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a b s t r a c t

We consider sequences of polynomials that are defined by a three-terms recurrence
relation and orthogonal with respect to a positive measure on the nonnegative axis. By
a famous result of Karlin and McGregor such sequences are instrumental in the analysis
of birth–death processes. Inspired by problems and results in this stochastic setting we
present necessary and sufficient conditions in terms of the parameters in the recurrence
relation for the smallest or second smallest point in the support of the orthogonalizing
measure to be larger than zero, and for the support to be discretewith no finite limit point.
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1. Introduction

We are concerned with a sequence of polynomials {Pn} defined by the three-terms recurrence relation

Pn+1(x) = (x − λn − µn)Pn(x)− λn−1µnPn−1(x), n > 0,
P1(x) = x − λ0 − µ0, P0(x) = 1,

(1)

where λn > 0 for n ≥ 0, µn > 0 for n ≥ 1 andµ0 ≥ 0. Since polynomial sequences of this type play an important role in the
analysis of birth–death processes – continuous-time Markov chains on an ordered set with transitions only to neighbouring
states – we will refer to {Pn} as the sequence of birth–death polynomials associated with the birth rates λn and death ratesµn.
For more information on the relation between a sequence of birth–death polynomials and the corresponding birth–death
process we refer to the seminal papers of Karlin and McGregor [1,2].

By Favard’s theorem (see, for example, Chihara [3]) there exists a probability measure (a Borel measure of total mass 1)
on R with respect to which the polynomials Pn are orthogonal. In the terminology of the theory of moments the Hamburger
moment problem associated with the polynomials Pn is solvable. Actually, as shown by Karlin and McGregor [1] and
Chihara [4] (see also [3, Theorem I.9.1 and Corollary]), even the Stieltjes moment problem associated with {Pn} is solvable,
which means that there exists an orthogonalizing measure ψ for {Pn} with support on the nonnegative axis, that is,

[0,∞)

Pn(x)Pm(x)ψ(dx) = knδnm, n,m ≥ 0, (2)

with kn > 0. The Stieltjes moment problem associated with {Pn} is said to be determined if ψ is uniquely determined by
(2), and indeterminate otherwise. In the latter case there is, by [5, Theorem 5], a unique orthogonalizing measure for which
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the infimum of its support is maximal. We will refer to this measure as the naturalmeasure for {Pn}. In what followsψ will
always refer to the natural measure for {Pn} if the Stieltjes moment problem associated with {Pn} is indeterminate.

Of particular interest to us are the quantities ξi, recurrently defined by

ξ1 := inf supp(ψ), (3)

and

ξi+1 := inf{supp(ψ) ∩ (ξi,∞)}, i ≥ 1, (4)

where supp(ψ) denotes the support of the measure ψ , also referred to as the spectrum of ψ (or of the polynomials Pn). In
addition we let

σ := lim
i→∞

ξi, (5)

the first limit point of supp(ψ) if it exists, and infinity otherwise. It is clear from the definition of ξi that, for all i ≥ 1,

ξi+1 ≥ ξi ≥ 0,

and

ξi = ξi+1 ⇐⇒ ξi = σ .

In the analysis of a birth–death process on a countable state space – a birth–death process on the nonnegative integers
with birth rate λn and death rateµn in state n, say – the question of whether the time-dependent transition probabilities of
the process converge to their limiting values exponentially fast as time goes to infinity has attracted considerable attention.
This question may be translated into the setting of the polynomials Pn of (1) by asking whether ξ1 > 0, and if not, whether
ξ2 > 0, since the exponential rate of convergence (or decay parameter) α of the birth–death process satisfies

α =


ξ1 if ξ1 > 0
ξ2 if ξ2 > ξ1 = 0
0 if ξ2 = ξ1 = 0

(see, for example, [6]). Note that

α > 0 ⇐⇒ 0 < σ ≤ ∞, (6)

so the above question may be rephrased by asking whether 0 < σ ≤ ∞. Recent results, in particular in the Chinese
literature, have culminated in a complete solution of the problem in the stochastic setting by revealing simple and easily
verifiable conditions for exponential convergence in terms of the birth anddeath rates. The purpose of this paper is to present
these results in an orthogonal-polynomial context, and to provide new proofs for some of the results by using tools from
the orthogonal-polynomial toolbox. Our methods enable us also to establish a simple, necessary and sufficient condition for
σ = ∞, that is, for the spectrum of the orthogonalizing measure to be discrete with no finite limit point, thus extending
another recent result.

