Supporting Information

Siddappa et al. 10.1073/pnas.0711190105

Fig. S1. (a) Percentage ALP-positive cells in hMSCs grown in basic medium (Con), osteogenic medium (Dex), basic medium supplemented with 1 mM db-cAMP (cAMP), or osteogenic medium supplemented with 1 mM db-cAMP (Dex+cAMP). (b) Percentage ALP-positive cells grown in basic medium (Con), osteogenic medium (Dex), basic medium supplemented with forskolin (Forskolin), or osteogenic medium supplemented with forskolin (Dex+Forskolin).
hMSCs were grown in basic medium, basic medium supplemented with 1 mM db-cAMP (cAMP), osteogenic medium (Dex), or osteogenic medium supplemented with 1 mM db-cAMP (Dex + cAMP). Expression was analyzed by qPCR and is expressed as fold induction compared with cells grown in basic medium. The data were analyzed by using two-way ANOVA, and statistical significance is indicated compared with cells grown in basic medium. *, P < 0.05.
Fig. S3. (a) Methylene blue staining of hMSC-seeded scaffolds grown in basic medium (Con) or basic medium supplemented with 1 mM db-cAMP (cAMP) for 4 days. Note the less intensely stained db-cAMP-treated construct, indicating reduced cell numbers. (b) Quantitative Alamar blue assay for cell number analysis. The data were analyzed by using one-way ANOVA followed by Dunnet’s multiple-comparison test. Statistical significance is indicated compared with cells grown in basic medium (Con). *, $P < 0.05$.
Fig. S4. A light microscopic image (Left) and polarized light microscopic image (Right) showing areas of polarized light indicating the presence of lamellar bone that has been remodeled by osteoclasts and osteoblasts.
Table S1. Donor information of hMSCs used in the study

<table>
<thead>
<tr>
<th>Donor no.</th>
<th>Age, years</th>
<th>Sex</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>48</td>
<td>F</td>
<td>Iliac crest</td>
</tr>
<tr>
<td>D2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D3</td>
<td>39</td>
<td>F</td>
<td>Iliac crest</td>
</tr>
<tr>
<td>D4</td>
<td>40</td>
<td>M</td>
<td>Iliac crest</td>
</tr>
<tr>
<td>D5</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D6</td>
<td>55</td>
<td>M</td>
<td>Iliac crest</td>
</tr>
<tr>
<td>D7</td>
<td>65</td>
<td>F</td>
<td>Acetabulum</td>
</tr>
<tr>
<td>D8</td>
<td>52</td>
<td>F</td>
<td>Acetabulum</td>
</tr>
<tr>
<td>D9</td>
<td>82</td>
<td>F</td>
<td>Acetabulum</td>
</tr>
<tr>
<td>D10</td>
<td>31</td>
<td>F</td>
<td>Acetabulum</td>
</tr>
<tr>
<td>D11</td>
<td>44</td>
<td>F</td>
<td>Acetabulum</td>
</tr>
<tr>
<td>D12</td>
<td>74</td>
<td>M</td>
<td>Acetabulum</td>
</tr>
<tr>
<td>D13</td>
<td>52</td>
<td>M</td>
<td>Acetabulum</td>
</tr>
<tr>
<td>D14</td>
<td>65</td>
<td>M</td>
<td>Acetabulum</td>
</tr>
<tr>
<td>D15</td>
<td>26</td>
<td>F</td>
<td>Iliac crest</td>
</tr>
<tr>
<td>D16</td>
<td>80</td>
<td>M</td>
<td>Acetabulum</td>
</tr>
<tr>
<td>D17</td>
<td>58</td>
<td>F</td>
<td>Acetabulum</td>
</tr>
<tr>
<td>D18</td>
<td>62</td>
<td>F</td>
<td>Acetabulum</td>
</tr>
<tr>
<td>D19</td>
<td>40</td>
<td>F</td>
<td>Acetabulum</td>
</tr>
<tr>
<td>D20</td>
<td>29</td>
<td>F</td>
<td>Iliac crest</td>
</tr>
<tr>
<td>D21</td>
<td>40</td>
<td>F</td>
<td>Iliac crest</td>
</tr>
<tr>
<td>D22</td>
<td>26</td>
<td>F</td>
<td>Iliac crest</td>
</tr>
<tr>
<td>D23</td>
<td>23</td>
<td>M</td>
<td>Iliac crest</td>
</tr>
<tr>
<td>D24</td>
<td>70</td>
<td>F</td>
<td>Iliac crest</td>
</tr>
<tr>
<td>D25</td>
<td>32</td>
<td>F</td>
<td>Iliac crest</td>
</tr>
<tr>
<td>D26</td>
<td>63</td>
<td>F</td>
<td>Iliac crest</td>
</tr>
</tbody>
</table>

F, female; M, male.
