g [] exit �! skip � ;return Z]j;func Trim (t : Term; tg : SetOfTerms): SetOfTriplesj[var Z(t): SetOfTriples; i : IN;Z(t) := f hit;D; oti 2W (t) j ot 2 tg g;if t :: a �! skip[] t :: a(t1; : : : ; tn) �! for all 1 � i � n do Z(ti) := Trim(ti; f itji j hit;D; oti 2 Z(t) g) od� ;return Z(t)]j;W (t) := Generate(t);V (t) := Trim(t; fgg)]j.Figure 15: A two-pass algorithm to calculate the input sets, decorations and output sets1Fig. 15. A two-pass algorithm to calculate the input sets, decorations and output sets

626 A. Nymeyer, J.-P. Katoen

Example 15.Consider the TRS with rules:

(r1) c −→ m(c)
(r2) m(c) −→ a
(r3) m(a) −→ r

The TRS is infinite because we can generate the following local rewrite sequence for
the input termc:

c
r1====⇒ m(c)

〈r1,1〉
======⇒ m(m(c))

〈r1,1·1〉
========⇒ m(m(m(c)))

〈r1,1·1·1〉
==========⇒ · · ·

A successful rewrite sequence for this input term involves (only) 2 applications of
rule 1, as shown below:

c
r1====⇒ m(c)

〈r1,1〉
======⇒ m(m(c))

〈r2,1〉
======⇒ m(a)

r3====⇒ r

The maximum length of local rewrite sequences in a finite TRS may not be
bounded. In that case the length will be dependent on the input term.

Example 16.Consider the TRS with rules:

(r1) m(+(c,X)) −→ m(X)
(r2) m(r) −→ r

wherer is the goal term. Local rewrite sequences for this TRS will be finite in length,
but unbounded. For example:

m(+(c, r))
r1====⇒ m(r)

r2====⇒ r

m(+(c,+(c, r)))
r1====⇒ m(+(c, r))

r1====⇒ m(r)
r2====⇒ r

m(+(c,+(c,+(c, r))))
r1====⇒ m(+(c,+(c, r)))

r1====⇒ m(+(c, r))
r1====⇒ m(r)

r2====⇒ r

If the length of local rewrite sequences for a given TRS is bounded, byk say, then
PLG say that the TRS satisfies the BURS property. (Note that our running example
satisfies the BURS property withk = 3.)

PLG define the following sufficient syntactic condition for a finite TRS:

Theorem 3. A TRS((Σ,V), R) is finite if for all (t, t′) ∈ R one of the following
conditions holds:

1. V ar(t) = ∅ and t′ ∈ Σ0
2. t = a(t1, . . . , tn) and t′ = b(t1, . . . , tn) for n ≥ 0 anda, b ∈ Σn

3. t = a(t1, . . . , tn) and t′ = a(tπ(1), . . . , tπ(n)) with π a permutation on[1, n]
4. t = f (x, t′′) and t′ = x with V ar(t′′) = ∅

This result has been confirmed, in a somewhat different context, by Kurtz [32]. It
would be interesting to identify a coarser classification of finite TRSs.

PLG define inputs and outputs, as we do, and use these to buildlocal rewrite
graphs for each sub-term of the given expression tree. These graphs represent the
local rewrite sequences of all ‘normal-form rewrite sequences’ that are applicable.
We directly encode the inputs, outputs and local rewrite sequences into the expression
tree (in the form of triples attached to each node).

Code generation based on formal BURS theory and heuristic search 627

5 Coupling A∗ and BURS

The search graphG = (N,E, n0, Ng) consists of a set of nodesN , edgesE and
goal nodesNg, and an initial noden0. A node represents a state of the system, and is
denoted by a quadruple (t, p, τ, t′) wheret is the current term,p is the current position
in that term,τ the local rewrite sequence applied atp, andt′ the (chosen) input tree
at p.