Before stating the results in Section 3 and discussing proofs in Section 4 we present a number of preliminary results in
Section 2. Additional information on related literature and some concluding remarks will be given in Section 5.

2. Preliminaries

It will be convenient to define the constants πn by

π0 := 1 and πn :=
λ0λ1 . . . λn−1

µ1µ2 . . . µn
, n > 0, (7)

and to use the shorthand notation

Kn :=

n
i=0

πi, n ≥ 0, K∞ :=

∞
i=0

πi, (8)

and

Ln :=

n
i=0

(λiπi)
−1, n ≥ 0, L∞ :=

∞
i=0

(λiπi)
−1. (9)

With the convention that the measure ψ in (2) is interpreted as the natural measure if the Stieltjes moment problem
associated with {Pn} is indeterminate, the quantities ξi and σ of (3)–(5) may be defined alternatively in terms of the (simple
and positive) zeros of the polynomials Pn(x) (see [3, Section II.4]). Namely, with xn1 < xn2 < · · · < xnn denoting the n zeros
of Pn(x), we have the classic separation result

0 < xn+1,i < xni < xn+1,i+1, i = 1, 2, . . . , n, n ≥ 1,
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so that the limits as n → ∞ of xni exist, while

lim
n→∞

xni = ξi, i = 1, 2, . . . .

If the Stieltjes moment problem associated with {Pn} is indeterminate then, by [5, Theorems 4 and 5], we have ξi+1 > ξi > 0
for all i ≥ 1 and σ = limi→∞ ξi = ∞, so that the spectrum of the (natural) measure ψ actually coincides with the set
{ξ1, ξ2, . . .}. So in this setting the questions of whether ξ1 > 0 and the spectrum is discrete with no finite limit point can be
answered in the affirmative. It is therefore no restriction to assume in what follows that

K∞ + L∞ = ∞, (10)

which, by [7, Theorem 2], is necessary – and, if µ0 = 0, also sufficient – for the Stieltjes moment problem associated with
{Pn} to be determined.

Under these circumstances we know from [2] (or from classic results on the moment problem in [8]) that

ψ({0}) =

 1
K∞

if µ0 = 0 and K∞ < ∞

0 otherwise,
(11)

so that

µ0 > 0 or (µ0 = 0 and L∞ < ∞) H⇒ ξ1 > 0 or σ = 0. (12)

Actually, under the premise in (12) the measure ψ has a finite moment of order −1, since, by [2, (9.9) and (9.14)],
∞

0

ψ(dx)
x

=
L∞

1 + µ0L∞

, (13)

which, if L∞ = ∞, should be interpreted as infinity if µ0 = 0 and as µ−1
0 if µ0 > 0.

3. Results

In what follows we maintain the assumption K∞ + L∞ = ∞. Our first proposition deals with a simple case.

Proposition 1. If K∞ = L∞ = ∞ then σ = 0.

Indeed, for µ0 = 0 this result follows immediately from (11) and (13), while it is known (see [6, p. 527]) that changing the
value of µ0 (or, for that matter, of any finite number of birth and death rates) does not affect the value of σ .

Our next result is a proposition on the basis of which all the remaining results of this section can be obtained using
orthogonal-polynomial techniques.

Proposition 2. Let K∞ < ∞ and µ0 > 0. Then

1
4R

≤ ξ1 ≤
1
R

if R := supn Ln(K∞ − Kn) < ∞, and ξ1 = 0 otherwise.

This propositionwas stated explicitly for the first time (in terms of the decay parameter of an absorbing birth–death process)
by Sirl et al. [9]. These authors do not provide a proof, but note that the techniques employed by Chen to analyse ergodic
birth–death processes – which in our setting correspond to the case K∞ < ∞ and µ0 = 0 – are applicable to absorbing
birth–death processes as well (see in particular [10, Theorem 3.5]). Mu-Fa Chen himself stated the result of Proposition 2
explicitly in [11, Theorem 4.2]. Chen’s technique involvesDirichlet forms, but recently Proposition 2was proven in [12] using
orthogonal-polynomial and eigenvalue techniques. A sketch of the argument employed in [12], emphasizing and elucidating
the orthogonal-polynomial aspects, will be given in Section 4.

We next list a number of results as corollaries of the Propositions 1 and 2.

Corollary 1. (i) If K∞ < ∞ and µ0 > 0, then

ξ1 > 0 ⇐⇒ 0 < σ ≤ ∞ ⇐⇒ sup
n

Ln(K∞ − Kn) < ∞.