<table>
<thead>
<tr>
<th>Accession no.</th>
<th>Sequence description</th>
<th>Fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM.003979</td>
<td>retinoic acid induced 3</td>
<td>100.0</td>
</tr>
<tr>
<td>NM.031209</td>
<td>tRNA-guanine transglycosylase</td>
<td>25.3</td>
</tr>
<tr>
<td>AI972496</td>
<td>insulin-like growth factor 1 (somatomedin C)</td>
<td>19.1</td>
</tr>
<tr>
<td>NM.002048</td>
<td>growth arrest-specific 1</td>
<td>16.9</td>
</tr>
<tr>
<td>X75296</td>
<td>HIR (histone cell cycle regulation defective)</td>
<td>16.7</td>
</tr>
<tr>
<td>M57765</td>
<td>interleukin 11</td>
<td>15.4</td>
</tr>
<tr>
<td>NM.020634</td>
<td>growth differentiation factor 3</td>
<td>14.1</td>
</tr>
<tr>
<td>BC004490</td>
<td>v-fos FBJ murine osteosarcoma viral oncogene homolog</td>
<td>13.8</td>
</tr>
<tr>
<td>NM.002522</td>
<td>neuronal pentraxin I</td>
<td>12.8</td>
</tr>
<tr>
<td>BC002671</td>
<td>dual specificity phosphatase 4</td>
<td>12.1</td>
</tr>
<tr>
<td>AK000667</td>
<td>a disintegrin and metalloproteinase domain 15 (metargidin)</td>
<td>12.0</td>
</tr>
<tr>
<td>NM.001989</td>
<td>even-skipped homeo box 1 (homolog of Drosophila)</td>
<td>11.2</td>
</tr>
<tr>
<td>NM.002193</td>
<td>inhibin, β B (activin AB β polypeptide)</td>
<td>10.8</td>
</tr>
<tr>
<td>AW157094</td>
<td>inhibitor of DNA binding 4,</td>
<td>10.5</td>
</tr>
<tr>
<td>AL050152</td>
<td>neuronal specific transcription factor DAT1</td>
<td>10.3</td>
</tr>
<tr>
<td>D83485</td>
<td>glucose regulated protein, 58kD</td>
<td>10.3</td>
</tr>
<tr>
<td>NM.0020639</td>
<td>ankyrin repeat domain 3</td>
<td>7.1</td>
</tr>
<tr>
<td>AB023167</td>
<td>lifeguard</td>
<td>7.0</td>
</tr>
<tr>
<td>NM.0019598</td>
<td>Homo sapiens kallikrein 12 (KLK12), mRNA</td>
<td>7.5</td>
</tr>
<tr>
<td>U87964</td>
<td>GTP binding protein 1</td>
<td>7.5</td>
</tr>
<tr>
<td>NM.000197</td>
<td>hydroxysteroid (17-β) dehydrogenase 3</td>
<td>7.5</td>
</tr>
<tr>
<td>NM.015725</td>
<td>retinol dehydrogenase 8 (all-trans)</td>
<td>7.5</td>
</tr>
<tr>
<td>NM.002166</td>
<td>inhibitor of DNA binding 2,</td>
<td>7.4</td>
</tr>
<tr>
<td>NM.001523</td>
<td>hyaluronan synthase 1</td>
<td>7.3</td>
</tr>
<tr>
<td>NM.003985</td>
<td>synuclein, α</td>
<td>7.3</td>
</tr>
<tr>
<td>NM.020639</td>
<td>ankyrin repeat domain 3</td>
<td>7.1</td>
</tr>
<tr>
<td>AB023167</td>
<td>lifeguard</td>
<td>7.0</td>
</tr>
<tr>
<td>NM.001718</td>
<td>bone morphogenetic protein 6</td>
<td>7.0</td>
</tr>
<tr>
<td>NM.016412</td>
<td>insulin-like growth factor 2, antisense</td>
<td>6.9</td>
</tr>
<tr>
<td>NM.001501</td>
<td>gonadotropin-releasing hormone 2</td>
<td>6.9</td>
</tr>
<tr>
<td>NM.012447</td>
<td>stromal antigen 3</td>
<td>6.9</td>
</tr>
<tr>
<td>NM.000552</td>
<td>von Willebrand factor</td>
<td>6.8</td>
</tr>
<tr>
<td>AL049250</td>
<td>Homo sapiens mRNA; cDNA DKFZp564D113</td>
<td>6.7</td>
</tr>
<tr>
<td>S62137</td>
<td>dopamine receptor D2</td>
<td>6.7</td>
</tr>
<tr>
<td>U51096</td>
<td>caudal type homeo box transcription factor 2</td>
<td>6.6</td>
</tr>
<tr>
<td>NM.003294</td>
<td>tryptase β 1</td>
<td>6.6</td>
</tr>
<tr>
<td>NM.002379</td>
<td>matrilin 1, cartilage matrix protein</td>
<td>6.6</td>
</tr>
<tr>
<td>NM.016321</td>
<td>Rh type C glycoprotein</td>
<td>6.6</td>
</tr>
<tr>
<td>NM.001269</td>
<td>chromosome condensation 1</td>
<td>6.5</td>
</tr>
<tr>
<td>AB018009</td>
