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Mixed State of a Dirty Two-Band Superconductor: Application to MgB2

A. E. Koshelev
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

A. A. Golubov
Department of Applied Physics, University of Twente, 7500 AE Enschede, The Netherlands

(Received 25 October 2002; published 29 April 2003)
177002-1
We investigate the vortex state in a two-band superconductor with strong intraband and weak
interband electronic scattering rates. Coupled Usadel equations are solved numerically, and the
distributions of the pair potentials and local densities of states are calculated for two bands at different
values of magnetic fields. The existence of two distinct length scales corresponding to different bands is
demonstrated. The results provide qualitative interpretation of recent scanning tunneling microscopy
experiments on vortex structure imaging in MgB2.
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tant observations have been made: large vortex core size corresponds to � bands and index 2 to � bands.
A very peculiar feature of the recently discovered
superconductor MgB2 [1] is the multigap nature of the
superconducting state. The possibility of such a state
was first predicted in [2,3] for a multiband superconduc-
tor with large disparity of the electron-phonon interac-
tion for the different Fermi-surface sheets. Various
aspects of multiband superconductivity, in particular,
the role of impurity scattering, were discussed theoreti-
cally in [4–7]. For MgB2, the two-band model was first
suggested in [8,9]. First-principles calculations show that
superconductivity in this compound resides in two groups
of bands: the group of two strongly superconducting �
bands and the group of two weakly superconducting �
bands. Quantitative predictions for Tc, energy gaps, spe-
cific heat [10,11], and tunneling [12] were made recently.

The signature of two energy gaps was observed in Nb
doped SrTiO3 [13]. But to date, only in MgB2 the exis-
tence of two distinct gaps has been most clearly demon-
strated. A large number of experimental data, in
particular, tunneling [14–16], point contact [17–19], and
heat capacity measurements [20], directly support the
concept of a double gap MgB2. It was argued in Ref. [21]
that the unexpectedly weak correlation between Tc
and the resistivity can be reconciled with the two-band
model, if one assumes that the interband impurity scat-
tering remains weak even in samples with strong intra-
band impurity scattering in the � band. In most presently
available MgB2 samples both bands are probably in
the dirty limit. Even in the best available crystals the
de Haas–van Alphen data [22] suggest that the � band is
moderately clean and the � band is moderately dirty.

Two-band superconductivity in MgB2 offers new in-
teresting physics. For example, it was demonstrated
that the anisotropies of the upper critical fields and the
London penetration depths are different and have oppo-
site temperature dependencies [23]. Recently, the c-axis
Abrikosov vortex structure in MgB2 was studied by scan-
ning tunneling microscopy (STM) [24]. Several impor-
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compared to estimates based on Hc2, the absence of zero-
bias singularity in the core and the rapid suppression of
the apparent tunneling gap by magnetic fields much
smaller than Hc2. It is important to note that c-axis
tunneling in MgB2 probes mainly the � band [15].

In this Letter, we provide a quantitative model for
the vortex structure in a dirty two-band supercon-
ductor. We demonstrate the existence of two different
spatial and magnetic field scales, consistent with the
data in [24]. The same conclusions have been reached in
Ref. [25] where the vortex structure in a clean two-band
superconductor has been studied on the basis of the
Bogoliubov–de Gennes equations.

We consider a two-band superconductor with weak
interband impurity scattering and rather strong intraband
scattering rates exceeding the corresponding energy gaps
(dirty limit). In this case the quasiclassical Usadel equa-
tions [26] are applicable within each band. The vortex
structure in a single-band dirty superconductor was
studied extensively in the framework of the Usadel equa-
tions [27,28]. To describe the mixed state in the consid-
ered case, one can generalize this approach and write
down the system of coupled Usadel equations
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where � � 1; 2 is the band index, �̂� is the matrix of
effective coupling constants (to be defined below), D�
are diffusion constants, which determine the coherence
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, G� and F� are normal and

anomalous Green’s functions connected by normalization
condition G2
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�F� � 1, � is the pair potential, and

! � �2n� 1��T are Matsubara frequencies. Bearing in
mind the application to MgB2, in our notations index 1
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In the considered case of weak interband scattering the
Green’s functions in different bands are coupled only
indirectly, via the self-consistency Eq. (2). We will show
that this leads to the existence of two different length
scales in different bands and, as a consequence, two
magnetic field scales appear which are directly accessible
experimentally. Such a situation has never existed in the
field of vortex physics. This is in contrast to the usual
proximity effect in real space (e.g., N=S multilayers),
where different energy and length scales reside in spa-
tially separated N, S layers.