The initial noden0 is given by the quadruple (tI , p0, ǫ, tI|p0). The termtI is the
input expression tree for which we want to generate code. The initial positionp0 is
the lowest left-most position in this tree, and is of the form 1· 1 · . . .

Example 17.Consider our running example (Example 4). The initial node is the
quadruple (+(0,+(c, c)),1, ǫ,0). The lowest left-most position intI = +(0,+(c, c)) is
1, andtI|1 is 0. The set of goal terms is the singleton set{r}.

To determine the search graph, we need to compute the successor nodes of a
given node. This is carried out by the functionSuccessor, which is shown in Fig. 16.
As in Fig. 15, we use the typeSetOfTriples. We also denote the type (R× IN∗

+)∗ by
RewriteSequence, andP (TΣ × IN∗

+ × (R× IN∗
+)∗ × TΣ) by SetOfQuadruples.

The (standard) functionsNext, ParentandChild are used to position ourselves in
the search graph. These functions are defined below.

Definition 24 (Next, Parent and Child). Given a positionp ∈ Pos(t)\{ǫ} in a term
t:

– Next(p, t) ∈ IN∗
+ is the next position ofp in a post-order traversal oft.

– Parent(p, t) ∈ IN∗
+ is the position of the parent ofp in t.

– Child(p, t) ∈ IN+ is the child-number ofp in t.

If a positionp in tree t has childrenp·1, . . . , p·n then thechild-numberof position
p·i is i. Further,Parent(ǫ,t) = Child(ǫ,t) = ǫ, but Next(ǫ,t) is undefined, for anyt.
Note thatp = Parent(p,t)·Child(p,t).

Example 18.In the termt = +(0,+(c, c)), we haveNext(1,t) = 2·1, Next(2·1,t) = 2·2,
Next(2·2,t) = 2 andNext(2,t) = ǫ. Furthermore,Parent(2·1,t) = 2 andChild(2·1,t) =
1.

The basic idea behind the successor function is the following. If we can add a
rewrite step (〈r, p′〉 in the algorithm) to a local rewrite sequence (τ) at the current
position (p), and there exists a rewrite sequence (τ〈r, p′〉τ ′) whose output tree (ot)
matches a corresponding child of an input tree (it ′) of the parent (ofp), and all the
younger siblingsof the current position also match corresponding children of the same
input tree, then we have found a successor node. If positionp is the i-th child (of
a node) then the younger siblings are the children 1 untili − 1. The first child has
no younger siblings of course. The functionSuccessoris called recursively, using
the next post-order position, for as long as the sub-term at the current position, and
all the younger siblings of the current position, match corresponding children of an
input tree of the parent. The functionMatch carries out the task of matching a node
(sub-tree) and its siblings with the children of an input tree of the parent.

When the algorithm reaches the root position,p = ǫ, the recursion will stop, and
the functionMatch will always yield true. The algorithm will return with the empty
set when it reaches the root position and the termt ∈ Ng.

628 A. Nymeyer, J.-P. Katoenj[con ((�; V); R): TermRewriteSystem;V (t): SetOfTriples;func Successor (t : T�; p : IN�+; � : RewriteSequence; it : T�): SetOfQuadruplesj[var S: SetOfQuadruples;func Match(p0 : IN�+; t0 : T�):Boolj[var Z:SetOfTerms ;it 0:Term ;b:Bool ;b := (p0 = �);Z(t) := f it j hit; D; oti 2 V (tjParent(p0)) ^ itjChild(p0)= t0 g;(� if p0 is the i-th child, then Z is the set of input trees of itsparent such that the i-th child of each term in Z equals t0 �)do Z 6= ; ^ :b �!j[choose it 0 2 Z;Z := Z n fit 0g;b := (8 1 � i < Child(p0) : it 0ji= tjParent(p0) � i)]jod;return b]j;(� body of function Successor �)if (p = �) _ :Match(p; tjp) �! S := ;[] (p 6= �) ^ Match(p; tjp) �! S := Successor(t; Next(p); �; tjNext(p))� ;for all r 2 Rdo for all p0 2 Pos(it)do for all hit; D; ot i 2 V (tjp) ^ SD = �hr; p0i� 0 (� loop over � 0 and ot �)do if :Match(p; ot) �! skip[] Match(p; ot) �! S := S [f (hr; p0it; p; �hr; p0i; it) g�ododod;return S]j]j. Figure 16: The successor function that computes a set of new search nodes