<td>solute carrier family 7 (cationic amino acid transporter, y + system)</td>
<td>6.5</td>
</tr>
<tr>
<td>NM.016190</td>
<td>chromosome 1 open reading frame 10</td>
<td>6.5</td>
</tr>
<tr>
<td>NM.007185</td>
<td>trinucleotide repeat containing 4</td>
<td>6.4</td>
</tr>
<tr>
<td>NM.001886</td>
<td>crystallin, β 4A</td>
<td>6.4</td>
</tr>
<tr>
<td>NM.002251</td>
<td>potassium voltage-gated channel, delayed-rectifier, subfamily S</td>
<td>6.4</td>
</tr>
<tr>
<td>NM.012146</td>
<td>double homeobox, 1</td>
<td>6.3</td>
</tr>
<tr>
<td>NM.003975</td>
<td>SH2 domain protein 2A</td>
<td>6.3</td>
</tr>
<tr>
<td>BC000019</td>
<td>cadherin 6, type 2, K-cadherin (fetal kidney)</td>
<td>6.3</td>
</tr>
<tr>
<td>NM.004693</td>
<td>cytokeratin type II</td>
<td>6.2</td>
</tr>
<tr>
<td>NM.001881</td>
<td>cAMP responsive element modulator</td>
<td>6.2</td>
</tr>
<tr>
<td>Accession no.</td>
<td>Sequence description</td>
<td>Fold change</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NM.002993</td>
<td>small inducible cytokine subfamily B (Cys-X-Cys)</td>
<td>60.6</td>
</tr>
<tr>
<td>NM.001511</td>
<td>GRO1 oncogene</td>
<td>52.4</td>
</tr>
<tr>
<td>AF043337</td>
<td>interleukin 8</td>
<td>47.5</td>
</tr>
<tr>
<td>AA583044</td>
<td>bone morphogenetic protein 2</td>
<td>46.4</td>
</tr>
<tr>
<td>AW089415</td>
<td>secreted frizzled-related protein 4</td>
<td>37.1</td>
</tr>
<tr>
<td>NM.002923</td>
<td>regulator of G-protein signalling 2, 24kD</td>
<td>36.9</td>
</tr>
<tr>
<td>NM.012193</td>
<td>frizzled (Drosophila) homolog 4</td>
<td>35.5</td>
</tr>
<tr>
<td>NM.002150</td>
<td>4-hydroxyphenylpyruvate dioxygenase</td>
<td>32.1</td>
</tr>
<tr>
<td>BC002671</td>
<td>dual specificity phosphatase 4</td>
<td>31.5</td>
</tr>
<tr>
<td>NM.002090</td>
<td>GRO3 oncogene</td>
<td>31.4</td>
</tr>
<tr>
<td>NM.002899</td>
<td>retinol-binding protein 1, cellular</td>
<td>31.3</td>
</tr>
<tr>
<td>NM.004364</td>
<td>CCAAT/enhancer binding protein (C/EBP), α</td>
<td>30.6</td>
</tr>
<tr>
<td>M57731</td>
<td>GRO2 oncogene</td>
<td>30.1</td>
</tr>
<tr>
<td>NM.003469</td>
<td>secretogranin II (chromogranin C)</td>
<td>29.6</td>
</tr>
<tr>
<td>NM.018659</td>
<td>cytokine-like protein C17</td>
<td>29.1</td>
</tr>
<tr>
<td>NM.000959</td>
<td>prostaglandin F receptor (FP)</td>
<td>29.1</td>
</tr>
<tr>
<td>BE568134</td>
<td>tumor necrosis factor receptor superfamily, member 21</td>
<td>26.3</td>
</tr>
<tr>
<td>NM.002358</td>
<td>potassium channel, subfamily K, member 15 (TASK-5)</td>
<td>25.5</td>
</tr>
<tr>
<td>AL022067</td>
<td>PR domain containing 1, with ZNF domain</td>
<td>23.2</td>
</tr>
<tr>
<td>NM.000204</td>
<td>I factor (complement)</td>
<td>22.8</td>
</tr>
<tr>
<td>NM.003541</td>
<td>H4 histone family, member D</td>
<td>22.1</td>
</tr>
<tr>
<td>NM.003012</td>
<td>secreted frizzled-related protein 1</td>
<td>21.9</td>
</tr>
<tr>
<td>NM.031209</td>
<td>tRNA-guanine transglycosylase</td>
<td>21.0</td>
</tr>
<tr>
<td>X75296</td>
<td>HIR (histone cell cycle regulation defective)</td>
<td>20.5</td>
</tr>
<tr>
<td>NM.005668</td>
<td>sialyltransferase 8 (α -2, 8-sialyltransferase) D</td>
<td>19.9</td>
</tr>
<tr>
<td>NM.006763</td>
<td>BTG family, member 2</td>
<td>19.5</td>
</tr>
<tr>
<td>M57765</td>
<td>interleukin 11</td>
<td>19.2</td>
</tr>
<tr>
<td>NM.003881</td>
<td>WNT1 inducible signaling pathway protein 2</td>
<td>18.9</td>
</tr>
<tr>
<td>NM.007038</td>
<td>a disintegrin-like and metalloprotease</td>
