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[1] Uncertainties and errors in predictions by morphodynamic models of rivers with
nonuniform sediment are usually attributed to shortcomings pertaining to the submodel of
sediment transport. This mistakenly neglects shortcomings in the submodel of sediment
continuity, which describes the vertical sorting and the bed surface composition, whereas
the latter is one of the main input parameters for calculating sediment transport and thus
morphological changes. Hirano [1971, 1972] was the first to develop a sediment
continuity model for nonuniform sediment. Since this commonly used Hirano active layer
model and its variants suffer from a number of shortcomings, the authors have developed a
new type of sediment continuity model that describes the bed composition and vertical
sorting fluxes without distinguishing discrete bed layers. This continuum sorting model is
aimed at conditions dominated by bed forms and bed load transport. It is based on (1) the
Parker-Paola-Leclair framework for sediment continuity, (2) the Einstein step length
formulation, (3) a newly developed lee sorting function, and (4) a newly developed
method to account for the variability in bed form trough elevations. The resulting model is
deterministic in the computation of the vertical sorting profile and is probabilistic in terms
of the riverbed surface due to the presence of dunes. INDEX TERMS: 1815 Hydrology: Erosion

and sedimentation; 1824 Hydrology: Geomorphology (1625); 1869 Hydrology: Stochastic processes; 3210

Mathematical Geophysics: Modeling; KEYWORDS: river morphodynamics, sediment sorting, sediment

mixtures, bed forms, modeling

Citation: Blom, A., and G. Parker (2004), Vertical sorting and the morphodynamics of bed form–dominated rivers: A modeling

framework, J. Geophys. Res., 109, F02007, doi:10.1029/2003JF000069.

1. Introduction

[2] In morphological river models the bed material may
be characterized by one specific grain size in cases where
sediment sorting processes do not play a role. Vertical,
lateral, or longitudinal sorting of the bed material may occur
when the river bed is characterized by a range in grain sizes
as fine grains are picked up and transported more easily than
coarse ones. Through affecting the small-scale morphology
(e.g., dune dimensions, bed surface composition, and bed
roughness), sediment sorting also influences grain size-
selective sediment transport, changes in mean bed level,
and water levels.
[3] A change in mean bed level results from divergences

in the transport rate, which is expressed by the sediment
continuity equation or mass balance equation. In cases
where the bed material consists of multiple size fractions,
divergences in the transport rate of size fractions will result
in a change in the composition of the bed surface and/or
aggradation or degradation of the river bed. A further

complication in the mass balance is the preference of certain
size fractions to be deposited at specific bed elevations, i.e.,
the vertical sorting. A plane bed is often covered with a
coarse bed layer (mobile pavement or armor layer), whereas
under bed form conditions the coarse size fractions are
mainly found in the lower parts of the bed forms (Figure 1).
[4] Blom et al. [2003] describe sediment sorting mecha-

nisms that play a role under bed form-dominated conditions.
The above mentioned downward coarsening trend of bed
form material results from the avalanching of grains down
the bed form lee face [Bagnold, 1941; Allen, 1965]. When
conditions are well above the shear stresses for incipient
motion of all size fractions in the mixture, the coarse
sediment in the lower parts of the bed forms takes part in
the sediment transport processes. When conditions of partial
transport prevail and a significant amount of coarse material
is not or is barely transported by the flow, the coarse
sediment gathers below the migrating bed forms, forming
an essentially immobile coarse layer. Besides the avalanch-
ing process at the bed form lee face and partial transport, the
winnowing of fines from the trough surface and subsurface
also contributes to the formation of a coarse bed layer
underneath migrating bed forms.
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[5] The interaction among grain size-selective sediment
transport, vertical sorting, and net aggradation or degrada-
tion is described in terms of sediment continuity models.
Blom [2003] distinguishes four types of sediment continuity
models: burial depth models, bed layer models, grain-scale
models, and depth-continuous models. Burial depth models
describe the time evolution of the transport of (tracer)
particles and their burial into the bed [e.g., Crickmore and
Lean, 1962]. Strictly speaking, burial depth models are not
true sediment continuity models as they do not describe the
above interaction. Bed layer models are sediment continuity
models in which the bed is divided into a certain number of
discrete and homogeneous bed layers [e.g., Hirano, 1971].
Grain-scale models are defined as sediment continuity
models that consider sediment entrainment and deposition
at the scale of grains [e.g., Tsujimoto and Motohashi, 1990],
whereas the other types consider processes at a scale of a
large number of bed forms. Depth-continuous models do
not distinguish discrete bed layers [Armanini, 1995; Parker
et al., 2000]. They include a probability density function of
bed surface elevations so as to account for the likelihood of
a bed elevation being exposed to the flow.
[6] Hirano [1971, 1972] was the first to develop a

sediment continuity model for nonuniform sediment. In
his active layer model the bed is divided into a homoge-
neous top layer, i.e., the active layer, and a nonmoving
substrate. The active layer represents the part of the bed that
interacts with the flow and that determines the rate and
composition of the transported sediment. Sediment fluxes
between the active layer and the substrate occur in case of

net aggradation or degradation only. Various authors have
proposed additions to the Hirano active layer model [also
see Blom, 2003]: (1) introduction of a term describing the
time evolution of the storage of sediment in a thin bed load
layer on top of the active layer [Armanini and Di Silvio,
1988; Parker, 1991; Di Silvio, 1992]; (2) introduction of a
formulation for suspended load transport [Armanini and Di
Silvio, 1988; Holly and Rahuel, 1990; Di Silvio, 1992];
(3) introduction of a formulation for particle abrasion
[Parker, 1991]; (4) modifications to the composition of
the depositional flux to the substrate [Parker, 1991; Hoey
and Ferguson, 1994; Toro-Escobar et al., 1996]; (5) intro-
duction of an additional layer below the active layer to
account for vertical sediment exchange due to occasionally
deep bed form troughs [Ribberink, 1987; Di Silvio, 1992];
(6) subdivision of the nonmoving substrate into different
layers for bookkeeping purposes [Sloff et al., 2001]; and
(7) introduction of a mixing coefficient to account for the
effects of biological mixing on tidal flats in estuaries (i.e.,
bioturbation) [Van Ledden and Wang, 2001]. Yet, the Hirano
bed layer model and its variants suffer from a number of
shortcomings. They fail to describe vertical sorting fluxes
through bed form migration, i.e., through grain size-selec-
tive deposition down the bed form lee face and the vari-
ability in trough elevations. In most sediment continuity
models, vertical sediment fluxes within the bed occur
through net aggradation or degradation only, whereas flume
experiments have shown that these fluxes also occur in
situations without net aggradation or degradation [e.g.,
Blom et al., 2003]. Another problem of the bed layer models
is that in certain situations, their set of equations becomes
elliptic in parts of the space-time domain [Ribberink, 1987].
Solving the set of equations then requires future time
boundaries, which is physically unrealistic. A final problem
is that the definition of the thickness of the bed layers
remains rather arbitrary. From a physical point of view, it is
not straightforward to distinguish between the range of bed
elevations interacting with the flow regularly (i.e., the active
layer), the range interacting with the flow only occasionally
(i.e., the exchange layer in the Ribberink two-layer model),
and the range not interacting with the flow at all (i.e., the
substrate). In morphological models the bed layers’ thick-
nesses are therefore usually simply used as calibration
parameters.
[7] In order to overcome these shortcomings, the authors

have developed a new depth-continuous sediment continu-
ity model, i.e., a continuum sorting model. The present
paper describes its components and its derivation. The
continuum sorting model is based on the framework for
sediment continuity introduced by Parker et al. [2000]. This
Parker-Paola-Leclair (PPL) framework offers the possibility
of describing the vertical sorting fluxes continuously over
bed elevations and relating the sorting fluxes at a certain bed
elevation to its likelihood of being exposed to the flow. The
PPL model is called a framework as formulations for the
grain size-specific and elevation-specific entrainment and
deposition fluxes remained to be derived. In the present
paper the authors derive formulations for these fluxes for
conditions dominated by bed forms and bed load transport.
[8] While this paper describes a new mathematical mod-

eling framework for taking into account the impact of
vertical sorting upon the large-scale morphodynamics of

Figure 1. Flume experiment A2E conducted by Blom et
al. [2003], with an interpretation of the vertical sorting
pattern. The flow is from top to bottom.
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bed form-dominated rivers, two follow-up papers (A. Blom
et al., manuscripts in preparation, 2004) will consider the
simplification of this modeling framework to two reduced
sorting models (an equilibrium sorting model and a sorting
evolution model, respectively) as well as application of these
reduced models to measured data from flume experiments.