We study the case when magnetic field is oriented along
the c axis. Further, we neglect in-plane anisotropy and
adopt a circular cell approximation for the vortex unit cell
[27] (see inset in Fig. 1).We also assume a large Ginzburg-
Landau parameter �� 1 (in MgB2, � * 10) and con-
sider magnetic fields much larger than the lower critical
field, so that we can neglect variations of the magnetic
field. We will use reduced variables: energy and length
will be measured in the units of �Tc and �1 ����������������������
D1=2�Tc

p
, respectively. The distribution of superfluid

momentum within the unit cell is then given by

p � 1=r� r=r2c; r2c � H1=H; H� � 2Tc�0=D�;

(3)

where r is the distance from the center of a vortex core.
Using � parametrization (F� � sin��, G� � cos��),

the Usadel equations and the self-consistency conditions
can be rewritten in the form
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with k21 � 1, k22 � D1=D2, ! � t�2n� 1�, t � T=Tc.
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FIG. 1 (color online). Local density of state for � band at
different points of vortex lattice unit cell at h � 0:1 for D1 �
D2 � 1. Inset illustrates the circular cell approximation and
shows points at which the spectra are presented.
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The matrix W�� is related to the coupling constants
��� as

W1 �
�A�

����������������������������
A2 ��12�21

p
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;
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A�

����������������������������
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p
Det

;

W12 � �12=Det; W21 � �21=Det;

(6)

where A � ��11 ��22�=2, Det � �11�22 ��12�21 [29].
Note that only three constants are independent since
W1W2 � W12W21. Partial local densities of states (DOS)
N��"; r�, which are accessible in tunneling experiments,
can be obtained from ���!; r� using analytic continu-
ation

N��"; r� � Re	cos���i!! "� i�; r��: (7)

The above set of Eqs. (3)–(7) fully defines the vortex
core structure in a diffusive two-band superconductor.
In general, a numerical solution is required to deter-
mine the behavior of the pair potentials and DOS in
both bands. The problem simplifies near the upper critical
field when Eqs. (4) can be linearized

@2r�� �
1
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@r�� � �1=r� r=r2c�

2�� � k2�!�� � �k2��:

These equations have exact solution [27]
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giving the relation �0� � 0�=�2=k
2
�r

2
c �!�. Substitut-

ing this result into the self-consistency equations, we
derive the equation for Hc2,
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and relation between 01 and 02 near Hc2,

02 �
W2101

W2 � ln1t � g� HtH2
�
; (9)

where g�x� �  �1=2� x� �  �1=2� and  �x� is a di-
gamma function. In the single-band case the upper criti-
cal field Hs

c2 is given by the standard Maki–de Gennes
equation

ln�1=t� � g	Hs
c2=�tH1��: (10)

The electron-phonon interaction in MgB2 was calcu-
lated from first principles in [8,10,11]. In Ref. [11] the
matrices of the electron-phonon coupling constants #ij
and the renormalized Coulomb pseudopotentials%�

ij were
derived for the effective two-band model. In this Letter
we use these results and define the effective constants
�ij � #ij �%�

ij in the weak coupling model, neglecting
the strong-coupling corrections, which is a reason-
able approximation for our purpose. The corresponding
numerical values are [11] �11 � 0:81, �22 � 0:278,
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FIG. 2 (color online). Spatial dependencies of pair potentials
[(a) and (b)] and partial DOS at E � 0 [(c) and (d)] for isolated
vortex for two ratios D1=D2: D1 � 0:2D2 and D1 � D2.
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FIG. 3 (color online). Field dependencies of maximum pair
potentials [(a) and (b)] and averaged DOS at ( � 0 [(c) and (d)]
for two ratios D1=D2: D1 � 0:2D2 and D1 � D2.
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�12 � 0:115, �21 � 0:091, from which we obtain values
of W�� used in numerical calculations, W1 � 0:088,
W2 � 2:56, W12 � 0:535, W21 � 0:424. With fixed
coupling constants the overall behavior is determined
by the ratio of the diffusion constants D1=D2. In this
Letter we present calculations for the ratio D1=D2 � 0:2,
which gives the best agreement with the experiment of
Ref. [24], and for the case of identical transport charac-
teristics in two bands D1=D2 � 1.

The magnetic field is measured with respect to the
single-band upper critical field of the � band, h �
H=Hs

c2�t�, where Hs
c2 is given by Eq. (10). For the case

W1  W2 realized in MgB2, the upper critical field is
mainly determined by the strong band. A small correction
due to the weak band can be found from Eq. (8) using an
expansion with respect to the small parameter S12 �
W1=W2. In particular, we found very simple expressions
for the slope of Hc2 at Tc and Hc2�0�:

dHc2

dT
�
dHs

c2

dT

�
1� S12

H2 �H1

H2

�
;

Hc2�0� � Hs
c2�0�	1� S12 ln�H2=H1��:

With the above parameters, we numerically solved
Eqs. (4) and (5a) for different magnetic fields. Figure 1
shows an example of local DOS for the � band at dif-
ferent points of the vortex unit cell. One can see that in
the center of the core there is no zero-energy peak in the
DOS in the core usually observed in clean supercon-
ductors [30]. This property is a consequence of the dirty
limit in the � band. As one can expect, the most pro-
nounced dependence on energy is observed at the bound-
ary of the vortex unit cell (curve 3 in Fig. 1). One can see
that the DOS is peaked at an energy about 3 times smaller
than max1. This peak corresponds to the small energy
gap in the second band.