<td>18.5</td>
</tr>
<tr>
<td>A1972496</td>
<td>insulin-like growth factor 1 (somatomedin C)</td>
<td>18.2</td>
</tr>
<tr>
<td>AB020739</td>
<td>serine/threonine kinase 16</td>
<td>18.1</td>
</tr>
<tr>
<td>AF047760</td>
<td>phosphatidic acid phosphatase type 2C</td>
<td>18.1</td>
</tr>
<tr>
<td>NM.002133</td>
<td>heme oxygenase (decycling) 1</td>
<td>18.0</td>
</tr>
<tr>
<td>NM.006758</td>
<td>U2(RNU2) small nuclear RNA auxiliary factor 1</td>
<td>16.7</td>
</tr>
<tr>
<td>NM.004693</td>
<td>cytokeratin type II</td>
<td>16.6</td>
</tr>
<tr>
<td>NM.001814</td>
<td>cathepsin C</td>
<td>16.3</td>
</tr>
<tr>
<td>AK000667</td>
<td>a disintegrin and metalloproteinase domain 15 (metargidin)</td>
<td>16.1</td>
</tr>
<tr>
<td>A1264312</td>
<td>trinucleotide repeat containing 1</td>
<td>15.7</td>
</tr>
<tr>
<td>NM.006678</td>
<td>CMRF35 leukocyte immunoglobulin-like receptor</td>
<td>15.7</td>
</tr>
<tr>
<td>NM.012417</td>
<td>retinal degeneration B β</td>
<td>15.4</td>
</tr>
<tr>
<td>NM.000623</td>
<td>bradykinin receptor B2</td>
<td>14.7</td>
</tr>
<tr>
<td>A1332979</td>
<td>potassium voltage-gated channel, subfamily G, member 1</td>
<td>14.6</td>
</tr>
<tr>
<td>NM.000041</td>
<td>apolipoprotein E</td>
<td>14.5</td>
</tr>
<tr>
<td>AU154455</td>
<td>lung type-I cell membrane-associated glycoprotein</td>
<td>14.1</td>
</tr>
<tr>
<td>NM.016287</td>
<td>HP1-BP74</td>
<td>14.1</td>
</tr>
<tr>
<td>NM.006207</td>
<td>platelet-derived growth factor receptor-like</td>
<td>14.0</td>
</tr>
<tr>
<td>NM.003081</td>
<td>synaptosomal-associated protein, 25kD</td>
<td>13.8</td>
</tr>
<tr>
<td>NM.012109</td>
<td>brain-specific membrane-anchored protein</td>
<td>13.4</td>
</tr>
<tr>
<td>NM.001523</td>
<td>hyaluronan synthase 1</td>
<td>13.2</td>
</tr>
<tr>
<td>NM.022036</td>
<td>G protein-coupled receptor, family C, group 5, member C</td>
<td>13.0</td>
</tr>
<tr>
<td>NM.004560</td>
<td>receptor tyrosine kinase-like orphan receptor 2</td>
<td>12.7</td>
</tr>
<tr>
<td>NM.002846</td>
<td>protein tyrosine phosphatase, receptor type, N</td>
<td>12.1</td>
</tr>
<tr>
<td>NM.012098</td>
<td>angiopoietin-like 2</td>
<td>12.1</td>
</tr>
<tr>
<td>BE622627</td>
<td>phosphoinositide-3-kinase, regulatory subunit, (p55, γ)</td>
<td>12.0</td>
</tr>
<tr>
<td>NM.016530</td>
<td>RAB-8b protein</td>
<td>11.7</td>
</tr>
<tr>
<td>NM.018494</td>
<td>leucine-rich and death domain containing</td>
<td>11.6</td>
</tr>
<tr>
<td>AA576961</td>
<td>pleckstrin homology-like domain, family A, member 1</td>
<td>11.6</td>
</tr>
<tr>
<td>D83485</td>
<td>glucose regulated protein, 58kD</td>
<td>11.3</td>
</tr>
<tr>
<td>NM.000784</td>
<td>cytochrome P450, subfamily XXVIIA</td>
<td>11.2</td>
</tr>
<tr>
<td>NM.003171</td>
<td>suppressor of var1 (S.cerevisiae) 3-like 1</td>
<td>11.2</td>
</tr>
<tr>
<td>NM.022453</td>
<td>ring finger protein 25</td>
<td>11.2</td>
</tr>
<tr>
<td>NM.025208</td>
<td>spinal cord-derived growth factor-8</td>
<td>10.4</td>
</tr>
<tr>
<td>NM.000693</td>
<td>aldehyde dehydrogenase 1 family, member A3</td>
<td>10.2</td>
</tr>
<tr>
<td>Accession no.</td>
<td>Sequence description</td>
<td>Fold change</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>NM.012254</td>
<td>very long-chain acyl-CoA synthetase homolog 2</td>
<td>10.2</td>
</tr>
<tr>
<td>AV753028</td>
<td>transducin (β)-like 1</td>
<td>9.9</td>
</tr>
<tr>
<td>AF097419</td>