2. Parker-Paola-Leclair (PPL) Framework for
Sediment Continuity

[9] Sediment conservation of size fraction i at elevation z
is given by Parker et al. [2000]:

@ �Ci

@t
¼ cb�Ps

@�Fi

@t
þ cb�Fi

@�Ps

@t
¼ �Dei � �Eei; ð1Þ

where �Ci(x, z, t) denotes the concentration of size fraction i
at elevation z (�Ci = cb�Ps

�Fi), �Dei(x, z, t) denotes the
deposition density of size fraction i defined such that
�Deidxdz is the volume of sediment of size fraction i that is
deposited per unit width and time in a bed element with
sides dx and dz at elevation z, �Eei(x, z, t) denotes the
entrainment density of size fraction i defined likewise, �Fi (x,
z, t) denotes the volume fraction content of size fraction i at
elevation z (Figure 2), �Ps(x, z, t) denotes the probability
distribution of bed surface elevations indicating the
probability that the bed elevation is higher than z, and cb
denotes the concentration of sediment in the bed (cb = 1 �
lb, where lb denotes the porosity). The bar indicates that
the parameter is averaged over some horizontal distance,
e.g., a large number of bed forms, x denotes the horizontal
coordinate on the scale of series of bed forms, z denotes the
vertical coordinate, and t denotes the time coordinate.
[10] The probability density function (PDF) of bed sur-

face elevations, �pe(x, z, t), expresses the probability density
that the bed surface elevation equals z or the likelihood of
elevation z being exposed to the flow (Figure 2). Integration
of the PDF of bed surface elevations, �pe, over bed elevations
�1 to z yields the probability of exceeding a certain bed
elevation, �Ps:

�Ps ¼ 1�
Z z

�1
�pedz; ð2Þ

where �Ps not only indicates the probability that the bed
surface elevation is higher than z but also equals the
proportion of the bed at elevation z that is covered with
sediment [Crickmore and Lean, 1962].

[11] We now perform the following coordinate transfor-
mation: ~x = x,~t = t, and ~z = z � �ha, wherein ~z is the deviation
from the mean bed level, �ha(x, t) (Figure 2). Applying the
chain rule yields that the time derivative @�Ps/@t in equation (1)
can be written as

@�Ps

@t
¼ @~Ps

@t
� @~Ps

@~z

@�ha
@t

¼ @~Ps

@t
þ �pe

@�ha
@t

ð3Þ

since

�pe ¼ � @�Ps

@z
¼ � @~Ps

@~z
; ð4Þ

where ~Ps(~x, ~z, ~t) denotes the probability distribution of bed
surface elevations relative to the mean bed level, �ha. With
equation (3), equation (1) becomes

cb�Ps

@�Fi

@t
þ cb�Fi

@~Ps

@t
þ cb�Fi�pe

@�ha
@t

¼ �Dei � �Eei: ð5Þ

Adding up equation (5) over all grain sizes yields

cb
@~Ps

@t
þ cb�pe

@�ha
@t

¼ �De � �Ee; ð6Þ

where �De(x, z, t) denotes the deposition density defined such
that �Dedxdz is the volume of all size fractions deposited in a
bed element with sides dx and dz at elevation z per unit
width and time (�De =

PN
i
�Dei, where N denotes the total

number of size fractions) and �Ee(x, z, t) the entrainment
density defined likewise (�Ee =

PN
i
�Eei). Integration of

equation (6) over all bed elevations yields

cb

Z 1

�1

@~Ps

@t
dzþ cb

@�ha
@t

¼ �D� �E; ð7Þ

where �D(x, t) denotes the volume of all grain sizes deposited
per unit area and time (�D =

R1
�1

�Dedz) and �E(x, t) denotes
the volume of all grain sizes entrained per unit area and time
(�E =

R1
�1

�Eedz). Appendix A shows that the integral in
equation (7) equals zero so that equation (7) reduces to

cb
@�ha
@t

¼ �D� �E ¼ � @�qa
@x

� �
; ð8Þ

in which we recognize the sediment continuity or mass
balance equation, where �qa(x, t) denotes the bed load
transport rate averaged over a series of bed forms.

Figure 2. A series of bed forms, for which �Fi expresses the volume fraction content of size fraction i at
elevation z, �Ps the probability that the bed surface elevation is higher than z, �pe is the probability density
that the bed surface elevation is equal to z, and �ha is the mean bed level.
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[12] Equations (5), (6), and (8) compose the fundamental
set of equations of the PPL framework for sediment conti-
nuity. Now, to complete this set of equations, we will derive
formulations for the deposition and entrainment densities,
�Dei and �Eei, for bed form-dominated conditions. This is
done in a few steps. First, we will analyze the migration of a
single bed form, in which we successively derive a relation
between the grain size-specific deposition and entrainment
fluxes over the bed form stoss face (section 3.1), derive a
formulation for the deposition rate over the lee face
(section 3.2), derive a formulation for the composition of
the lee deposit (section 3.3), convert the equations into bed
elevation-specific ones (section 3.4), and develop a model
describing the grain size-specific deposition down the lee
face of a single bed form (section 3.5). Secondly, we will
couple the single bed form migration approach to the PPL
framework (section 4.1). Then, we will introduce the
irregularity of bed forms by incorporating the statistics of
bed form trough elevations (section 4.2). Section 5 will
briefly describe the reduction of the resulting continuum
sorting model to both an equilibrium sorting model and a
sorting evolution model, which will be explained in detail in
two follow-up papers (A. Blom et al., manuscripts in
preparation, 2004). Section 6 presents some results of two
submodels of the continuum sorting model.