(ii) If K∞ < ∞ and µ0 = 0, then ξ1 = 0 and

ξ2 > 0 ⇐⇒ 0 < σ ≤ ∞ ⇐⇒ sup
n

Ln(K∞ − Kn) < ∞.

(iii) If L∞ < ∞, then

ξ1 > 0 ⇐⇒ 0 < σ ≤ ∞ ⇐⇒ sup
n

Kn(L∞ − Ln−1) < ∞.
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Corollary 2. If σ = ∞ then K∞ < ∞ or L∞ < ∞. Moreover,
(i) if K∞ < ∞, then

σ = ∞ ⇐⇒ lim
n→∞

Ln(K∞ − Kn) = 0;

(ii) if L∞ < ∞, then

σ = ∞ ⇐⇒ lim
n→∞

Kn(L∞ − Ln−1) = 0.

Corollary 1(i) is [9, Corollary 1]. Corollary 1(ii) (in the setting of birth–death processes) is the oldest result and was first
presented by Mu-Fa Chen in [10]. Together with many related and more refined results, the statements (i) and (iii) of
Corollary 1 appear in the survey paper [11]. Corollary 2(i) for the caseµ0 = 0 was presented by Mao in [13], but announced
already as a result of Mao’s in [14]. In its generality Corollary 2 is new.

4. Proofs

Obviously, Corollary 1(i) follows immediately from (12) and Proposition 2, and the first statement of Corollary 2 from
Proposition 1. The proofs of the remaining statements in the Corollaries 1 and 2 will be given in three steps. In the first
step, elaborated in Section 4.1, we will show that by employing the duality concept for birth–death processes introduced by
Karlin and McGregor [1,2] one can show that the results of both corollaries for the case L∞ < ∞ are implied by the results
for the case K∞ < ∞.

In the second step, elaborated in Section 4.2, we will show that by using properties of co-recursive polynomials the
statements of the corollaries for the case K∞ < ∞ andµ0 = 0 are implied by the results for the case K∞ < ∞ andµ0 > 0.

In Section 4.3 wewill apply results on associated polynomials to obtain the statement of Corollary 2 for the case K∞ < ∞

and µ0 > 0 from Corollary 1(i). As announced, we conclude in Section 4.4 with a sketch of the proof of Proposition 2
presented in [12], and some elucidative remarks.

4.1. Dual polynomials

Our point of departure in this subsection is a sequence of birth–death polynomials {Pn} satisfying the recurrence relation
(1) with µ0 > 0. Following Karlin and McGregor [1,2], we define the dual polynomials Pd

n by a recurrence relation similar to
(1) but with parameters λdn and µd

n given by µd
0 = 0 and

λdn := µn, µd
n+1 := λn, n ≥ 0.

Accordingly, we define πd
0 = 1 and, for n ≥ 1,

πd
n =

λd0λ
d
1 . . . λ

d
n−1

µd
1µ

d
2 . . . µ

d
n

=
µ0µ1 . . . µn−1

λ0λ1 . . . λn−1
,

and note that

πd
n+1 = µ0(λnπn)

−1 and (λdnπ
d
n )

−1
= µ−1

0 πn. (14)
So the assumption (10) is equivalent to

∞
n=0


πd
n + (λdnπ

d
n )

−1
= ∞.

The polynomials Pn and Pd
n are easily seen to be related by

Pd
n+1(x) = Pn+1(x)+ λnPn(x), n ≥ 0. (15)

In the terminology of Chihara [3, Section I.7–9] the polynomials Pn are the kernel polynomials (with κ-parameter 0)
corresponding to the polynomials Pd

n . As a consequence, there is a unique (natural) measure ψd on the nonnegative real
axis with respect to which the polynomials Pd

n are orthogonal. By [1, Lemma 3] we actually have

µ0ψ([0, x]) = xψd([0, x]), x ≥ 0.
With ξ di and σ d denoting the quantities defined by (3)–(5) if we replace ψ by ψd, we thus have, for i ≥ 1,

ξi =


ξ di+1 if ξ d1 = 0 and σ d > 0

ξ di otherwise,
(16)

and

σ d
= σ . (17)

With (14) and (16) it is now easy to see that statement (iii) of Corollary 1 is implied by statement (ii) if µ0 > 0, and by
statement (i) if µ0 = 0. Also, statement (ii) of Corollary 2 follows from statement (i), as a consequence of (17).
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4.2. Co-recursive polynomials

