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Modeling Correlation of Quantized Noise
and Periodic Signals
André B. J. Kokkeler and André W. Gunst

Abstract—A model for determining the cross-correlation func-
tion of partially correlated noise is presented. In this model a strong
interferer is included and represented by a periodic signal common
to both channels of the correlator. A general expression for the cor-
relation function is deduced and verified. The power spectrum of a
calculated correlation function is compared with a simulation. The
results presented in this paper form a base for the design of modern
multibit correlators. These are part of future generation radio as-
tronomy receivers which increasingly have to cope with man-made
interfering signals.

Index Terms—A/D converters, correlation, dither, quantization.

I. INTRODUCTION

WITHIN radio astronomy, the radio window of the earth’s
atmosphere (roughly from 20 MHz to 30 GHz) is used

for observations of celestial objects. In general, the power of
the radiation received from these objects is below the power
of the noise produced in the analog parts of a radio astronomy
receiver (RA receiver). A technique to reduce the effects of the
noise is to cross-correlate signals within a multiple-telescope
RA receiver. This way, signals up to 70 dB below the noise level
can be detected.

Interference, common to all telescopes, remains visible
after cross-correlation. As a result of the nonlinearity of the
analog-to-digital converter (A/D converter), harmonics of the
interference are present as well, contaminating the whole
spectrum. RA receivers have been designed to have sufficient
selectivity in the analog paths to the A/D converters to remove
interference. Because of the increasing bandwidth of the A/D
converters and the growing use of the electro magnetic spec-
trum, the condition that the signals at the input of the A/D
converters do not contain interference is no longer satisfied. For
the design of modern RA receivers, it is therefore necessary
to be able to analyze the effect of narrowband interference for
different resolutions of the A/D converter.

The effects of quantization for the case no interference is
present is studied in [1] and [2]. This work is strongly related to
the analysis of quantizing systems using nonsubtractive dither
[3], where the measured correlation coefficients equal the non-
subtractive dithered second order moments.

Manuscript received December 24, 2003; revised February 15, 2004. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Xiang-Gen Xia.

A. B. J. Kokkeler is with the Department of Electrical Engineering, Com-
puter Science and Mathematics, University of Twente, 7500 AE Enschede, The
Netherlands (e-mail: a.b.j.kokkeler@utwente.nl).

A. W. Gunst is with the Netherlands Foundation for Research in Astronomy
(ASTRON), 7990 AA Dwingeloo, The Netherlands (e-mail: gunst@astron.nl).

Digital Object Identifier 10.1109/LSP.2004.835481

Fig. 1. A general correlator model.

The cross-correlation of noise and periodic signals has been
studied in [4] but only in case of extreme clipping and a small
signal-to-noise ratio (SNR). Multibit quantization and arbitrary
SNRs are not considered. Multibit quantization of sinusoidal
signals has been studied intensively (see [5] and [6]), but the
developed theory is not applicable to correlation configurations.

Within this paper, a generic model of a cross-correlator for
different types of input signals is given. A novel general ex-
pression for the measured cross-correlation function in case of
multibit quantization of a signal containing noise and a periodic
signal is found. This expression is elaborated in case the periodic
signal is a sinusoidal signal. Only quantization effects are con-
sidered. We check the expression against known results and con-
clude with an example of a calculated and simulated spectrum.

II. A GENERAL CORRELATOR MODEL

A. The Correlation Function

The correlation function of a sine wave plus noise after ex-
treme clipping has been determined in [4]. Based on that anal-
ysis, a general correlator model is presented in Fig. 1.

There are two wide-sense stationary noise signals and .
A periodic signal is added to both and . The resulting
signals and are quantized by and , respectively, and
cross -correlated. Because and are wide-sense stationary,
the noise inputs can be described with a bivariate normal distri-
bution. Without loss of generality it is assumed that and

for both and . If we consider and at the
respective times and , the correlation equals . and

are quantized by an N-bit mid-riser quantizer with unit step
size

(1)
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is Heaviside’s step function and determines the granularity
of the quantization process. After quantization, and are
multiplied and averaged. We define the time-dependent corre-
lation function as the ensemble average of and

(2)

The correlation function equals the time average of
over one cycle of the periodic signal with period

(see [4]). If the signal after multiplication is sampled and
integrated, is described by

(3)

B. Splitting the Noise Sources

As is done in [7], the two signals and can be modeled
by three uncorrelated Gaussian noise sources and ,
all having and

(4)

(5)

The operator is defined as

(6)

The periodic signal is added to both and . The com-
ponents due to and are defined as displacements

(7)

(8)

This leads to the following expressions for and

(9)

(10)

For both quantizers, the input is the sum of two stochastic sig-
nals. Signals due to and are uncorrelated and have power

, while the displacements and depend on . The
power of equals 1. The time-dependent correlation function

can be written as the ensemble average over the three
noise sources and

(11)

where

(12)

(13)

By rearranging this formula, two gain functions and can
be defined

(14)

where

(15)

(16)

C. Elaborating

The quantization staircase consists of an ideal transfer func-
tion and an error (see [6])

(17)

Using this in (15), using standard rules for integration and
trigonometry, and inserting (7), the expression for can be
written as

(18)

A similar expression can be found for , where is
replaced by and by .