1

Fig. 16. The successor function that computes a set of new search nodes

Example 19.Consider our running example again. Let us compute the successor
nodes of the initial node, i.e. we computeSuccessor(+(0,+(c, c)),1, ǫ,0). Because
p /= ǫ andMatch(1, t|1) = true, we recursively call the function again with the next
position,p = 2·1. That is, we callSuccessor(+(0,+(c, c)),2·1, ǫ, c) where the last ar-
gumentc = t|2·1. Again, p /= ǫ and Match(2·1, t|2·1) = true, so we recursively call
Successor, this time with p = 2·2. That is, we callSuccessor(+(0,+(c, c)),2·2, ǫ, c)
where the last argumentc = t|2·2. The recursion now stops becauseMatch(2·2, t|2·2)
= false (there is no input treeit′ of t|2 in which it′ |1= c ∧ it′ |2= c). We therefore
let S := ∅, and inspect all the triples ofV (t |2·2). The triples at each position in
t were computed in Example 14. The triple〈c, r6r7, r〉 satisfies the loop condition,
with it = c, τ = ǫ, r = r6, τ ′ = r7 andot = r. We also findMatch(2·2, r) = true (for
it′ = +(c, r)), hence we generate the search node (+(0,+(c, a)),2·2, r6, c). The call of
Successorfor p = 2·2 is now complete, so we need to inspect the triples associated

Code generation based on formal BURS theory and heuristic search 629

with the previous position,V (t|2·1). The triple 〈c, r6r7, r〉 (again) satisfies the loop
condition,Match(2·1, r) = true (this time forit′ = +(r, c)), and we generate the search
node (+(0,+(a, c)),2·1, r6, c) The call ofSuccessorfor p = 2·1 is also now complete.
Inspecting the triples associated with the initial position,V (t|1), we find that triple
〈0, r5r6, a〉 satisfies the loop condition, and thatMatch(1, a) = true (for it′ = +(a, a)).
We therefore generate the search node (+(c,+(c, c)),1, r5,0). The result of the above
computation is that we have generated the following set of search nodes:

{(+(0,+(c, a)), 2·2, r6, c), (+(0,+(a, c)), 2·1, r6, c), (+(c,+(c, c)), 1, r5, 0)}

In Fig. 17 we see the complete search graph for the expression tree +(0,+(c, c)).
Note that instead of the lengthy quadruple notation, we have used the first argument
of the quadruple (the term) as node name, and we have labelled the edges with the
rule number concatenated with the position at which the rule must be applied. For
the sake of convenience, we have also named some of the nodes. For example, if we
are at nodeA, which is the term +(0,+(c, c)), and apply the ruler5 at position 1, then
we generate nodeB, which is +(c,+(c, c)).

We can construct more nodes in the search graph by computing the suc-
cessors ofB, C and D. We will consider just the nodeB here, and compute
Successor(+(c,+(c, c)), 1, r5, 0). Becausep /= ǫ andMatch(1, t|1) = true, we must first
recursively callSuccessor(+(c,+(c, c)), 2·1, ǫ, c). Again,p /= ǫ andMatch(2·1, t|2·1)
= true, so we callSuccessor(+(c,+(c, c)), 2·2, ǫ, c). The triple〈c, r6, a〉 ∈ V (t|2·2)
hence this last call generates the node (+(c,+(c, a)), 2·2, r6, a). The same triple results
in the previous call generating the node (+(c,+(a, c)), 2·1, r6, a). This leaves us with
only the initial call ofSuccessor. For it = 0, τ = r5, r = r6, τ ′ = ǫ andot = a we find
that the triple〈0, r5r6, a〉 ∈ V (t|1), and hence generate the node (+(a,+(c, c)), 2·1,
r5r6, 0). Note thatτ /= ǫ here – this is the first time that we have built-on a rewrite
sequence. The end result is that the set of successor nodes of (+(c,+(c, c)), 1, r5, 0)
is:

{(+(c,+(c, a)), 2·2, r6, c), (+(c,+(a, c)), 2·1, r6, c), (+(a,+(c, c)), 1, r5r6, 0)}

These nodes correspond to the nodesG, F andE in Fig. 17, respectively.
We arrive at a goal node when a node consists of a goal term. A goal node has

no successor nodes. Note that there are a total of 11 paths leading from the initial
node to a goal node in Fig. 17.

Table 3. The initial steps that the A∗ procedure takes to reduce +(0, +(c, c)) using a best-first search
strategy (the subscripts are the costsg)

Step No Nc Choose
1 A0 ǫ A
2 B0C3D3 A B
3 C3D3E3F3G3 AB G
4 C3D3E3F3O4 ABG F
5 C3D3E3O4M4N6 ABGF E
6 C3D3O4M4N6K6L6 ABGFE D
7 C3O4M4N6K6L6J4 ABGFED C
8 O4M4N6K6L6J4H4I6 ABGFEDC H
9 O4M4N6K6L6J4I6P4 ABGFEDCH
10

630 A. Nymeyer, J.-P. Katoen

Fig. 17. For the expression tree +(0, +(c, c)), the (a) complete search graph, (b) best-first search graph (in
boxes), and (c) heuristic search graph (in shaded boxes)

In the example above, we have shown how the successor function shown in Fig. 16
can be used to compute the complete search graph for a given rewrite system and
expression tree. Calling the successor function for each and every newly created node
can result in a very large tree, and is wasteful as we only wish to find one least-cost
path. We could instead call the successor function from the A∗ search algorithm,
shown in Fig. 2. The A∗ algorithm will compute successors for only those nodes
that potentially lie on a least-cost path from the initial noden0 to some goal node.
The costg(n) of a path fromn0 to some node is simply the sum of the costs of the
rewrite rules applied along the path. For the moment we let the heuristic cost function
h∗(n) = 0, hence the cost that A∗ uses,f∗(n) = g(n). This corresponds to abest-first
search.

Example 20.We now apply the best-first search algorithm to our running example. We
begin by initialising the setsNc to ∅ andNo to the initial node{A}. The successors
of A areB0, C3 andD3, where the subscripts are the values of the costs of the nodes.
Hence, in step 2,No = {B0, C3, D3} and we moveA to Nc. The nodeB is the least
expensive, so we compute its successors, which are nodesE3, F3 andG3, add them
to No, and moveB to Nc. The first 9 steps in this process are shown in Table 3.
Note that we always choose the last computed least-expensive node. The resulting
best-first search graph is shown in Fig. 17. The rewrite sequence associated with the
optimal path toT is 〈2·1, r6〉〈2·2, r6〉〈2, r3〉〈ǫ, r1〉〈ǫ, r2〉. This sequence rewrites the
expression tree +(0,+(c, c)) into r for a total cost of 9.

Code generation based on formal BURS theory and heuristic search 631

In the example above, we still had to compute a large part of the search tree
to determine a least-cost path. We can do better by using the A∗ algorithm with a
non-zero cost heuristich∗(n). In principle, of course, we cannot predict how much it
will cost to rewrite a given node to a goal node. However, we can provide an (under)
estimate of the cost. In particular we are interested in predicting when ‘expensive’
rewrite rules will be necessary to rewrite a term.

Example 21.Let us deduce a heuristic function that will ‘predict’ the cost for our
running example. For convenience, the rewrite rules are shown again below. The
column on the right are the costs.