<td>nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 1</td>
<td>9.8</td>
</tr>
<tr>
<td>NM.005025</td>
<td>serine (cysteine) proteinase inhibitor, clade I (neuroserpin)</td>
<td>9.8</td>
</tr>
<tr>
<td>NM.013261</td>
<td>PPR-γ, coactivator 1</td>
<td>9.7</td>
</tr>
<tr>
<td>AF260261</td>
<td>Homo sapiens Abl-interactor protein 2b (ABI2B) mRNA,</td>
<td>9.6</td>
</tr>
<tr>
<td>NM.004398</td>
<td>DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 10</td>
<td>9.6</td>
</tr>
<tr>
<td>NM.001248</td>
<td>ectonucleoside triphosphate diphosphohydrolase 3</td>
<td>9.5</td>
</tr>
<tr>
<td>NM.001998</td>
<td>fibulin 2</td>
<td>9.5</td>
</tr>
<tr>
<td>NM.005410</td>
<td>selenoprotein P, plasma, 1</td>
<td>9.4</td>
</tr>
<tr>
<td>AB029343</td>
<td>HCR (α-helix coiled-coil rod homologue) gene, complete cds.</td>
<td>9.3</td>
</tr>
<tr>
<td>NM.007115</td>
<td>tumor necrosis factor, α -induced protein 6</td>
<td>9.2</td>
</tr>
<tr>
<td>NM.006207</td>
<td>BH-protocadherin (brain-heart)</td>
<td>9.2</td>
</tr>
<tr>
<td>AF012074</td>
<td>phosphodiesterase 4D, cAMP-specific</td>
<td>9.0</td>
</tr>
<tr>
<td>NM.001517</td>
<td>general transcription factor IIH, polypeptide 4</td>
<td>9.0</td>
</tr>
<tr>
<td>NM.001804</td>
<td>caudal type homeo box transcription factor 1</td>
<td>9.0</td>
</tr>
<tr>
<td>NM.001809</td>
<td>hypothetical protein similar to β-transducin family</td>
<td>8.9</td>
</tr>
<tr>
<td>L12707</td>
<td>Wiskott-Aldrich syndrome (eczema-thrombocytopenia)</td>
<td>8.9</td>
</tr>
<tr>
<td>NM.006614</td>
<td>cell adhesion molecule with homology to LCAM</td>
<td>8.9</td>
</tr>
<tr>
<td>NM.002585</td>
<td>pre-B-cell leukemia transcription factor 1</td>
<td>8.7</td>
</tr>
<tr>
<td>NM.007185</td>
<td>trinucleotide repeat containing 4</td>
<td>8.6</td>
</tr>
<tr>
<td>NM.001415</td>
<td>eukaryotic translation initiation factor 2, subunit 3 (γ)</td>
<td>8.6</td>
</tr>
<tr>
<td>AK021882</td>
<td>ras homolog gene family, member I</td>
<td>8.6</td>
</tr>
<tr>
<td>NM.003427</td>
<td>zinc finger protein 76 (expressed in testis)</td>
<td>7.9</td>
</tr>
<tr>
<td>NM.002231</td>
<td>kangai 1</td>
<td>8.3</td>
</tr>
<tr>
<td>NM.002674</td>
<td>pro-melanin-concentrating hormone</td>
<td>8.2</td>
</tr>
<tr>
<td>NM.001670</td>
<td>armadillo repeat gene deletes in velocardiofacial syndrome</td>
<td>8.2</td>
</tr>
<tr>
<td>NM.002120</td>
<td>major histocompatibility complex, class II, DO β</td>
<td>8.0</td>
</tr>
<tr>
<td>NM.005213</td>
<td>cystatin A (stefin A)</td>
<td>7.9</td>
</tr>
<tr>
<td>NM.000809</td>
<td>γ-aminobutyric acid (GABA) A receptor, α 4</td>
<td>7.9</td>
</tr>
<tr>
<td>NM.004566</td>
<td>6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3</td>
<td>7.9</td>
</tr>
<tr>
<td>NM.014343</td>
<td>claudin 13</td>
<td>7.9</td>
</tr>
<tr>
<td>NM.005771</td>
<td>retinol dehydrogenase homolog</td>
<td>7.9</td>
</tr>
<tr>
<td>L12711</td>
<td>transketolase (Wernicke-Korsakoff syndrome)</td>
<td>7.9</td>
</tr>
<tr>
<td>NM.005174</td>
<td>putative lymphocyte G0/G1 switch gene</td>
<td>7.9</td>
</tr>
<tr>
<td>NM.005019</td>
<td>phosphodiesterase 1A, calmodulin-dependent</td>
<td>7.8</td>
</tr>
<tr>
<td>NM.018933</td>
<td>protocadherin β 13</td>
<td>7.7</td>
</tr>
<tr>
<td>NM.004961</td>
<td>γ-aminobutyric acid (GABA) A receptor, epsilon</td>
<td>7.6</td>
</tr>
<tr>
<td>BF575514</td>
<td>pre-8-cell colony-enhancing factor</td>
<td>7.5</td>
</tr>
<tr>