Our point of departure in this subsection is the sequence of birth–death polynomials {Pn} satisfying the recurrence
relation (1) with µ0 = 0. With {Pn} we associate a sequence of birth–death polynomials {P∗

n } with parameters λ∗
n and

µ∗
n that are identical to those of {Pn} except that µ∗

0 = c > 0. So the polynomials P∗
n satisfy P∗

0 (x) = 1 and

P∗

n+1(x) = (x − λn − µn)P∗

n (x)− λn−1µnP∗

n−1(x), n > 0,

but

P∗

1 (x) = x − λ0 − c = P1(x)− c.

Evidently, there is unique (natural) orthogonalizingmeasureψ∗ for the polynomials P∗
n and we can define quantities ξ ∗

i and
σ ∗ in terms of ψ∗ analogously to (3)–(5). Moreover ξ ∗

i is the limit as n → ∞ of x∗

ni, the ith smallest zero of the polynomial
P∗
n (x).
Given the polynomials Pn, the polynomials P∗

n are called co-recursive polynomials and have been studied for the first time
by Chihara [15]. In particular, applying [15, Theorem 1] to the situation at hand, we have

xn,i < x∗

n,i < xn,i+1 < x∗

n,i+1 i = 1, . . . , n − 1, n > 0.

Subsequently letting n tend to infinity we obtain

ξi ≤ ξ ∗

i ≤ ξi+1 ≤ ξ ∗

i+1 i ≥ 1, (18)

and hence

σ ∗
= σ . (19)

We have now gathered sufficient information to conclude that statement (i) of Corollary 1 implies statement (ii). Indeed,
suppose the parameters in the recurrence relation for the polynomials Pn satisfy K∞ < ∞ and µ0 = 0. Then, by applying
Corollary 1(i) to the polynomials P∗

n we conclude that ξ ∗

1 > 0 is equivalent to σ ∗ > 0, and to supn Ln(K∞ − Kn) < ∞. But
ξ ∗

1 > 0 is equivalent to ξ2 > 0 since ξ1 ≤ ξ ∗

1 ≤ ξ2 ≤ ξ ∗

2 , by (18), while we cannot have ξ ∗

1 = 0 if ξ ∗

2 > 0, by (12). Finally,
σ ∗ > 0 is equivalent to σ > 0 by (19).

In view of (19) it also follows that to prove Corollary 2(i) it suffices to establish the result for µ0 > 0.

4.3. Associated polynomials

Throughout this subsectionwe assumeK∞ < ∞. The associated (ornumerator) polynomials P (k)n of order k ≥ 0 associated
with the sequence {Pn} of (1) are given by the recurrence relation

P (k)n+1(x) = (x − λn+k − µn+k)P (k)n (x)− λn+k−1µn+kP
(k)
n−1(x), n > 0,

P (k)1 (x) = x − λk − µk, P (k)0 (x) = 1.

Defining ξ (k)i and σ (k) as in (3)–(5) with ψ replaced by ψ (k) we have

ξ
(k)
1 ≤ ξ

(k+1)
1 , k ≥ 0, and lim

k→∞

ξ
(k)
1 = σ (20)

from [3, Theorem III.4.2] and [16, Theorem 1], respectively. Moreover, defining π (k)n , K (k)n , K (k)∞ and L(k)n as in (7)–(9) with λn
and µn replaced by λn+k and µn+k, respectively, it is readily seen that π (k)i = πi+k/πk, so that

K (k)n =
1
πk
(Kn+k − Kk−1) , K (k)

∞
=

1
πk
(K∞ − Kk−1) < ∞,

and

L(k)n = πk(Ln+k − Lk−1).

(These relations are valid for k ≥ 0 if we let K−1 = L−1 = 0.) It follows that R(k) := supn L
(k)
n (K

(k)
∞ − K (k)n ) satisfies

R(k) = sup
n
(Ln+k − Lk−1)(K∞ − Kn+k).

Applying Proposition 2 to ξ (k)1 we find that

1
4R(k)

≤ ξ
(k)
1 ≤

1
R(k)

, k ≥ 0,

so by (20) we have σ = ∞ if and only if limk→∞ R(k) = ∞, which is easily seen to be equivalent to statement (i) of
Corollary 2.
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4.4. Proposition 2: Sketch of proof and remarks

The zeros xni of the polynomials Pn of (1) may be interpreted as eigenvalues of a symmetric tridiagonal matrix (or Jacobi
matrix). Indeed, let I denote the identity matrix and

Jn :=



λ0 + µ0 −

λ0µ1 0 · · · 0 0

−

λ0µ1 λ1 + µ1 −


λ1µ2 · · · 0 0

0 −

λ1µ2 λ2 + µ2 · · · 0 0

...
. . .