3. Migration of a Single Bed Form

3.1. Einstein Step Length Formulation

[13] We now divide each bed form into a stoss and a lee
face (Figure 3) and assume that on the stoss side, deposition
and entrainment occur simultaneously, while on the lee side,
only deposition occurs. At the stoss face we apply the step
length formulation first introduced by Einstein [1950] in
order to relate the grain size-specific deposition rate over the
bed form stoss face to the grain size-specific entrainment rate.
The Einstein step length,L, is defined as the average distance
covered by a particle from the moment it is picked up until
saltation ceases and a period of rest on the bed, i.e., the rest
period, begins. On the basis of experiments [Einstein, 1937],
Einstein [1950] proposes that the average step length is a
linear function of the grain diameter:

L ¼ a d; ð9Þ

where d denotes the grain size and a denotes the
dimensionless step length. For uniform sediment, Einstein
[1937] and Fernandez-Luque and Van Beek [1976] found
that a is a constant equal to 100 and 288, respectively. Yalin
[1977] and others suggest that a slightly increases with
increasing shear stress. For nonuniform sediment, Tsujimoto
[1990] found that the dimensionless step length increases
from 10 to 50 with increasing shear stress. For simplicity,
we assume the dimensionless step length to be independent
of shear stress, whence it is not affected by the variation of
shear stress over the stoss face. In addition, we assume the
step length small compared to the stoss length so that we
may neglect the reduction in step length when a particle
falls over the crest of the bed form.
[14] Let us first consider the relation among entrainment,

deposition, bed load transport, and step length in more
detail. For uniform sediment and after [Nakagawa and

Tsujimoto, 1980], Parker et al. [2000] give the fundamental
relations between the deposition rate D and the entrainment
rate E and between the bed load transport rate q and the
entrainment rate E:

D xð Þ ¼
Z x

�1
E yð Þ fp x� yð Þdy ð10Þ

q xð Þ ¼
Z x

�1
E yð Þ

Z 1

x�y

fp y0ð Þ dy0
� �

dy; ð11Þ

where fp(x) denotes the probability density that a particle,
once it is entrained, travels a distance x. Equation (10)
expresses that a particle is deposited at x when it has been
entrained a certain distance upstream from x multiplied by
the probability density that its step length is equal to this
distance. Equation (11) expresses that a particle passes a
cross section at x when it has been entrained a certain
distance upstream from x multiplied by the probability
density that its step length is equal to or larger than this
distance. Tsujimoto and Motohashi [1990] propose a
relation for the PDF of step lengths, fp, for plane bed
conditions and uniform sediment. For simplicity, we assume
the step length to be a deterministic parameter so that fp
reduces to the Dirac delta function and equations (10) and
(11) yield

D xð Þ ¼ E x� Lð Þ ð12Þ

q xð Þ ¼
Z x

x�L
E yð Þ dy: ð13Þ

Equation (12) expresses that the deposition rate at a certain
point on the stoss face equals the entrainment rate one step
length upstream of this point. Equation (13) expresses that
sediment passing the cross section at x has been picked up
between x and one step length upstream of x. If the
entrainment rate E does not vary significantly within the
distance of one step length L, equation (13) reduces to

q xð Þ ¼ LE x� 1

2
L

� �
’ LE xð Þ: ð14Þ

This relation was first used by Einstein [1950].
[15] We now return to nonuniform sediment. Let the

weighted entrainment rate Esi(x) denote the volume of

Figure 3. Division of bed form into stoss and lee sides,
with accompanying entrainment and deposition fluxes.
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sediment of grain size di locally entrained from the stoss
face per unit area and time:

Esi xð Þ ¼ Esiu xð ÞFi xð Þ; ð15Þ

where x denotes the horizontal coordinate on the scale of a
single bed form (Figure 3) and the subscript s indicates the
stoss face. The subscript u indicates the case of sediment of
only this size fraction. Equation (15) expresses that the
entrainment of size fraction i at coordinate x equals the
entrainment as if it were uniform sediment of grain size di
multiplied by its proportion at the bed surface at x. This is
comparable to calculating the transport rate of size fraction i
in a sediment mixture using qi = Fiqiu, where qiu, like Esiu,
may include hiding exposure effects. Equation (12) tells us
that at the stoss face the weighted deposition rate Dsi of size
fraction i at x equals the weighted entrainment rate of this
size fraction one step length upstream of x:

Dsi xð Þ ¼ Esiu x� Lið ÞFi x� Lið Þ ð16Þ

where

Li ¼ a di ð17Þ

Esiu xð Þ ¼ 0 for x < 0: ð18Þ

Similar to equation (13), the local bed load transport rate of
size fraction i at the stoss face is given by

qsi xð Þ ¼
Z Li

0

Esiu x� yð ÞFi x� yð Þ dy ð19Þ

qs xð Þ ¼
XN

i
qsi xð Þ; ð20Þ

where qsi(x) denotes the transport rate of size fraction i at
coordinate x at the stoss face (qsi = qsFqsi), qs(x) denotes the
total transport rate at coordinate x at the stoss face, and
Fqsi(x) denotes the volume fraction content of size fraction i
in the transported mixture at coordinate x at the stoss face.
[16] The present section has shown how the Einstein step

length formulation enables us to relate the grain size-
specific deposition rate to the grain size-specific entrain-
ment rate at the stoss face of a bed form.

3.2. Deposition Rate at the Lee Face

[17] In the present section a formulation for the average
total deposition rate over the bed form lee face will be
derived by applying the sediment continuity equation in
equation (8) to the local bed form surface:

cb
@h xð Þ
@t

¼ D xð Þ � E xð Þ ¼ � @q xð Þ
@x

; ð21Þ

where h(x) denotes the local bed surface elevation.
Averaging equation (21) over one bed form yields

cb
@ha
@t

¼ �ls

l
Esnet þ

ll

l
Dl ¼ � @qa

@x
; ð22Þ

wherein entrainment on the lee face is neglected and where
l denotes the bed form length, ls denotes the horizontal

length of the stoss face, ll denotes the horizontal length of
the lee face, Dl denotes the average total deposition rate on
the lee face, and Esnet denotes the net entrainment rate on the
stoss face, which will be discussed in the next paragraph.
The bed form-averaged transport rate is given by qa = (1/l)R l
0
q(x) dx, and the bed form-averaged bed level is given

by ha = (1/l)
R l
0
h(x) dx. Note that the average transport

rate, qa, and the mean bed level, ha, are here defined as
averaged over a single bed form. They can still show a
spatial variation between bed forms, as suggested by
equation (22).
[18] The net entrainment rate on the stoss face, Esnet,

equals

Esnet ¼
1

ls

XN
i

Z ls

0

Esi xð Þ � Dsi xð Þð Þ dx

¼ 1

ls

XN
i

Z ls

0

Esiu xð ÞFi xð Þ dx
�

�
Z ls�Li

�Li

Esiu xð ÞFi xð Þ dx
�
;ð23Þ

which is found by introducing equation (16). Consistent
with equation (18), we neglect the contribution from �Li to
0 in the second integral so that equation (23) reduces to

Esnet ¼
1

ls

XN
i

Z ls

ls�Li

EsiuFi dx: ð24Þ

Comparison of equation (24) with equations (19) and (20)
shows that the total rate of sediment transport approaching
the bed form crest, qtop, is related to the net entrainment
rate, Esnet, in the following way:

qtop ¼ lsEsnet; ð25Þ

in which

qtopi ¼
Z Li

0

Esiu ls � yð ÞFi ls � yð Þdy; ð26Þ

qtop ¼
XN

i
qtopi; Ftopi ¼

qtopi

qtop
; ð27Þ

where qtop(x, t) denotes the total bed load transport rate at
the bed form crest, qtopi(x, t) denotes the bed load transport
rate of size fraction i at the bed form crest, and Ftopi(x, t)
denotes the volume fraction content of size fraction i in the
sediment transported over the bed form crest. Using
equation (25), equation (22) can be written as

llDl ¼ qtop � l
@qa
@x

; ð28Þ

which tells us that the average lee face deposition rate is
determined by (1) the net entrainment rate on the stoss face
(which equals the amount of sediment transported over the
crest divided over the length of the stoss face) and (2) the
divergence in the total bed load transport rate.
[19] Thus equation (28) provides another component of

the formulations for the vertical sorting fluxes required for
the new continuum sorting model: the formulation for the
average total deposition rate over the lee face.
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3.3. Composition of the Lee Face Deposit

[20] Now, we need to find a formulation for the compo-
sition of the lee face deposit. For this purpose, we again
apply the sediment continuity equation (8) to the local bed
form surface, yet now we consider only a single size
fraction:

Di xð Þ � Ei xð Þ ¼ � @qi xð Þ
@x

; ð29Þ

where Di, Ei, and qi are related to D, E, and q according to
D =

PN
i Di, E =

PN
i Ei and q =

PN
i qi. Averaging

equation (29) over one bed form yields

1

l

Z ls

0

Dsi xð Þ � Esi xð Þð Þ dxþ ll

l
DlFleei ¼ � @qai

@x
; ð30Þ

which, using equations (23) and (25), can be reformulated
to

Fleei ¼
1

llDl

qtopi � l
@qai
@x

� �
; ð31Þ

where Fleei denotes the volume fraction content of size
fraction i in the deposit at the bed form lee face, qai
denotes the bed form-averaged bed load transport rate of
size fraction i(qai = Faiqa), and Fai denotes the bed form-
averaged volume fraction content of size fraction i in the
bed load transport. Equation (31) tells us that the
composition of the lee face deposit, Fleei, is determined
by (1) the composition of sediment transported over the bed
form crest and by (2) the divergence in the bed load
transport of size fractions.
[21] In order to solve for the average total deposition rate

over the bed form lee face, Dl, in equation (28) and the
composition of the lee face deposit, Fleei, in equation (31),
we need a formulation for the average bed load transport
rate of size fraction i, qai. For that purpose, we first consider
the transport rate over the lee face and apply equation (21)
to the bed form lee face. We assume the lee face of each
bed form to have a uniform slope and apply the simple
wave theory to bed form migration [Bagnold, 1941], which
yields that Dl is uniform over the lee face (Dl (x) = Dl =
�@ql/@x). As a boundary condition, we assume that the
transport rate is equal to zero at the trough (ql = 0 at x = l),
which results in

ql xð Þ ¼ l� xð ÞDl ð32Þ

qlai ¼
1

2
DlllFleei: ð33Þ

In reality, in the average transport rate of size fraction i over
the lee face, qlai, there will be a slight bias toward the
coarser particles since, on average, they will be transported
farther down the lee face than the finer ones. For simplicity,
this has been neglected. The bed form-averaged bed load
transport rate of size fraction i, qai, is then obtained by using

equation (19) for the stoss face and equation (33) for the lee
face:

qai ¼
1

l

Z ls

0

Z Li

0

Esiu x� yð ÞFi x� yð Þ dy dx

þ ll

2l
DlllFleei; ð34Þ

qa ¼
XN

i
qai; Fai ¼

qai

qa
: ð35Þ

Using equations (31), (28), and (35), we are now able to
solve for the composition of the total lee face deposit. As a
next step, we need to develop a lee sorting function that
describes how the size fractions in the lee deposit are
distributed over the bed form lee face. First, the present
formulations dependent on x will be transformed into
formulations dependent on z.

3.4. Elevation-Specific Formulations

[22] Since formulations in the PPL framework are eleva-
tion-specific, we need to transform the formulations derived
in the previous few sections into formulations dependent on
bed elevation z. Appendix B shows in detail how qtopi in
equation (26) and qai in equation (34) can be written as
equations (B16) and (B17):

qtopi ¼ ls

Z ht

ht�hstepi

Esiu zð ÞFi zð Þpse zð Þdz

qai ¼
l2
s

l

Z ht

hb

Z hstepi

0

Esiu z� z0ð ÞFi z� z0ð Þpse zð Þpse z0ð Þdz0dz

þ ll

2l
DlllFleei:

[23] Thus we have converted the formulations previously
written as a function of the coordinate x into formulations
dependent on bed elevation z so as to make them suitable
for being incorporated into the PPL framework.

3.5. Lee Sorting Function

[24] In the present section we will derive a formulation
for the grain size-specific deposition down the bed form lee
face. To that end, we introduce the quantity Fleeloci(z, t),
which denotes the volume fraction content of size fraction i
in the sediment deposited at elevation z at the bed form lee
face. The amount of sediment of size fraction i deposited at
elevation z at the lee face then equals DlFleeloci(z). We define
Fleeloci as

Fleeloci ¼ Fleei wi; ð36Þ

where wi (z) is the lee sorting function, which determines to
what extent a specific size fraction that is transported over
the bed form crest is deposited at a certain elevation of the
lee face. A first constraint to the lee sorting function is that
integration of the composition of the deposited sediment
over the lee face, Fleeloci, must result in the composition of
the lee face deposit, Fleei:

Fleei ¼
1

ll

Z l

ls
Fleeloci dx; ð37Þ

where
PN

i Fleeloci = 1 and 0 	 Fleeloci 	 1.
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[25] Generally, the fine size fractions in a sediment
mixture prefer to be deposited at the upper parts of the lee
face and the coarse size fractions at its lower parts [Blom et
al., 2003; Kleinhans, 2004]. On the basis of these insights,
we now assume that the coarse size fraction is distributed
over this uniformly sloped lee face with its volume fraction
content decreasing linearly with elevation:

wi ¼ J 1þ diẑ*ð Þ; ð38Þ

where J (z) is a Heaviside function which equals 1 when
considering an elevation covered by the specific bed form
(Appendix B). The lee sorting parameter di is a grain size-
specific constant, which will be considered in detail in the
next few paragraphs, and ẑ* is a dimensionless vertical
coordinate relative to the average elevation of the lee face:

ẑ* ¼ z*� 1

2
� hb*; ð39Þ

by definition, ẑ* = �(1/2) at the lower limit of the lee face
(where z* = h*b) and ẑ* = (1/2) at the upper limit of the lee
face (where z* = h*t ). It can be found that equation (38)
together with equation (36) indeed meets the constraint in
equation (37).
[26] In order to have the di submodel capture the principal

effects of lee sorting, the authors believe that the submodel
should at least incorporate the effects of (1) the difference in
grain size between size fraction i and the geometric mean
grain size of the lee deposit, expressed by fmlee � fi; (2) the
arithmetic standard deviation of the lee deposit, sa; and
(3) the dimensionless bed shear stress, t*b.
[27] It is likely that the larger the difference in grain size

between a specific size fraction i and the geometric mean
grain size of the lee deposit (fmlee � fi), the larger the effect
is of grain sorting at the lee face and thus the larger di should
be (see Figure 4).
[28] To understand the effect of the gradation of the

mixture, specified by sa, we consider one specific grain
size fi in two mixtures: a widely graded mixture and a
narrowly graded mixture (Figure 5). The two mixtures are
characterized by identical geometric mean grain sizes of the
lee deposit, fmlee. In this example, size fraction i is finer

than the geometric mean grain size of the lee deposit.
Namely, the larger the grain size on f scale, the smaller is
the grain size di. Figure 5 illustrates why for the widely
graded mixture, the sorting of size fraction i at the lee face
will be less than in the narrowly graded mixture, despite the
difference between fmlee and fi for the two mixtures being
identical. This is caused by size fraction i being relatively
closer to the geometric mean grain size for the widely
graded mixture, due to its larger gradation. For the widely
graded mixture the amount of size fractions finer than size
fraction i is larger and these all need to be deposited in the
upper part of the lee face.
[29] Allen [1965] and Kleinhans [2002] have shown that

the lee face sorting trend becomes smaller with increasing
shear stress.
[30] On the basis of these considerations and as a first

step, the authors propose the following formulation for the
lee sorting parameter di:

di ¼ �g
fmlee � fi

sa
tb*ð Þ�k; ð40Þ

where

fmlee ¼
XN

i
fiFleei; ð41Þ

s2a ¼
XN

i
fi � fmleeð Þ2Fleei; ð42Þ

tb* ¼ tb= rs � rð Þgdmlee½ �; ð43Þ

dmlee ¼
1

1000
2�fmlee ; ð44Þ

where dmlee denotes the geometric mean grain size of the lee
deposit in meters, fmlee denotes the geometric mean grain
size of the lee deposit on f scale, fi denotes the grain size of
size fraction i on f scale (fi = �2log 1000 di with di in
meters), and t*b denotes the dimensionless bed shear stress
averaged over the bed form length. The constant g weights

Figure 4. Lee sorting of three size fractions in one
sediment mixture.