<td>NM.003427</td>
<td>zinc finger protein 76 (expressed in testis)</td>
<td>7.5</td>
</tr>
<tr>
<td>BC000658</td>
<td>stanniocalcin 2</td>
<td>7.4</td>
</tr>
<tr>
<td>AF284095</td>
<td>adrenergic, α -2A-, receptor</td>
<td>7.4</td>
</tr>
<tr>
<td>NM.004908</td>
<td>testicular haploid expressed gene</td>
<td>7.4</td>
</tr>
<tr>
<td>NM.002281</td>
<td>keratin, hair, basic, 1</td>
<td>7.4</td>
</tr>
<tr>
<td>NM.002610</td>
<td>pyruvate dehydrogenase kinase, isoenzyme 1</td>
<td>7.3</td>
</tr>
<tr>
<td>NM.005230</td>
<td>E2F-like tumor suppressor domain protein (SRF accessory protein 2)</td>
<td>7.3</td>
</tr>
<tr>
<td>NM.002247</td>
<td>carbohydrate (N-acetylgalactosamine 4–0) sulfo transferase 8</td>
<td>7.3</td>
</tr>
<tr>
<td>NM.006222</td>
<td>phospholipid transfer protein</td>
<td>7.3</td>
</tr>
<tr>
<td>NM.020133</td>
<td>lysophosphatidic acid acyltransferase-δ</td>
<td>7.3</td>
</tr>
<tr>
<td>NM.006271</td>
<td>S100 calcium-binding protein A1</td>
<td>7.2</td>
</tr>
<tr>
<td>NM.002427</td>
<td>matrix metalloproteinase 13 (collagenase 3)</td>
<td>7.2</td>
</tr>
<tr>
<td>NM.013281</td>
<td>fibronectin leucine rich transmembrane protein 3</td>
<td>7.1</td>
</tr>
<tr>
<td>AF105974</td>
<td>hemoglobin, α 2</td>
<td>7.1</td>
</tr>
<tr>
<td>NM.000850</td>
<td>glutathione S-transferase M4</td>
<td>7.1</td>
</tr>
<tr>
<td>NM.004152</td>
<td>killer cell immunoglobulin-like receptor,</td>
<td>7.1</td>
</tr>
<tr>
<td>NM.000451</td>
<td>short stature homeobox</td>
<td>7.0</td>
</tr>
<tr>
<td>NM.004313</td>
<td>arrestin, β 2</td>
<td>7.0</td>
</tr>
<tr>
<td>NM.002563</td>
<td>CAT56 protein</td>
<td>7.0</td>
</tr>
<tr>
<td>Accession no.</td>
<td>Sequence description</td>
<td>Fold change</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>NM_005261</td>
<td>GTP-binding protein overexpressed in skeletal muscle</td>
<td>7.0</td>
</tr>
<tr>
<td>NM_006675</td>
<td>tetraspan transmembrane 4 super family</td>
<td>7.0</td>
</tr>
<tr>
<td>A1433463</td>
<td>membrane metallo-endopeptidase</td>
<td>6.9</td>
</tr>
<tr>
<td>M60334</td>
<td>major histocompatibility complex, class II, DR α</td>
<td>6.9</td>
</tr>
<tr>
<td>L76668</td>
<td>killer cell immunoglobulin-like receptor</td>
<td>6.8</td>
</tr>
<tr>
<td>AL554008</td>
<td>G protein-coupled receptor 56</td>
<td>6.8</td>
</tr>
<tr>
<td>NM_004387</td>
<td>cardiac-specific homeo box</td>
<td>6.8</td>
</tr>
<tr>
<td>AF133425</td>
<td>tetraspan 1</td>
<td>6.7</td>
</tr>
<tr>
<td>BC002538</td>
<td>serine (or cysteine) proteinase inhibitor, clade B (ovalbumin)</td>
<td>6.7</td>
</tr>
<tr>
<td>NM_001419</td>
<td>lipopolysaccharide-binding protein</td>
<td>6.6</td>
</tr>
<tr>
<td>NM_001993</td>
<td>coagulation factor III (thromboplastin, tissue factor)</td>
<td>6.6</td>
</tr>
<tr>
<td>AF216693</td>
<td>interleukin-1 receptor antagonist homolog 1 (IL1HY1)</td>
<td>6.6</td>
</tr>
<tr>
<td>NM_014434</td>
<td>NADPH-dependent FMN and FAD containing oxidoreductase</td>
<td>6.6</td>
</tr>
<tr>
<td>NM_000537</td>
<td>Rennin</td>
<td>6.6</td>
</tr>
<tr>
<td>NM_000898</td>
<td>monoamine oxidase B</td>
<td>6.6</td>
</tr>
<tr>
<td>J03225</td>
<td>tissue factor pathway inhibitor</td>
<td>6.6</td>
</tr>
<tr>
<td>NM_005227</td>
<td>ephrin-A4</td>
<td>6.5</td>
</tr>
<tr>
<td>AW08362</td>
<td>splicing factor, arginine/serine-rich 5</td>
<td>6.5</td>
</tr>
<tr>
<td>NM_00173</td>
<td>ATPase, Ca<sup>2+</sup> transporting, ubiquitous</td>