. . .
. . .

. . .
...

0 0 0 · · · λn−1 + µn−1 −

λn−1µn

0 0 0 · · · −

λn−1µn λn + µn


.

Then, expanding det(xI − Jn) by its last row and comparing the result with the recurrence relation (1), it follows that we can
identify det(xI− Jn)with the polynomial Pn+1(x). So a representation for ξ1 = limn→∞ xn1 may be obtained by letting n tend
to infinity in a representation of the smallest eigenvalue of the Jacobi matrix Jn. The latter may be obtained by minimizing
the Rayleigh quotient

R(Jn, x) :=
xT Jnx
xTx

of Jn over all nonzero vectors x (see, for example, [17, Section 7.5]). Actually, precisely this approach was adopted in [18,
Section 5] to get representations for xn1 and ξ1. However, to prove Proposition 2 a subtler approach is needed. Namely,
replacing Jn by

J̃n :=



λ0 + µ0 −

λ0µ1 0 · · · 0 0

−

λ0µ1 λ1 + µ1 −


λ1µ2 · · · 0 0

0 −

λ1µ2 λ2 + µ2 · · · 0 0

...
. . .

. . .
. . .

. . .
...

0 0 0 · · · λn−1 + µn−1 −

λn−1µn

0 0 0 · · · −

λn−1µn µn


,

the polynomials P̃n+1(x) := det(xI − J̃n) are readily seen to satisfy

P̃n+1(x) = Pn+1(x)+ λnPn(x), n ≥ 0,

and can therefore be identified as quasi-orthogonal polynomials (see [3, Section II.5]). As a consequence P̃n(x) has real and
simple zeros x̃n1 < x̃n2 < · · · < x̃nn, which are separated by the zeros of Pn(x). Moreover, it is not difficult to verify that
x̃n1 < xn1, so that ξ̃1 := limn→∞ x̃n1 ≤ ξ1. But, seeing (15), the polynomials P̃n can also be identifiedwith thedualpolynomials
Pd
n introduced in Section 4.1. So it followswith (12) and (16) that in the setting at handwe actually have ξ̃1 = ξ d1 = ξ1. To get

a representation for ξ1 wemay therefore start with the representation for x̃n1 obtained byminimizing the Rayleigh quotient
of J̃n and subsequently let n tend to infinity. Proceeding in this way leads to the representation

ξ1 = inf
x


∞
i=0
µiπix2i

∞
i=0
πi


i

j=0
xj

2


, (21)

where x = (x0, x1, . . .) is an infinite sequence of real numbers with finitely many nonzero elements. Proposition 2 emerges
after applying the weighted discrete Hardy’s inequalities given in [19]. For the details of the proof we refer to [12].

The results in [12] include representations in the spirit of (21) for the decay parameter of a birth–death process under
all possible scenarios. The proofs of these results require a representation for the second smallest eigenvalue of a Jacobi
matrix, which is obtained in [12] by applying the Courant–Fischer theorem, an extension of the method involving Rayleigh
quotients used above to represent the smallest eigenvalue. Being content in this paperwith criteria for positivity rather than
representations, there is no need to appeal to the full Courant–Fischer theorem.

5. Related literature and concluding remarks

We have noted in the introduction that in the setting of birth–death processes it is of particular interest to be able to
establishwhether the transition probabilities converge to their limiting values exponentially fast. In view of (6) this question



E.A. van Doorn / Journal of Computational and Applied Mathematics 284 (2015) 251–258 257

may be translated in the current setting by asking whether 0 < σ ≤ ∞, so Corollary 1 provides us with a simple means to
check whether the decay parameter of a birth–death process is positive.

