Erratum

Erik A. van Doorn a,*, Nicky D. van Foreest b, Alexander I. Zeifman c

a Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
b Faculty of Economics and Business, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
c Vologda State Pedagogical University, and Vologda Scientific Coordinate Centre of CEMIRAS, S. Orlova 6, Vologda, Russia

ARTICLE INFO

MSC:
primary 42C05
secondary 60J80

Keywords:
Orthogonal polynomials
True interval of orthogonality
Birth–death process
Decay parameter

ABSTRACT

We correct representations for the endpoints of the true interval of orthogonality of a sequence of orthogonal polynomials that were stated by us in the Journal of Computational and Applied Mathematics 233 (2009) 847–851.

© 2013 Elsevier B.V. All rights reserved.

In [1, Theorem 1] representations are given for the smallest zero x_{n1} and the largest zero x_{nn} of the polynomial P_n, $n > 0$, for when these polynomials satisfy a three-term recurrence relation of the type

$$
P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x), \quad n > 1,
$$

$$
P_0(x) = 1, \quad P_1(x) = x - c_1, \quad (1)
$$

where c_n is real and $\lambda_n > 0$, and therefore constitute a sequence of orthogonal polynomials. Since the smallest point ξ_1 and largest point η_1 of the true interval of orthogonality for these polynomials are the limits as $n \to \infty$ of x_{n1} and x_{nn}, respectively, the representations for x_{n1} and x_{nn} lead to representations for ξ_1 and η_1. However, an unjustified step in the limiting procedure has led to two incorrect statements in [1, Corollary 2]. Specifically, the second representation for ξ_1 is not correct and should be replaced by

$$
\xi_1 = \lim_{n \to \infty} \min_{a > 0} \left\{ \max_{1 \leq i \leq n} \left\{ c_i - a i + \lambda_i \right\} \right\}, \quad (2)
$$

where δ_{in} denotes Kronecker’s delta and $a = (a_1, a_2, \ldots)$. Also, the second representation for η_1 is not correct and should be replaced by

$$
\eta_1 = \lim_{n \to \infty} \max_{a > 0} \left\{ \min_{1 \leq i \leq n} \left\{ c_i + a i + \lambda_i \right\} \right\}. \quad (3)
$$

DOI of original article: http://dx.doi.org/10.1016/j.cam.2009.02.051.

* Corresponding author.

E-mail addresses: e.a.vandoorn@utwente.nl (E.A. van Doorn), n.d.van.foreest@rug.nl (N.D. van Foreest), a_zeifman@mail.ru (A.I. Zeifman).
These corrections have consequences for the applications in [1, Section 4]. Thus the second representation for the decay parameter δ of a nonergodic birth–death process with killing in [1, Theorem 3] should be replaced by

$$
\delta = \lim_{n \to \infty} \min_{a > 0} \left\{ \max_{0 \leq i \leq n} \left\{ \alpha_i + \beta_i + \gamma_i - a_{i+1} - \frac{\alpha_{i-1}\beta_i}{a_i} + \delta_{\min}a_{n+1} \right\} \right\},
$$

and the second representation for the decay parameter δ of an ergodic birth–death process in [1, Theorem 4] should be replaced by

$$
\delta = \lim_{n \to \infty} \min_{a > 0} \left\{ \max_{0 \leq i \leq n} \left\{ \alpha_i + \beta_i + 1 - a_{i+1} - \frac{\alpha_i\beta_i}{a_i} + \delta_{\min}a_{n+1} \right\} \right\}.
$$

Here α_i, β_i, and γ_i are, respectively, the birth, death, and killing rate of the process in state i.

The hitch in the argument leading to the erroneous representation for ξ_1 in [1, Corollary 2] was caused by neglecting the requirement $a_{n+1} = 0$ when taking limits as $n \to \infty$ in [1, Eq. (11)], that is, in the inequalities

$$
\min_{1 \leq i \leq n} \left\{ c_i - a_{i+1} - \frac{\lambda}{a_i} \right\} \leq x_n \leq \max_{1 \leq i \leq n} \left\{ c_i - a_{i+1} - \frac{\lambda}{a_i} \right\}.
$$

This oversight invalidates the resulting upper bound for ξ_1 but not the lower bound, and therefore affects the second representation for ξ_1 but not the first. Similar remarks pertain to the representations for η_1.

One can easily see that the second representation for δ in [1, Theorem 3], and hence the second representation for ξ_1 in [1, Corollary 2], cannot be correct by considering a transient, pure birth–death process with $\gamma_0 = 0$, and noting that, on choosing $a_i = \alpha_{i-1}$, this representation leads to the conclusion $\delta \leq 0$, and hence $\delta = 0$, which is well known to be false in general.

References