We study the structure of an isolated vortex by solving
the Usadel equations at very small field (h � 0:002).
Figures 2(a) and 2(b) show the spatial dependence of
the pair potentials, 1�r� and 2�r�, and their ratio for
t � 0:1 for two cases: D1 � 0:2D2 and D1 � D2.
Figures 2(c) and 2(d) shows the DOS at zero energy,
N1�0; r�, and N2�0; r�. One can see that in the case of
D1 � 0:2D2 the pair potential and the DOS in the �
band demonstrate qualitatively different behavior. The
pair potentials approach their bulk values �;0 at the
length scale set by the strong band. 1 reaches half of
1;0 at r � 2:15�1 and 2 reaches half of 2;0 at a some-
what larger length scale, r � 3:44�1. �-band DOS,
N2�0; r�, has significantly longer range: it drops to 0:5 at
r � 6:35�1. Therefore the relation between N2�(; r� and
2�r� is essentially nonlocal. Though the above numbers
correspond to the specific choice of parameters for the
coupling matrix �ij, the large core size in the weakly
superconducting band is the general property of a two-
band superconductor.
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The two typical sizes of the isolated vortex determine
the two typical field scales. Figure 3 shows the field
dependence of the maximum values of the pair potentials
at the boundary of vortex unit cell [3(a) and 3(b)] and
DOS at ( � 0 averaged over the unit cell [3(c) and 3(d)].
One can see that for the case of D1 � 0:2D2 the average
DOS in the � band reaches its normal value at fields
considerably smaller than the upper critical field.

Recently, the c-axis vortex structure in MgB2 single
crystals was measured by STM [24]. Most strikingly, it
was observed that the spatial extension of the vortex core
was a few times larger than the length �10 nm estimated
from Hc2. Our model naturally explains this observation.
One can see from Fig. 4 that the apparent vortex size can
indeed exceed the size estimated from Hc2. The magni-
tude of the enhancement depends on the ratio of the
diffusion constants in the two bands. As follows from
numerical calculations, the apparent vortex size �v is
approximately given by the expression �v � 2:7�2 �
0:3�1. The low energy peak (around 2.2 meV) in the
region between the vortices and its rapid suppression by
magnetic field is also explained by our model.

The measured value of �v=�c2 � 3 corresponds in
our model to the ratio �2=�1 � 2. We cannot make a
177002-3
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quantitative comparison between the measured and cal-
culated values of �v, since scattering parameters in differ-
ent bands for MgB2 single crystals of Ref. [24] are not
known. Moreover, the available data on resistivity and the
de Haas–van Alphen effect [22] suggest that the � band
in MgB2 single crystals is in the clean limit. At the same
time, the � band, probed by c-axis tunneling, is moder-
ately dirty, which is consistent with theoretical estimates
[21]. Because of the increase of the effective coherence
length at low energies [26,27], the dirty limit condition in
the � band is certainly satisfied in the energy range E<
max2. This is consistent with the absence of localized
states in the vortex core as claimed in Ref. [24].

The diffusion constants in MgB2 are not known at
present and may depend on the type of scatterers. In
MgB2 single crystals, available estimates of scattering
rates [22] suggest that the � band is in the clean limit
and D1 * D2. However, our results should still be quali-
tatively applicable even in this case. Indeed, if we focus
on the DOS in the� band, which is in the dirty limit, then
the Usadel equation for Green’s function for this band is
still valid. The only extra input required is the coordinate
dependence of the pair potential 1 in the � band. The
shape of this dependence of 1 does not depend much on
the degree of dirtiness; only the scale �1 of this depen-
dence changes. Since in the clean � band �1 is indepen-
dent of D1, the D1=D2 ratio is not a relevant parameter.
With �1 defined as the typical scale of change of 1, the
plot in Fig. 4 is more general that the model used to obtain
it. This resolves an apparent contradiction between our
choice of D1;2 and transport data for MgB2.

In conclusion, we studied the vortex core structure in a
dirty two-band superconductor with weak interband scat-
tering. The distributions of the order parameters and local
DOS reveal two different spatial scales for the two bands,
in qualitative agreement with recent STM experiments on
MgB2. This further supports the two-band model in
MgB2 and also provides an interesting new type of vortex
core structure.
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