In the orthogonal-polynomial literature the question of whether the support of an orthogonalizing measure is discrete
with no finite limit point has received some attention, notably in thework of Chihara (see [3, Chapter IV], [20–22]). Chihara’s
point of departure usually is the three-terms recurrence relation

Pn+1(x) = (x − cn)Pn(x)− ρnPn−1(x), n > 0,
P1(x) = x − c0, P0(x) = 1,

(22)

where ρn > 0. Note that we regain the polynomials Pn of (1) if

cn = λn + µn, ρn+1 = λnµn+1, n ≥ 0. (23)

Interestingly, by [3, Corollary to Theorem I.9.1] the existence of positive numbers λn andµn (exceptµ0 ≥ 0) satisfying (23)
is not only sufficient, but also necessary for the Stieltjes moment problem associated with the polynomials {Pn} of (22) to be
solvable. Moreover, if such numbers exist one can always chooseµ0 = 0. So in view of Corollary 2, and considering that the
sequence {Pn} is orthogonal with respect to a measure on [a,∞) if and only if the sequence {Qn}, with Qn(x) := Pn(x− a), is
orthogonal with respect to a measure on [0,∞), we can formulate the following result with regard to the polynomials (22).

Proposition 3. The polynomials {Pn} of (22) are orthogonal with respect to a measure on the interval [a,∞) with discrete
support and no finite limit point if and only if the numbers λn and µn recurrently defined by λ0 := c0 − a and

µn := ρn+1/λn, λn := cn − a − µn, n = 1, 2, . . . ,

are all positive and – using the notation (7)–(9) – satisfy Ln(K∞ − Kn) → 0 or Kn(L∞ − Ln) → 0 as n → ∞.

The question of whether σ = ∞ in the specific setting of birth–death polynomials has been addressed by Chihara in [22],
and earlier by Lederman and Reuter [23], Maki [24] and the present author [6]. By [3, Theorem IV.3.1] a necessary condition
for σ = ∞ is cn → ∞, so an interesting case arises in the birth–death setting when

λn = anα + o(nα), µn = bnβ + o(nβ), n ≥ 0, (24)

where a, b, α, β are nonnegative constants such that µ0 ≥ 0 and λn > 0, µn+1 > 0 for n ≥ 0. By employing a criterion
involving chain sequences Chihara [22] proves that σ = ∞ if α ≠ β , or if α = β but a ≠ b, a conclusion that may be reached
also by applying Corollary 2. Chihara demonstrates in addition that both σ = ∞ and σ < ∞ may occur if α = β , a = b and
α ≤ 2, thus refuting the conjecture in [25] that the spectrum in this case is continuous. Chihara suspects the claim in [25],
that always σ = ∞ when α = β , a = b and α > 2, to be true, but he can verify it only under additional assumptions on the
rates. But actually, σ may be finite for all α > 0, as the following example shows. Let

λ0 = 1, µ0 = 0 and λn = nα, µn = nα(1 + gn), n > 0,

where, for k = 0, 1, . . . ,

gn =


1

2k + 1
n = n2k + 1, . . . , n2k+1

−
1

2k + 2
n = n2k+1 + 1, . . . , n2k+2,

with n0 = 0 and n1 < n2 < · · · successively chosen such that

Gn2k+1 > 1 and nα2k+2Gn2k+2 < 1, k = 0, 1, . . . ,

where

Gn =

n
i=1

(1 + gi), n ≥ 1.

Since

πn = (nαGn)
−1, (λnπn)

−1
= Gn,

it follows that K∞ = L∞ = ∞. So by Proposition 1 we have σ = 0.
We conclude this section with the following observation. Letting

C :=

∞
n=0

(λnπn)
−1Kn and D :=

∞
n=0

(λnπn)
−1(K∞ − Kn),

it is shown in [26, Theorem 2] that

C < ∞ or D < ∞ ⇐⇒


i>1

1
ξi
< ∞,
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whence σ = ∞ if C < ∞ or D < ∞, a conclusion that may be drawn also from the main theorem in [27]. But, with
K−1 = L−1 = 0, we actually have

C =

∞
n=0

(λnπn)
−1Kn =

∞
n=0

πn(L∞ − Ln−1)

=

∞
n=0

(Kn − Kn−1)(L∞ − Ln−1)

=

∞
n=0


Kn(L∞ − Ln)− Kn−1(L∞ − Ln−1)+ (λnπn)

−1Kn


= lim
n→∞

Kn(L∞ − Ln)+ C,

so that

C < ∞ H⇒ lim
n→∞

Kn(L∞ − Ln) = 0.

Similarly,

D < ∞ H⇒ lim
n→∞

Ln(K∞ − Kn) = 0.

So the fact that σ = ∞ if C < ∞ or D < ∞ can be concluded from Corollary 2 as well. Note that our assumption (10) is
equivalent to C + D = ∞.
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