Figure 5. Influence of the gradation of a mixture on
sorting at the lee face.
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the relative importance of the grain size term on the right-
hand side of equation (40), while the value of k sets the
relative importance of the dimensionless bed shear stress
term. Section 6 will show some general results of the lee
sorting function.
[31] Finally, we consider two bed forms having different

bed form heights and assume that the sediment transported
over their crests is identical in composition. The formulation
for Fleeloci in equations (36) and (38) implies that at the
lower (and upper) boundaries of the two bed forms the
volume fraction content of each size fraction in the deposit
is identical. It implies that the sorting trend becomes
stronger with decreasing bed form height. Studying the
sorting process of sediment over a delta face (i.e., at a
sudden and large transition in water depth), Kleinhans
[2002] indeed found that the delta height has little influence
on the volume fraction content of size fractions deposited at
the upper and lower boundaries of the delta front.
[32] In summary, we propose a new simple trend-based

lee sorting function meant for deriving a formulation for the
grain size-specific deposition over the bed form lee face. It
seems to be the simplest form of a lee face sorting model
that has any hope of capturing the effects in question.

4. PPL Framework and Bed Form Migration
Approach

4.1. Regular Bed Form Size

[33] In the present section the bed formmigration approach
will be coupled to the Parker-Paola-Leclair framework for
sediment continuity. We first convert the entrainment and
deposition rates as used in the bed form migration approach
into entrainment and deposition densities as used in this
framework. Subsequently, in section 4.2 we incorporate the
irregularities of bed forms by taking into account the sto-
chastic nature of the trough elevations.
[34] In section 3 we distinguished an entrainment flux at

the stoss face, a deposition flux at the stoss face, and a
deposition flux at the lee face so that we rewrite the right-
hand terms in the fundamental equation of the PPL frame-
work, equation (5):

cb�Ps zð Þ @
�Fi zð Þ
@t

þ cb�Fi zð Þ @
~Ps zð Þ
@t

þ cb�Fi zð Þ�pe zð Þ @�ha
@t

¼ �Deis zð Þ � �Eeis zð Þ þ �Deil zð Þ; ð45Þ

where �Eeis, �Deis, and �Deil denote the entrainment density of
size fraction i on the stoss face, the deposition density on the
stoss face, and the deposition density on the lee face,
respectively. For clarity, equation (45) only shows the
argument in the z direction and leaves out the arguments x
and t.
[35] Note that in the present section we deal with series of

regular bed forms so that the parameters averaged over a
series of bed forms are simply identical to the corresponding
parameters for a single bed form, e.g.,

�Fi zð Þ ¼ Fi zð Þ; �Esiu zð Þ ¼ Esiu zð Þ;

�Fleeloci zð Þ ¼ Fleeloci zð Þ; �ls ¼ ls;

�pse zð Þ ¼ pse zð Þ:

Now, let us consider the relation between the entrainment
density �Eeis in equation (45) and the entrainment rate �Esiu.
The entrainment rate �Esiu is defined as the volume of
sediment of size fraction i picked up from the bed per unit
length, width, and time, in case only size fraction i is
present. As explained near equation (15), �Esiu may include
hiding exposure effects. Thus the volume of sediment of
size fraction i picked up from the stoss face from a bed layer
with a thickness dzs per unit width and time equals

�Esiu zð Þ�Fi zð Þdxs; ð46Þ

where dxs is the horizontal extent over which the bed layer
with thickness dzs is exposed to the flow at the stoss face.
According to equation (B13), dxs can be written as

dxs ¼ �ls�pse zð Þ dz:

The entrainment density �Eeis of size fraction i is defined
such that �Eeis dxdz is the volume of size fraction i entrained
from a bed element with sides dx and dz at elevation z at the
stoss face, per unit width and time. Thus the entrainment
density at the stoss face equals

�Eeis zð Þ ¼
�Esiu zð Þ�Fi zð Þ�ls�pse zð Þ dz

�l dz

¼
�ls

�l
�pse zð Þ�Esiu zð Þ�Fi zð Þ:

ð47Þ

Then, in accordance with the Einstein step length formula-
tion, the deposition density at the stoss face

�Deis zð Þ ¼
�ls

�l
�pse zð Þ�Esiu z� hstepi zð Þ

	 

�Fi z� hstepi zð Þ
	 


; ð48Þ

and the deposition density at the lee face

�Deil zð Þ ¼
�ll

�l
�ple zð Þ�Dl

�Fleeloci zð Þ; ð49Þ

where �F leeloci allows for grain size sorting down the
avalanche lee face (section 3.5). The bed load transport
rate of size fraction i averaged over the series of bed forms,
�qai, equals qai in equation (B17). Likewise, the bed load
transport rate of size fraction i over the bed form crest and
averaged over the series of bed forms, �qtopi, equals qtopi in
equation (B16).
[36] Thus we have coupled the single bed form migration

approach to the PPL framework for sediment continuity, but
the resulting set of equations is still only valid for a series of
regular dunes. In reality, the variation of bed form geometry
can be large, which gives rise to vertical sorting fluxes at
bed elevations that are only reached by bed forms with very
deep troughs.

4.2. Irregular Bed Form Size

[37] In this section the irregularities in bed form size are
taken into account by incorporating the statistics of the
trough elevations. We suppose that each individual bed
form in a series of irregular bed forms is characterized by
the vertical distance from its trough to the mean bed level.
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The latter is also indicated in terms of the relative trough
elevation Db (Db = �ha � hb). The PDF of relative trough
elevations is given by ~phb. Note that all bed forms in the
series are assumed to have the same characteristic shape,
expressed by the dimensionless PDFs of bed surface eleva-
tions for the stoss and the lee face, �p*se and �p*le, respectively.
As mentioned in section 3.3, each lee face is assumed to have
a uniform slope so that �p*le = J. Note that the term irregular
bed forms refers to irregularity in bed form dimensions but
not in shape. All bed form-specific features, e.g., bed form
height and bed form length, are assumed to be simply related
to the relative trough elevation by

D ¼ 2Db; ð50Þ

l ¼ la=Dað ÞD; ð51Þ

ll ¼ D= tan nð Þ; ð52Þ

ls ¼ l� ll; ð53Þ

where Da denotes the average bed form height and la
denotes the average bed form length. (Also see Figure 6 for
the definition of these parameters.) The crests of the bed
forms are assumed to have the same absolute distance to the
mean bed level as the troughs, and the steepness of the lee
faces is assumed to be equal to the angle of repose (n). The
bed form length is assumed to be proportional to the bed
form height, and the ratio of the average bed form length is
assumed to be equal to the average bed form height.
[38] One may rightfully claim that the parametersD, l, and

ll may be related to the relative trough elevation in a way
different from equations (50)–(52). The purpose of these
formulations is to account for the irregularity of bed forms in
a relatively simple way so that the method can be incorpo-
rated in the new continuum sorting model. Equations (50)–
(52) are not supposed to be generally valid, and when
applying these formulations, their applicability should be
checked against data. Note that the following part of the paper
is also valid if equations (50)–(52) were not applicable.
[39] Let us now address the procedure of averaging some

general bed form-specific parameter, m, over a series of
irregular bed forms. This requires the parameter to be
weighted by the proportion of the total length of the series
of bed forms that is related to a specific relative trough
elevation. Yet the PDF of relative trough elevations, ~phb,
only expresses the likelihood that a certain trough elevation
occurs and not what proportion of the total length of the
series of bed forms is involved. Therefore, in averaging
some general bed form-specific parameter, m, over various
bed forms, it should not only be weighted by the probability
density that a specific relative trough elevation occurs but
also by the bed form length:

�m ¼ 1

l̂

Z hbmax

hbmin

l m ~phb dhb; ð54Þ

where �m is called the overall parameter m. The weighted bed
form length, l̂, normalizes equation (54), and

l̂ ¼
Z hbmax

hbmin

l ~phb dhb: ð55Þ

For clarity, we now define an adapted PDF of relative
trough elevations, ~pb, which equals the PDF of relative
trough elevations, ~phb, weighted by the proportion of the
total length of the series of bed forms that is related to a
specific relative trough elevation:

~pb ¼
l

l̂
~phb ð56Þ

so that the overall parameter m in equation (54) can be
rephrased to

�m ¼
Z hbmax

hbmin

m ~pb dhb: ð57Þ

[40] Likewise, using equations (B6) and (B4), we find
that the overall PDF of bed surface elevations, �pe, is now
determined by the characteristic bed form shape, �p*se, and by
the PDF of relative trough elevations, ~pb, according to

�pe zð Þ ¼
Z hbmax

hbmin

pe zð Þ~pb dhb

¼
Z hbmax

hbmin

J zð Þ
lD

ls�p*se zð Þ þ llð Þ ~pb dhb; ð58Þ

where J, D, l, ls, and ll are all related to the specific
relative trough elevation, Db. The overall probability
distribution of bed surface elevations, �Ps, is given by
equation (2).
[41] The derivation of the entrainment and deposition

densities averaged over a series of irregular bed forms (�Eeis,
�Deis, and �Deil) is similar to those for regular bed forms,
given by equations (47), (48), and (49). Yet we now average
the right-hand terms over all trough elevations:

�Eeis zð Þ ¼
Z hbmax

hbmin

ls

l
pse zð ÞEsiu zð Þ �Fi zð Þ ~pbdhb; ð59Þ

�Deis zð Þ ¼
Z hbmax

hbmin

ls

l
pse zð ÞEsiu z� hstepi zð Þ

	 


� �Fi z� hstepi zð Þ
	 


~pb dhb; ð60Þ

�Deil zð Þ ¼
Z hbmax

hbmin

ll

l
ple zð ÞDl Fleeloci zð Þ~pb dhb: ð61Þ

Herein we assume that the vertical sorting profile within an
individual bed form, Fi, is identical to the sorting profile
averaged over the series of bed forms, �Fi. We now find the
average bed load transport rate of size fraction i, �qai, and the
average sediment transport over the bed form crest, �qtopi, by

Figure 6. Bed form parameters. For clarity, the bed forms
are here assumed to have a triangular shape.
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averaging qai in equation (B17) and qtopi in equation (B16)
over all trough elevations:

�qai ¼
Z hbmax

hbmin

qai ~pb dhb ð62Þ

�qtopi ¼
Z hbmax

hbmin

qtopi ~pb dhb: ð63Þ

[42] Thus we have coupled the single bed form migration
approach to the PPL framework for sediment continuity for a
series of irregularly sized bed forms. The result of section 4
is a new continuum sorting model for bed form-dominated
conditions, although the model still lacks a submodel for the
grain size-specific entrainment over the stoss face of a bed
form.

5. Simplified Continuum Sorting Models

[43] In order to be able to compute the time evolution of
the sorting profile, �Fi, and the mean bed level, �ha, we need
to make the set of equations complete. A straightforward
way to do so would be to acquire a submodel for the grain
size-selective entrainment rate over bed forms. As far as is
known to the authors, Tsujimoto [1990] was the only one

who developed an entrainment model especially for non-
uniform sediment. Unfortunately, this entrainment model
has never been verified for a wide range of conditions, and
it is not known whether it gives a good description of
entrainment along bed forms as flow patterns over bed
forms are strongly nonuniform and very complex. Another
source of uncertainty is the variation of a representative
measure for the skin friction over the stoss face, which is
not easily determined. Moreover, McLean et al. [1994]
experimentally found that the sediment transport rate over
a bed form does not directly depend on the variation of the
mean bed shear stress over it. They argue that the sediment
transport rate should be related to the statistics of the near-
bed turbulence as lift and drag forces on grains are directly
related to instantaneously fluctuating velocities.
[44] As it is questionable whether an entrainment model

based on mean skin friction would give satisfactory results in
predicting the size-selective entrainment rate over the stoss
face, it was decided to take on another approach, which is
explained in detail by Blom [2003] as well as in two follow-
up papers (A. Blom et al., manuscripts in preparation, 2004).
For equilibrium conditions (@/@t = 0) the continuum sorting
model is reduced to an equilibrium sorting model. For
nonequilibrium conditions the continuum sorting model is
reduced to a relaxation-type sorting evolution model. It
solves for the time evolution of both the vertical sorting
profile and the composition of the bed load transport from the
initial sorting profile, the total bed load transport rate, and the

Figure 7. (top) Relation between (1) measured bed form lengths and bed form heights for individual
bed forms (small dots), (2) the average the bed form length, la, and the average bed form height, Da

(large dot), and (3) the bed form length and bed form height according to equation (51) (line).
(bottom) Relation between (1) measured relative trough elevations and bed form heights for
individual bed forms (small dots) and (2) the relative trough elevation and bed form height according
to equation (50) (line).
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PDF of relative trough elevations. In addition, methods are
proposed to account for vertical sediment fluxes through both
a change in time of the PDF of relative trough elevations and
net aggradation or degradation.

6. Results of Submodels

[45] As the continuum sorting model needs to be reduced
to either the equilibrium sorting model or the sorting
evolution model first, we can not yet show results of the
full continuum sorting model. We do show some results of
the submodels of bed form size as well as some general
results of the submodel for lee-side sorting. In this section
we consider the equilibrium phases of experiments B2 and
A2 described by Blom et al. [2003]. During these experi-
ments, uniform conditions were maintained (@/@x = 0), and
the transported sediment was recirculated in order to avoid
net aggradation or degradation over the length of the flume
(@�ha/@t = 0). The sediment mixture consisted of three well-

sorted size fractions: dfine = 0.68 mm, dmedium = 2.1 mm,
and dcoarse = 5.7 mm. The sediment transport consisted
solely of bed load transport, and the bed was covered by
dunes.
[46] First, we study the validity of equations (51) and

(50). Figure 7 (top) shows the relation between measured
bed form lengths and bed form heights for individual bed
forms, together with equation (51). The relation between
the measured bed form lengths and bed form heights
shows large scatter, but equation (51) covers the possible
trend reasonably well. The large scatter seems partly due
to the bed form length (i.e., the distance between two
consecutive troughs) also being determined by the adjacent
bed forms (see Figure 8). Figure 7 (bottom) shows the
relation between measured relative trough elevations, Db,
and bed form heights, D, for individual bed forms. In spite
of the large scatter, and although equation (50) deviates
from the measured trend for the higher dunes in experi-
ment B2E, equation (50) represents the trend reasonably
well.
[47] Secondly, we analyze the sensitivity of the lee-side

sorting profile, Fleeloci, to the constants g and k in the lee
sorting function for experiment A2. It is simply assumed
that the composition of the lee face deposit, Fleei, equals
the measured average volume fraction contents of the three
size fractions in the bed load transport, �Fai, namely 0.38,
0.38, and 0.24. The average bed shear stress was �tb =
4.6 Nm�2. First we vary g over the values [�1, �0.5, 0.5,
1], while k is set such that the bed shear stress has no
effect on the avalanche mechanism at the lee face at all
(k = 0). Figure 9 (left) shows the resulting computed lee-
side sorting profiles for an individual bed form. For

Figure 8. Influence of adjacent bed forms upon the bed
form length.