(r1) + (x, y) −→ +(y, x) 0
(r2) + (x,0) −→ x 0
(r3) + (a, a) −→ r 3
(r4) + (c, r) −→ a 5
(r5) 0 −→ c 0
(r6) c −→ a 3
(r7) a −→ r 1
(r8) r −→ a 1

The heuristic cost is a function of the termt in a noden. The first observation that
we make is that a +-node that does not have a 0-node as child will cost at least 3 to
rewrite to our goalr. The second observation is that a nodec will also cost at least
3 to rewrite. Note the special case +(c, r) satisfies both conditions and costs 5+1 to
rewrite tor. Combining these observations, we produce the following heuristic:

h∗(n) = 3 ∗ (|+0| + |c|)

where n = (t, p, τ, t′), |+0 | denotes the number of nodes labelled + and with no
children labelled 0, and|c| denotes the number of nodes labelledc. This heuristic cost
under-estimates, or is equal to, the actual cost. For example,h∗ = 0 for t = a (actual
cost is 1),h∗ = 3 for t = +(0, c) (actual cost 4) andh∗ = 6 for t = +(c, a) (actual cost
6).

Table 4.The steps that the A∗ procedure takes to reduce +(0, +(c, c)) using a heuristic search (the subscripts
are the costsg + h∗)

Step No Nc Choose
1 A0+9 ǫ A
2 B0+15C3+6D3+6 A D
3 B0+15C3+6J4+6 AD C
4 B0+15J4+6H4+6I6+3 ADC I
5 B0+15J4+6H4+6Q9+0 ADCI Q
6 B0+15J4+6H4+6S9+0 ADCIQ S
7 B0+15J4+6H4+6T9+0 ADCIQS goal

We now apply the A∗ search algorithm with this heuristic to our running example.
The steps that the algorithm takes are shown in Table 4. The nodes inNo this time
have subscriptsg + h∗. The goal nodeT , with a (minimum) cost ofg = 9, is found
in 7 steps. The resulting heuristic search graph is shown in Fig. 17. In total, only 10
nodes needed to be visited before the optimal path was discovered.

Implementation. The A∗, pattern-matching and successor-function algorithms have
been implemented in C. The A∗ algorithm is almost completely application-indepen-
dent. An application can be the 8-puzzle, or the BURS pattern matcher, for example.

632 A. Nymeyer, J.-P. Katoen

The A∗ algorithm calls a) a routine to initialise the application, b) the successor
function to determine new nodes, and c) a simple cost function that returns with the
cost of an ‘edge’ (i.e. rewrite rule). These 3 routines comprise the interface between
A∗ and the application. The A∗ algorithm (i.e. Algorithm 2) required approximately
500 lines of code.

Implementing BURS (Algorithm 15) and the successor function (Algorithm 16)
was an involved task. It required approximately 2500 lines of code, and consists of
mainly intricate tree-manipulation routines. TRSs for real machines have not, as yet,
been developed, hence meaningful performance figures cannot be given. However,
the implementation has revealed the strength and validity of the theory. Consider,
for example, the role that the strong normal form plays in reducing the number of
rewrite sequences that need to be generated in the BURS. In a rewrite sequence that
is in strong normal form, rewrite steps are not applied at positions that result from
the substitution of a variable. Without this restriction, the number of (local) rewrite
sequences can grow exponentially. This growth is caused by the rewrite rules that
contain variables.

Example 22.Consider the term +(r,+(a, a)), and the rewrite rules from our running
example. The number of local rewrite sequences in strong normal form that can be
applied at the root of this term is 1, and the length of this sequence is also 1. The
sequence is +(r,+(a, a))

r1====⇒ +(+(a, a), r). We cannot apply any more rewrite steps to

the output term here because the sub-terms +(a, a) andr have become non-rewriteable.
Now consider the local rewrite sequences that are not in strong normal form (SNF).