<td>6.5</td>
</tr>
<tr>
<td>NM_006332</td>
<td>interferon, γ -inducible protein 3</td>
<td>6.5</td>
</tr>
<tr>
<td>NM_004694</td>
<td>solute carrier family 16 (monocarboxylic acid transporters)</td>
<td>6.4</td>
</tr>
<tr>
<td>NM_005524</td>
<td>hairy (Drosophila)-homolog</td>
<td>6.4</td>
</tr>
<tr>
<td>NM_006078</td>
<td>calcium channel, voltage-dependent, γ subunit 2</td>
<td>6.4</td>
</tr>
<tr>
<td>NM_0022661</td>
<td>SPANX family, member C</td>
<td>6.4</td>
</tr>
<tr>
<td>NM_003654</td>
<td>carbohydrate (keratan sulfate Gal-6) sulfotransferase 1</td>
<td>6.3</td>
</tr>
<tr>
<td>NM_000727</td>
<td>calcium channel, voltage-dependent, γ subunit 1</td>
<td>6.3</td>
</tr>
<tr>
<td>BC001422</td>
<td>placental growth factor, vascular endothelial growth factor-related protein</td>
<td>6.3</td>
</tr>
<tr>
<td>AB018009</td>
<td>solute carrier family 7</td>
<td>6.2</td>
</tr>
<tr>
<td>NM_001269</td>
<td>chromosome condensation 1</td>
<td>6.2</td>
</tr>
<tr>
<td>NM_004426</td>
<td>early development regulator 1 (homolog of polyhomeotic 1)</td>
<td>6.2</td>
</tr>
<tr>
<td>NM_004982</td>
<td>potassium inwardly-rectifying channel, subfamily J</td>
<td>6.2</td>
</tr>
<tr>
<td>NM_003531</td>
<td>H3 histone family, member C</td>
<td>6.1</td>
</tr>
<tr>
<td>AV724216</td>
<td>NDRG family, member 4</td>
<td>6.1</td>
</tr>
<tr>
<td>NM_0022720</td>
<td>DiGeorge syndrome critical region gene 8</td>
<td>6.1</td>
</tr>
<tr>
<td>M65062</td>
<td>insulin-like growth factor binding protein 5</td>
<td>6.1</td>
</tr>
<tr>
<td>AF217487</td>
<td>killer cell immunoglobulin-like receptor, two domains, lo</td>
<td>6.1</td>
</tr>
<tr>
<td>A8014719</td>
<td>amyloid β (A4) precursor protein-binding, family A,</td>
<td>6.1</td>
</tr>
<tr>
<td>U39004</td>
<td>mitogen-activated protein kinase 8</td>
<td>6.0</td>
</tr>
<tr>
<td>ALS13917</td>
<td>solute carrier family 16 (monocarboxylic acid transporters)</td>
<td>6.0</td>
</tr>
<tr>
<td>NM_006250</td>
<td>proline-rich protein Haelli subfamily 1</td>
<td>6.0</td>
</tr>
<tr>
<td>NM_007009</td>
<td>zona pellucida binding protein</td>
<td>6.0</td>
</tr>
<tr>
<td>NM_021046</td>
<td>UHS KerB</td>
<td>6.0</td>
</tr>
<tr>
<td>NM_005222</td>
<td>distal-less homeo box 6</td>
<td>5.9</td>
</tr>
<tr>
<td>NM_003116</td>
<td>sperm associated antigen 4</td>
<td>5.9</td>
</tr>
<tr>
<td>NM_021181</td>
<td>19A24 protein</td>
<td>5.8</td>
</tr>
<tr>
<td>NM_016582</td>
<td>peptide transporter 3</td>
<td>5.8</td>
</tr>
<tr>
<td>NM_019598</td>
<td>Homo sapiens kalli krein 12 (KLK12), mRNA</td>
<td>5.8</td>
</tr>
<tr>
<td>NM_000924</td>
<td>phosphodiesterase 1B, calmodulin-dependent</td>
<td>5.8</td>
</tr>
<tr>
<td>NM_015872</td>
<td>kruppel-related zinc finger protein hcKrox</td>
<td>5.8</td>
</tr>
<tr>
<td>NM_014571</td>
<td>hairy/enhancer-of-split related with YRPW motif-like</td>
<td>5.8</td>
</tr>
<tr>
<td>NM_022728</td>
<td>neurogenic differentiation 6</td>
<td>5.8</td>
</tr>
<tr>
<td>NM_018441</td>
<td>peroxisomal trans 2-enoyl CoA reductase</td>
<td>5.7</td>
</tr>
<tr>
<td>NM_030772</td>
<td>connexin 59</td>
<td>5.7</td>
</tr>
<tr>
<td>NM_004794</td>
<td>RAB33A, member RAS oncogene family</td>
<td>5.7</td>
</tr>
<tr>
<td>NM_004148</td>
<td>ninjurin 1</td>
<td>5.6</td>
</tr>
<tr>
<td>NM_005076</td>
<td>contactin 2 (axonal)</td>
<td>5.6</td>
</tr>
<tr>
<td>NM_006037</td>
<td>histone deacetylase 4</td>
<td>5.5</td>