Figure 9. (left) Influence of the constant g in the lee sorting function on the computed lee-side sorting
profile of a single bed form, Fleeloci, while k = 0. (right) Influence of the constant k in the lee sorting
function on the computed lee-side sorting profile of a single bed form, Fleeloci, while g = 0.3.
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negative values of g the coarse material prefers being
deposited at the higher elevations of the active bed. This is
contradictory to experimental studies on the avalanche
mechanism at the lee face, so we may conclude that g

must have a positive value. Furthermore, it shows that the
larger g, the stronger is the sorting trend in the active bed.
To study the effect of k, we vary k over the values [�0.5,
0, 0.5, 1], while g = 0.3 (see Figure 9 (right)). It clearly
shows that the smaller the value for k, the smaller is the
sorting in the active bed. Also, kappa should be positive as
the lee face sorting trend is expected to become smaller
with increasing shear stress. In the work of Blom [2003]
and in the first follow-up paper (A. Blom et al., manu-
script in preparation, 2004), the constants g and k are used
as calibration coefficients.

7. Discussion and Conclusions

[48] The authors have developed a new depth-continuous
sediment continuity model, which is based on (1) the
Parker-Paola-Leclair (PPL) framework; (2) the Einstein step
length formulation; (3) a newly developed lee sorting
function; and (4) a newly developed method to account
for the variability in bed form trough elevations. The present
paper presents the derivation of formulations for the grain
size-specific and bed elevation-specific entrainment and
deposition fluxes as required for the PPL framework. The
resulting continuum sorting model incorporates sorting
fluxes through (1) the grain size-selective deposition down
the avalanche lee face, (2) the variability in bed form trough
elevations, and (3) net aggradation or degradation of the
river bed.
[49] The present research has focused on the development

of a framework for taking into account the effects of vertical
sorting in modeling river morphodynamics. The framework
contains various submodels (e.g., lee-side sorting; the step
length; bed form dimensions; the time evolution of the PDF
of trough elevations), which strongly need further develop-
ment. For instance, the presently proposed lee sorting
function still has a very simple form. Also, it would be
worthwhile to compare the choice for a deterministic step
length to a stochastic one.
[50] In its present form the new continuum sorting model

incorporates only bed load transport. Further research is
required to also include suspended load transport. Yet a
simple way of incorporating suspended load transport is
proposed by Blom [2003]. Application of the present model
should be limited to bed form-dominated conditions. Fur-
ther study is required to derive formulations for the grain
size-specific and elevation-specific entrainment and depo-
sition fluxes under plane bed conditions.
[51] The present paper has explained the derivation of a

fundamental mathematical framework for taking into ac-
count the impact of vertical sorting upon the large-scale
morphodynamics of bed form-dominated rivers. Two fol-
low-up papers (A. Blom et al., manuscripts in preparation,
2004) will consider the simplification of this modeling
framework to an equilibrium sorting model and a sorting
evolution model, respectively. These follow-up papers will
also discuss the application of the reduced models, wherein
computed vertical sorting profiles are compared to the
vertical sorting, as measured in the experiments by Blom

et al. [2003], Ribberink [1987], and Kleinhans [2002]. The
performance of the sorting evolution model and the com-
monly used Hirano active layer model will be compared.

Appendix A: Integral of Time Derivative ~Ps

[52] Near equations (28a) and (28b) in the work of Parker
et al. [2000], it is argued that the integral @~Ps/@t over z in
equation (7) should vanish if �pe is symmetric in ~z, i.e.,
around the mean bed level, �ha. However, the authors found
that the integral term in equation (7) should vanish regard-
less of whether or not �pe is symmetric in ~z. Let us consider
the integral

I ¼
Z r

�r

@~Ps

@t
d~z; ðA1Þ

where r = 1 and where ~z denotes the bed elevation relative
to the mean bed level (~z = z ��ha (x, t)). We now substitute

�Ps ¼ 1�
Z ~z

�1
�pe d~z

0 ðA2Þ

into equation (A1),

I ¼ �
Z r

�r

@

@t

Z ~z

�1
�pe d~z

0
� �

d~z; ðA3Þ

and rephrase equation (A3) by integrating in parts according
to

Z
g0h ¼ gh

�����
Z

gh0; ðA4Þ

where

g0 ¼ 1 h ¼ � @

@t

Z ~z

�1
�pe d~z

0
� �

: ðA5Þ

This yields

I ¼ r
@�Ps

@t

����
r

þ @�Ps

@t

����
�r

� �
þ @

@t

Z r

�r

~z�ped~z; ðA6Þ

wherein the integral term vanishes, as by definition:

Z r

�r

~z �pe d~z ¼ 0: ðA7Þ

In addition, by definition, �Ps ! 1 as r!�1 and �Ps ! 0 as
r ! 1 so that @�Ps/@t ! 0 as r ! ±1. Under the condition
that @�Ps/@t converges to 0 faster than r converges to ±1 (a
condition that holds for, e.g., aGaussian distribution, inwhich
the standard variation is allowed to vary in time), it is seen that
the integral I ! 0 as r ! 1, thus demonstrating that the
integral term in equation (7) should vanish, regardless of
whether or not �pe is symmetric in ~z.

Appendix B: Elevation-Specific Formulations

[53] Since formulations in the PPL framework are eleva-
tion-specific, we need to transform the formulations depen-
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dent on x on bed form scale into formulations dependent on
bed elevation z. To that end, we introduce the dimensionless
coordinates x*s, x*l, and z*:

xs* ¼ x

ls

; x l* ¼ x� ls

ll

; z* ¼ z� ha
D

; ðB1Þ

where x*s and x*l denote the dimensionless horizontal
coordinates for the stoss face and lee face, respectively,
and z*s denotes the dimensionless vertical coordinate. D

denotes the bed form height, which is given by D = ht � hb,
where hb and ht denote the lower and upper limits of the bed
form, respectively. The dimensionless local elevation of the
bed surface h is now expressed by

h* xð Þ ¼ h xð Þ � ha
D

: ðB2Þ

By definition, the dimensionless mean bed level, h*a, equals
0. In case the bed form has a triangular shape, the
dimensionless lower limit, h*b, equals �(1/2), and the upper
limit, h*t , equals (1/2) (see Figure B1). As we assume each
lee face to have a uniform slope, the PDF of active bed
elevations at the lee face yields

ple ¼
J

D
; J ¼

1 if hb 	 z 	 ht;

0 else;

8<
: ðB3Þ

where J(z) is a Heaviside function that equals 1 when
considering an elevation covered by the specific bed form.
[54] We now define dimensionless PDFs of the bed

surface elevations for the stoss side, p*se, and for the lee
side, p*le:

pse* ¼ dxs*

dh*
¼ Dpse ðB4Þ

ple* ¼ � dxl*

dh*
¼ Dple; ðB5Þ

where dh* = dh/D. The bed form-averaged probability
density of bed surface elevations is given by

pe ¼
ls

l
pse þ

ll

l
ple ¼

J

Dl
lspse*þ llð Þ: ðB6Þ

Like pe = �@Ps/@h in equation (4), the probability density
of bed surface elevations for the stoss face equals

pse ¼ � @Pss

@h
ðB7Þ

pse* ¼ � @Pss

@h*
; ðB8Þ

where Pss(z) denotes the probability that the stoss face
elevation is higher than z. Now, comparing equation (B8)
with equation (B4) and studying the example of a triangular
bed form in Figure B2 yields

xs* ¼ 1� Pss: ðB9Þ

For the stoss face we now introduce the function fds, which
expresses the dimensionless elevation of the stoss face as a
function of the dimensionless horizontal coordinate and its
inverse, the function gds:

h* ¼ fds xs*ð Þ ðB10Þ

x*s ¼ gds h*ð Þ: ðB11Þ

Comparison of equations (B9) and (B11) yields

gds ¼ 1� Pss: ðB12Þ

[55] In order to transform the equations listed in the
previous few sections into equations dependent on bed
elevation z, we rewrite the integrals over dx, e.g., in
equation (26), into integrals over dz. When considering
the stoss face, we replace dx by

dx ¼ ls dxs* ¼ lspse* dz* ¼ lspse dz: ðB13Þ

In addition, we translate the step length Li into a
dimensionless vertical step length, h*stepi:

hstepi* ¼ h*� fds gds h*ð Þ � Li*½ �; ðB14Þ

Figure B1. Dimensionless distance of one step length in
horizontal and vertical directions for a triangular bed form.