With no restriction on where we apply rewrite steps, we can generate many rewrite
sequences. For example, we could apply〈r7,1·1〉, or 〈r7,1·2〉, or 〈r8,2〉 to the output
term above. If we continue this process, we will quickly find that a combinatorial
explosion ensues. In fact, the total number of non-SNF local rewrite sequences turns
out to be 335,481! The lengths of these rewrite sequences range between 1 and 21. In
Fig. 18 we show an example of one of the longest sequences. Notice that the rewrite
rule r1 is applied a total of 8 times in this sequence.

Note that the sequences that we referred to in the previous example have not been
trimmed. In other words, and to be more specific, these are the sequencesτ in W (t)
that are generated by the routineGenerate()in Algorithm 15, where the non-SNF
sequences have been generated by not enforcing the restrictionp ∈ RPt(τ).

We chose the term +(r,+(a, a)) in the previous example because the number of
non-SNF rewrite sequences for our ‘running’ term +(0,+(c, c)) is too large to be
easily computed. In the table below we show the number of sequences, both strong
and non-strong, for each node in the term +(0,+(c, c)). For completeness, we also
show the number of sequences after trimming (c.f. Example 14).

position non-trimmed trimmed
SNF non-SNF

t|1 4 4 3
t|2·1 3 3 3
t|2·2 3 3 3
t|2 21 215 6
t|ε 101 ≫106 3

Code generation based on formal BURS theory and heuristic search 633

Fig. 18. A rewrite sequence of length 21

6 Conclusions

In this work we have derived BURS theory, and used this theory to construct an
algorithm that determines all the pattern matches (in the form of input and output
sets) of a given expression tree. BURS theory is based on term rewrite systems,
which provide a more powerful formalism in the field of code generation than the
more popular regular tree grammars. Given the input and output sets, the A∗ search
algorithm is used to select patterns. Instead of computing the cost of all possible
matches, the A∗ algorithm uses a heuristic best-first technique that applies only those
rewrite rules that may form part of an optimal rewrite sequence. The cost criterion
that is used is based on the costs of the rewrite rules and a heuristic that estimates
the cost of rewriting a term into a goal term.

The main contributions of this work are threefold:

– We have provided a theoretical framework for BURS and presented an algorithm
for pattern matching based on this framework.

– We have coupled this pattern-matching algorithm with a search algorithm to pro-
duce a code generator that generates optimal code.

– We have introduced the novel concept of a heuristic that predicts the minimum
(future) cost of rewriting a term into a goal term.

The algorithms presented in this work have all been implemented. This has demon-
strated the correctness of the approach, and allowed experimentation with the heuristic
cost function. Note that, like the term rewrite system itself, the cost heuristic is de-
termined by the compiler writer. We should emphasise that only when the heuristic

634 A. Nymeyer, J.-P. Katoen

cost under-estimates the actual cost is optimality guaranteed. In that case the search
algorithm is said to be admissible (see Sect. 3).

There are a number of directions for future research:

– Develop term rewrite systems for real machines, and test the performance of the
prototype.

– Develop a systematic technique of constructing a heuristic cost function. Further,
determine the sufficient and necessary conditions under which a given heuristic
will not over-estimate the real cost.

– Investigate whether code optimisation and register allocation can be expressed in
terms of a term rewrite system.

– Investigate whether certain parts of the pattern-matching algorithm can be done
statically.

– Consider how to determinea priori whether a term rewrite system is finite.

Acknowledgement.Ymte Westra and Henk Alblas were involved in the initial phase of this work. Many
thanks to the referees for their helpful suggestions.