</tr>
<tr>
<td>M69148</td>
<td>midkine (neurite growth-promoting factor 2)</td>
<td>5.5</td>
</tr>
<tr>
<td>NM_012351</td>
<td>olfactory receptor, family 10, subfamily J, member 1</td>
<td>5.5</td>
</tr>
<tr>
<td>BF061658</td>
<td>transforming growth factor, β 2</td>
<td>5.4</td>
</tr>
<tr>
<td>NM_018939</td>
<td>protocadherin β 6</td>
<td>5.4</td>
</tr>
<tr>
<td>NM_001406</td>
<td>ephrin-B3</td>
<td>5.4</td>
</tr>
<tr>
<td>NM_001958</td>
<td>eukaryotic translation elongation factor 1 α 2</td>
<td>5.4</td>
</tr>
<tr>
<td>NM_018937</td>
<td>protocadherin β 3</td>
<td>5.4</td>
</tr>
<tr>
<td>NM_030930</td>
<td>unc93 (C.elegans) homolog 8</td>
<td>5.4</td>
</tr>
<tr>
<td>Accession no.</td>
<td>Sequence description</td>
<td>Fold change</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>U91903</td>
<td>frizzled-related protein</td>
<td>5.4</td>
</tr>
<tr>
<td>AF172331</td>
<td>regenerating islet-derived 1 α</td>
<td>5.4</td>
</tr>
<tr>
<td>NM.005266</td>
<td>gap junction protein, α 5, 40kD (connexin 40)</td>
<td>5.4</td>
</tr>
<tr>
<td>NM.000129</td>
<td>coagulation factor XIII, A1 polypeptide</td>
<td>5.4</td>
</tr>
<tr>
<td>NM.002479</td>
<td>myogenin (myogenic factor 4)</td>
<td>5.4</td>
</tr>
<tr>
<td>AA988241</td>
<td>RAB3A, member RAS oncogene family</td>
<td>5.3</td>
</tr>
<tr>
<td>NM.001169</td>
<td>aquaporin 8</td>
<td>5.3</td>
</tr>
<tr>
<td>NM.002573</td>
<td>platelet-activating factor acetylhydrolase, isoform lb,</td>
<td>5.3</td>
</tr>
<tr>
<td>NM.018684</td>
<td>hepatocellular carcinoma-associated antigen 127</td>
<td>5.3</td>
</tr>
<tr>
<td>NM.003508</td>
<td>frizzled (Drosophila) homolog 9</td>
<td>5.3</td>
</tr>
<tr>
<td>NM.014580</td>
<td>solute carrier family 2, (facilitated glucose transporter)</td>
<td>5.3</td>
</tr>
<tr>
<td>AJ297586</td>
<td>major histocompatibility complex, class II, DR β1</td>
<td>5.3</td>
</tr>
<tr>
<td>NM.022047</td>
<td>differentially expressed in FDCP (mouse homolog)</td>
<td>5.3</td>
</tr>
<tr>
<td>NM.003967</td>
<td>putative neurotransmitter receptor</td>
<td>5.3</td>
</tr>
<tr>
<td>NM.005029</td>
<td>paired-like homeodomain transcription factor 3</td>
<td>5.3</td>
</tr>
<tr>
<td>NM.002339</td>
<td>lymphocyte-specific protein 1</td>
<td>5.2</td>
</tr>
<tr>
<td>NM.006419</td>
<td>small inducible cytokine B subfamily</td>
<td>5.2</td>
</tr>
<tr>
<td>U65590</td>
<td>Homo sapiens IL-1 receptor antagonist IL-1Ra</td>
<td>5.2</td>
</tr>
<tr>
<td>NM.016109</td>
<td>angiopoietin-like 4</td>
<td>5.2</td>
</tr>
<tr>
<td>NM.020547</td>
<td>anti-Mullerian hormone receptor, type II</td>
<td>5.2</td>
</tr>
<tr>
<td>NM.005130</td>
<td>heparin-binding growth factor binding protein</td>
<td>5.2</td>
</tr>
<tr>
<td>NM.014440</td>
<td>interleukin 1, epsilon</td>
<td>5.1</td>
</tr>
<tr>
<td>NM.000458</td>
<td>transcription factor 2, hepatic; LF-B3;</td>
<td>5.1</td>
</tr>
<tr>
<td>BC003143</td>
<td>dual specificity phosphatase 6</td>
<td>5.1</td>
</tr>
<tr>
<td>NM.006695</td>
<td>RaP2 interacting protein 8</td>
<td>5.1</td>
</tr>
<tr>
<td>AF031924</td>
<td>BarH-like homeobox 2</td>
<td>5.0</td>
</tr>
<tr>
<td>NM.002036</td>
<td>Duffy blood group</td>
<td>5.0</td>
</tr>
<tr>
<td>NM.021158</td>
<td>protein kinase domains containing protein similar to phosphoprotein C8FW</td>
<td>5.0</td>
</tr>
<tr>
<td>NM.014298</td>
<td>quinolinate phosphoribosyltransferase</td>
<td>5.0</td>
</tr>
</tbody>
</table>