Figure B2. Relation between x*s and the probability
distribution of bed surface elevations Pss for a triangular
bed form.
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where h*stepi = hstepi/D and L*i = Li/ls. This is illustrated in
Figure B1. Using equation (B13) to manipulate qtopi in
equation (26), we find that

qtopi ¼ ls

Z ht

ht�hstepi

Esiu lsgds
z� ha
D

	 
	 

Fi lsgds

z� ha
D

	 
	 


� pse lsgds
z� ha
D

	 
	 

dz: ðB15Þ

For clarity, we no longer present the arguments in the
parameters Esiu, Fi, and pse as x coordinates (x = lsgds((z �
ha/D))), but we abbreviate these functional relations such
that Esiu(z), Fi(z), and pse(z) are their equivalents, respec-
tively. Then, qtopi in equation (B15) and qai in equation (34)
are written as

qtopi ¼ ls

Z ht

ht�hstepi

Esiu zð ÞFi zð Þpse zð Þ dz ðB16Þ

qai ¼
l2
s

l

Z ht

hb

Z hstepi

0

Esiu z� z0ð ÞFi z� z0ð Þpse zð Þ pse z0ð Þdz0 dz

þ ll

2l
DlllFleei: ðB17Þ

Notation

( ) * superscript denoting a dimensionless parameter.
�ð Þ parameter is horizontally averaged over a series of

bed forms.
~ð Þ parameter is relative to the mean bed level.
cb sediment concentration within the bed

(cb = 1 � lb).
�Ci concentration of size fraction i at elevation z,

averaged over a series of bed forms.
di grain size of size fraction i, m.

dmlee geometric mean grain size of the lee deposit, m.
�D volume of deposited sediment per unit area and

time, summed over all size fractions and
averaged over a series of bed forms, m s�1.

�De deposition density defined like �Dei but summed
over all size fractions, s�1.

�Dei deposition density of size fraction i defined such
that �Deidxdz is the volume of size fraction i
deposited in a bed element with sides dx and dz
at elevation z, per unit width and time, averaged
over a series of bed forms, s�1.

Dl deposition rate at the lee face, m s�1.
Dsi volume of size fraction i locally deposited onto

the stoss face, per unit area and time, m s�1.
�E volume of entrained sediment per unit area and

time, summed over all size fractions and
averaged over a series of bed forms, m s�1.

�Ee entrainment density defined like �Eei but summed
over all size fractions, s�1.

�Eei entrainment density of size fraction i,
defined such that �Eeidxdz is the volume of size
fraction i entrained from a bed element with sides
dx and dz at elevation z, per unit width and time,
averaged over a series of bed forms, s�1.

Esnet net entrained volume of all size fractions on the
stoss face, per unit area and time, m s�1.

Esi volume of size fraction i locally entrained from
the stoss face, per unit area and time, m s�1.

Esiu volume of size fraction i locally entrained from
the stoss face, per unit area and time, if only
sediment of size fraction i would be present, m s�1.

fds elevation of the stoss face as a function of
its horizontal coordinate, dimensionless.

fp(x) probability density that step length equals x.
�Fai volume fraction content of size fraction i in

the bed load transport, averaged over a series of
bed forms.

�Fi volume fraction content of size fraction i in
the bed at elevation z, averaged over a series of
bed forms.

�F leei volume fraction content of size fraction i in the
lee deposit, averaged over a series of bed forms.

Fleeloci volume fraction content of size fraction i in the
sediment deposited at elevation z at the lee face.

�F topi volume fraction content of size fraction i in the
bed load transport over the bed form crest,
averaged over a series of bed forms.

gds horizontal coordinate of the stoss face as a
function of its elevation, dimensionless.

( )i subscript indicating the number of the size
fraction.

J(z) Heaviside function, which equals 1 when
considering an elevation covered by the bed form.

( )l subscript indicating the lee face.
N total number of size fractions.
~phb probability density function of trough elevations

relative to the mean bed level for a series of
bed forms, indicating the probability density that
the trough elevation equals z, m�1.

~pb adapted probability density function of trough
elevations relative to the mean bed level for a
series of bed forms, indicating the probability
density that the trough elevation equals z,
weighted by the horizontal distance involved, m�1.

�pe probability density function of bed surface
elevations for a series of bed forms, indicating the
probability density that the bed surface
elevation equals z, m�1.

�p*e probability density function of bed surface
elevations for a series of bed forms, dimensionless.

pe probability density function of bed surface
elevations for an individual bed form, m�1.

�Ps probability distribution of bed surface elevations
for a series of bed forms, indicating the
probability that the bed surface elevation is
higher than z.

q volume of bed load transport per unit width
and time (excluding pores), m2 s�1.

�qa volume of bed load transport per unit width
and time (excluding pores), averaged over a
series of bed forms, m2 s�1.

�qtop volume of bed load transport at the bed form
crest per unit width and time (excluding pores),
averaged over a series of bed forms, m2 s�1.

( )s subscript indicating the stoss face.
t time coordinate, s.
x horizontal coordinate, m.
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x* horizontal coordinate on the scale of an individual
bed form, dimensionless.

z vertical coordinate, m.
~z vertical coordinate relative to the mean bed

level �ha, m.
z* vertical coordinate relative to the mean bed

level �ha, dimensionless.
ẑ* vertical coordinate relative to the mean bed

level �ha, dimensionless.
a step length, dimensionless.
g constant in lee sorting function.
di lee sorting parameter.
D bed form height, m.
Da bed form height averaged over a series of bed

forms, m.
Db trough elevation relative to the mean bed

level, i.e., the relative trough elevation, m.
h local bed surface elevation, m.
ha bed surface elevation averaged over a single bed

form, m.
�ha bed surface elevation averaged over a series of

bed forms (mean bed level), m.
hb bed form trough elevation, m.

hbmax highest bed form trough elevation, m.
hbmin lowest bed form trough elevation, m.

ht bed form crest elevation, m.
hstepi step length in z direction for size fraction i, m.

k constant in the lee sorting function.
l bed form length, m.
la bed form length averaged over a series of bed

forms, m.
lb porosity.
Li step length of size fraction i, m.
n angle of repose, deg.
r density of water, kg m�3.
rs density of sediment, kg m�3.
sa arithmetic standard deviation of the composition

of the lee deposit; since its unit equals f’s unit,
which is nonsensical (2log mm), it is left out.

�tb bed shear stress averaged over a series of bed
forms, N m�2.

fi grain size of size fraction i on f scale; since f’s
unit is nonsensical (2log mm), it is left out.

fmlee geometric mean grain size on f scale of the lee
deposit.

wi lee sorting function, specifying to what extent a
specific size fraction that is transported over the
bed form crest is deposited at elevation z of the
lee face.
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