References

1. Aho, A.V., Ganapathi, M., Tjiang, S.W.K.: Code generation using tree matching and dynamic pro-
gramming. ACM Trans. on Prog. Lang. and Sys.11(4), 491–516 (1989)

2. Aho, A.V., Johnson, S.C.: Optimal code generation for expression trees. J. ACM23(3), 488–501
(1976)

3. Aho, A.V., Johnson, S.C., Ullman, J.D.: Code generation for machines with multiregister operations.
In Proc. of the Fourth Ann. ACM Symp. on Principles of Progr. Lang., 21–28 (1977)

4. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools. Reading, MA:
Addison-Wesley (1986)

5. Balachandran, A., Dhamdhere D.M., Biswas, S.: Efficient retargetable code generation using bottom-up
tree pattern matching. Comput. Lang.15(3), 127–140 (1990)

6. Cai, J., Paige, R., Tarjan, R.: More efficient bottom-up multi-pattern matching in trees. Theoret.
Comput. Sci.106, 21–60 (1992)

7. Cattell, R.G.G.: Code generation in a machine-independent compiler. Proc. of the ACM SIGPLAN
1979 Symp. on Compiler Construction, ACM SIGPLAN Notices14(8), 65–75 (1979)

8. Cattell, R.G.G.: Automatic derivation of code generators from machine descriptions. ACM Trans. on
Prog. Lang. and Sys.2(2), 173–190 (1980)

9. Cattell, R.G.G.: Formalization and Automatic Derivation of Code Generators. UMI Research Press,
Ann Arbor, Michigan (1982)

10. Chase, D.R.: An improvement to bottom-up tree pattern matching. In Proc. of the Fourteenth Ann.
ACM Symp. on Principles of Progr. Lang., 168–177 (1987)

11. Christopher, T.W., Hatcher, P.J., Kukuk, R.C.: Using dynamic programming to generate optimised
code in a Graham-Glanville style code generator. Proc. of the ACM SIGPLAN 1984 Symp. on
Compiler Construction, ACM SIGPLAN Notices19(6), 25–36 (1984)

12. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. Handbook of Theoretical Computer Science (Vol.
B: Formal Models and Semantics), Leeuwen, J. van (ed), 245–320. Amsterdam: Elsevier (1990)

13. Emmelmann, H.: Code selection by regularly controlled term rewriting. Code generation – concepts,
tools, techniques, Giegerich, R., Graham, S.L. (eds), (Workshops in Computing Series, 3–29) Berlin,
Heidelberg, New York: Springer 1991

14. Emmelmann, H., Schröer, F.W., Landwehr, R.: BEG – a generator for efficient back ends. ACM
SIGPLAN Notices24(7), 246–257 (1989)

15. Ferdinand, C., Seidl, H., Wilhelm, R.: Tree automata for code selection. Acta Informatica31(8),
741–760 (1994)

16. Fraser, C.W., Hanson, D.R., Proebsting, T.A.: Engineering a simple, efficient code-generator generator.
ACM Letters on Progr. Lang. and Sys.1(3), 213–226 (1992)

Code generation based on formal BURS theory and heuristic search 635

17. Fraser, C.W., Henry, R.R., Proebsting, T.A.: BURG – fast optimal instruction selection and tree
parsing. ACM SIGPLAN Notices27(4), 68–76 (1992)

18. Giegerich, R.: Code selection by inversion of order-sorted derivors. Theoret. Comput. Sci.73, 177–211
(1990)

19. Giegerich, R., Schmal, K.: Code selection techniques: pattern matching, tree parsing, and inversion
of derivors. Proc. 2nd European Symp. on Programming, Ganzinger, H. (ed) (Lect. Notes in Comput.
Sci. vol. 300, 247–268). Berlin, Heidelberg, New York: Springer 1988

20. Glanville, R.S.: A machine independent algorithm for code generation and its use in retargetable
compilers. Ph.D. thesis, University of California, Berkeley (1977)

21. Gough, K.J.: Bottom-up tree rewriting tool MBURG. ACM Sigplan Notices31(1), 28–31 (1996)
22. Glanville, R.S., Graham, S.L.: A new method for compiler code generation. Proc. of the Fifth Ann.

ACM Symp. on Principles of Progr. Lang., 231–240 (1978)
23. Hatcher, P.J., Christopher, T.W.: High-quality code generation via bottom-up tree pattern matching.