D. Final Expression

Using the expressions for and (see (14)) can
be calculated. In Appendix A, an expression is given for any
periodic signal . If the input signal is defined as

, the following expressions can be used to rewrite
the equation in Appendix A

(19)

(20)

is the th-order Bessel function of the first kind.
can then be expressed as

(21)
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where

An interpretation of the distortion coefficients is that and
represent the distortion of the correlated noise part. represents
the distortion of the sinusoidal signal. and represent
a combined effect.

An alternative approach to calculating the cross-correlation
function in case no interference is present , is to
use the second-order joint-moment given as

(22)

For the elaborated version of this formula, we refer to [8]. The
gain of the system is influenced by and the error is reflected
by . Both and are defined in [8] and depend on

and , the expected values of and , respectively. The
more intuitive analysis presented above equals the analysis of
the second-order joint moments when .

III. CASE STUDIES

A. Single-Bit Quantization of Noise

In the case of single-bit quantization of noise, there is a
one-to-one relation between the correlation function of the
signals before quantization and the correlation function
after quantization . This relation is well known as the
Van Vleck relation (see [9]). The Van Vleck relation used in
the configuration described above equals

(23)

where the additional factor is caused by the two possible
output values of the A/D converter being and in-
stead of and 1. This Van Vleck relation should equal expres-
sion (21). For single-bit quantization of noise, the scaling factor
before quantization is small and the amplitude of the
periodic signal is set to zero . Using these values, expres-
sion (21) cannot simply be reduced to the Van Vleck relation.
We therefore calculated and separately and com-
pared the results. For the summations over and

run from 1 to 50. From the calculations it appears that the
difference between and is smaller than 1.6 .

This difference becomes smaller if and run over a
larger range. This illustrates that expression (21) is correct for
single-bit quantization of noise.

B. Multibit Quantization of a Sinusoidal Signal Without Noise

This situation occurs if the noise powers before quantization
(and after scaling with ) are small. This means that is small.
The power of the sinusoidal signal is nonzero. The
measured correlation function then becomes

(24)

where

The amplitude of the fundamental of the sinusoidal signal
becomes

(25)

For the harmonic signals , the amplitudes of
equal . The amplitudes found this way equal half the squared
gain factors found in [6]. This is to be expected, since in [6],
the output signal of a single A/D converter as a function of time
is considered, while in this document we are interested in the
correlation function of this signal giving power.

C. An Example of a Spectrum

As an example, we calculated the cross-correlation of a
2.5 LSB sinusoidal signal with LSB root mean square
(rms) noise at the quantization staircases using (21). The
noise at the two A/D converters is partially correlated with

. We also simulated the set-up where we used
pseudorandom noise sources to model , and . The
cross-correlation function is used to determine the cross-power
spectral density. The results of both the calculation and the
simulation are given in Fig. 2.

The bandwidth of the correlated noise signal is
nd of the sampling frequency and the frequency of the

sinusoidal signal is th of the sampling frequency. It is
chosen this way in order to illustrate the effect that the noise
spectrum is repeated around the even harmonics of the sinu-
soidal signal. The bandwidth of the uncorrelated noise sources

and is half the sampling frequency.
A small difference between the simulated and calculated

spectrum can be observed. This is due to the fact that for
practical reasons, sampling before multiplication is used in
the simulation model. This sampling causes aliasing on both
inputs of the multiplier. Amplitudes of sinusoidal signals with
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Fig. 2. Normalized spectrum of a 2.5 LSB sinusoid plus a (1=4) LSB noise
with a correlation coefficient of 0.5. The solid curve shows the spectrum
obtained with a simulation model and the dashed curve shows the calculated
spectrum.

frequencies which do not overlap before sampling but which
do overlap after sampling, are summed. The derived model
assumes sampling only after the multiplication. After integra-
tion and Fourier transformation, values for frequencies which
overlap after sampling, are summed. These values represent
power. So, in the case of the simulated spectrum, the amplitude
of the sinusoidal signals with overlapping frequencies after
sampling are summed while in case of the calculated spectrum
only the power of these signals is summed. This explains the
small difference. By calculating the spectra in case more noise
is added to the channels of the cross correlator, the average
distortion is decreased which is also known as the “dithering”
effect (see, for example, [10]).

IV. CONCLUSION

A general expression for the correlation function in the case
of cross-correlating multibit quantized signals is determined
for input signals consisting of partially correlated noise and a
common periodic signal. Two extreme cases are: 1) the input
signal consists of only noise and 2) the input signal consists
of only a sinusoidal signal. For these cases, the results were
already known and match with the developed expression. All
other combinations of noise and periodic signals can also be an-
alyzed using the general expression of the correlation function.
In developing the model, the quantization staircase has been
decomposed into a linear transfer function and an error-saw
tooth. The effects of the error-saw tooth on the periodic signal
are analyzed. The effects of the correlated and uncorrelated
noise have been included. The well-known fact that noise
smoothes the quantization staircase of an A/D converter is
demonstrated with the above model. Not included in the model
is the effect of the uncorrelated noise and the sinusoidal signal
on the SNR of the measured correlation function and the effects

of the linearity errors of the A/D converters. These are subjects
for further study.

APPENDIX

A. General Expression of the Correlation Function

The general expression for with a periodic signal
can be written as

(26)
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