Proc. of the Thirteenth Ann. ACM Symp. on Principles of Progr. Lang., 119–130 (1986)
24. Hemerik, C., Katoen, J.P.: Bottom-up tree acceptors. Sci. of Comput. Progr.13, 51–72 (1990)
25. Henry, R.R.: The CODEGEN user’s manual. Technical report 87-08-04, Computer Science Depart-

ment, University of Washington (1988)
26. Henry, R.R.: Encoding optimal pattern selection in a table-driven bottom-up tree-pattern matcher.

Technical Report 89-02-04, Computer Science Department, University of Washington (1989)
27. Henry, R.R, Damron, P.C.: Algorithms for table-driven generators using tree-pattern matching. Tech-

nical Report 89-02-03, Computer Science Department, University of Washington (1989)
28. Henry, R.R, Damron, P.C.: Performance of table-driven code generators using tree-pattern matching.

Technical Report 89-02-02, Computer Science Department, University of Washington (1989)
29. Hoffmann, C.M., O’Donnell, M.J.: Pattern matching in trees. J. ACM29(1), 68–95 (1982)
30. Kanal, L., Kumar, V., (eds): Search in Artificial Intelligence. Berlin, Heidelberg, New York: Springer

(1988)
31. Kron, H.: Tree templates and subtree transformational grammars. Ph.D. thesis, Information Sciences

Department, University of California at Santa Cruz (1975)
32. Kurtz, S: Narrowing and Basic Forward Closures. Technical Report 5, Technische Fakultät, Universiẗat

Bielefeld (1992)
33. Nijmeijer, A: Review of the Graham-Glanville code-generation scheme. Technical Report 88-61,

Department of Computer Science, University of Twente (1988)
34. Nilsson, N.: Principles of Artificial Intelligence. Palo Alto: Morgan Kaufmann (1980)
35. Pelegŕı-Llopart, E.: Rewrite systems, pattern matching, and code generation. Ph.D. thesis, University

of California, Berkeley (1987) (also as Technical Report CSD-88-423)
36. Pelegŕı-Llopart, E., Graham, S.L.: Optimal code generation for expression trees: An application of

BURS theory. Proc. of the Fifteenth Ann. ACM Symp. on Principles of Progr. Lang., 294–308 (1988)
37. Proebsting, T.A.: BURS automata generation. ACM Trans. on Prog. Lang. and Sys.3(17), 461–486

(1995)
38. Proebsting, T.A., Whaley, B.R.: One-pass, optimal tree parsing – with or without trees. Compiler

construction, Gyiḿothy, T. (ed) (Lect. Notes in Comput. Sci. vol. 1060, 294–308) Berlin, Heidelberg,
New York: Springer 1996

39. Weisgerber, B., Wilhelm, R.: Two tree pattern matchers for code selection. Compiler compilers and
high speed compilation, Hammer, D. (ed) (Lect. Notes in Comput. Sci. vol. 371, 215–229) Berlin,
Heidelberg, New York: Springer 1989

40. Wulf, W.A., Leverett, B.W., Cattell, R.G.G., Hobbs, S.O., Newcomer, J.M., Reiner, A.H., Schatz,
B.R.: An overview of the production-quality compiler compiler project. IEEE Computer13(8), 38–49
(1980)

Note added in proof.In the functionGenerateshown in Fig. 15, the decorationD1 ⊕
. . . ⊕Dn is obtained by decorating the roota with an empty rewrite sequence (i.e.,
LD(t |ε) = ε), and LD(t |n·p) = LDn

(t |p) elsewhere. Furthermore,D ⊗ 〈r, p〉 is
obtained by appending〈r, p〉 to the local rewrite sequence at the root (i.e.,LD(t|ε)).
The remaining local rewrite sequences inD are unaffected.

The functionChecknfeliminates triples (fromZ) that contain decorations that are
not in normal form (these decorations have a higher precedence). The strong-normal-
form property is imposed by considering positionsp ∈ RPt(SD) only.

