Discrete Mathematics 43 (1983) 281-296 = '~ : 281"
North-Holland Publishing Company

EXISTENCE OF DOMINATING CYCLES AND PATHS

HJ. VbLDMAN

Department of Applied. Mathemancs, Twente Unwersny of Technology, Enscheda The Nether
 lands

Received 1 May 1981
Revised 20 January 1982

A cycle C of a graph G is called dominating <ycle (D-cycle) if every edge of G is incident
with at least one vertex of C. A D-path is defined analogously, If a graph G contains a D-cycle
{D-path), then its edge graph L(G) has a hamiltonian cycle (hamiltonian path). Necessary
conditions and sufficient conditions are obtained for graphs to have a D-cycle or D-path. They
are analogous to known conditions for the existence of hamiltonian cycles or paths. The notions
edge degree and remote edges arise as analogues of vertex degree and ncnadjacent vertices,
respectively. A resuit of Nash-Williams is improved.

1. Introduction

We use [3] for basic terminology and consider throughout only simple graphs.
A trail Q in a graph G is defined to be a dominating trail (D- trau) ot G if every

Theorem A. The edge graph L(G) of a graph G is hamiltonian if and only if either
G has a closed D-trail or G is isomorphic to K, ; for some s=3.

£ hesee Amevnmseon wurs 2N Lin ¢hin Awentacenn ~AF AAnicatcantasens ~urnl Jac M_~vnlac)l and mnathe
UL VCUIILGLIT WIL UC UIC CADIVIILG VL QO lllllla‘.uls hy\alca V7TVYVIVD) allg pakin
(D-paths) in graphs. Graphs nnt_aining a D-cvcle (D-path) will be called D-cyclic

(D-traceable). Since a D-cycle is a closed D-trail, we have

Corollary A.1. If G is a D-cyclic graph, then L(G) is hamiltonian.

Ifagr ph G contains a D-path P with endvertices u and v, then G + uv has the
™ ~nl. D Loa F Y 4 oo mmatne 2 bhoelflenlne awsnla Qiuann T /) g
p-CyCic r uu, SO tnat LA T UV} COMLAIID da 1alinuliail Cyvic. ol LAUT) D
obtained from L(G + uv) by deleting the vertex corresponding to the edge uv
L(G) is traceable, i.e. L(G) contains a hamiltonian path.

Corollary A.2. If G is a D-traceable graph, thern L(G) is traceable.
0012-365X/83/0000-0000/$03.00 © 1983 North-Holland
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Recognizing D-cyclic graphs is an NP-complete problem. This is easily seen,
using the NP-completeness of the hamiltonian problem.

In Sections 2 up to 6 necessary conditions and sufficient conditions are derived
for the existence of D-cycles. The nature of the conditions is reflected by the
scetion titles. There is a nice analogy with known results and proof techniques in
hamiltonian graph theory. The conditions for D-cyclicity are weaker than the
corresponding ones for hamiltonicity, in accordance with the fact that every
hamiltonian graph is D-cyclic whereas the converse is not true. Analogous results
on D-traceability of graphs are stated in Section 7.

2. Cut sets

We start with a necessary condition. Theorem 4.2 of [3] states that if a graph G
is hamiltonian, then (G - S)<|§| for every nonempty proper subset S of V(G).
Hoede [8] showed that a D-cyclic graph satisfies a similar (but weaker) condition.
Let ©(G) denote the number of components of G of order at least two.

Theorem 1. If a graph G is D-cyclic, then, for every nonempty proper subset S of
VI(G).

Proof. Lct S be a nonempty proper subset of V(G) and C a D-cycle of G. Then
every edge of G -8 is incident with a vertex of C. Thus

o (G-S)=ISNVIOl=|s|. O

3. Edge degrees

Ore’s theorem [11] asserts that a graph G is hamiltonian if d(u)+ d(v)=v for
every pair of nonadjacent vertices u and v of G. The existence of a D-cycle is
guaranteed by an analogous condition, in which the notions ‘edge degree’ and
‘remote edges’ emerge in a natural way.

Two subgraphs H, and H, of a grapk G are said to be close in G if they are
disjoint and there is an edge of G joininy; a vertex of H, and one of H.. If H, and
H, are disjoint and not close, then H, ard H, are remote. The degree of an edge e
of 7 denoted dg;(2) or d(e), is the number of vertices of G close to e (viewed as
a subgra,h of G of order wwo).

Theorem 2. Let G be a graph other than a tree. If. for every pair of remote edges e
and f of G,
die)+d(f)=v -2,

then G is D-cyclic.
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The proof is omitted, since all ingredients needed to prove Ticorem 2 can be
found in the proof of Theorem 3, stated below.

The condition of Theorem 2 is weaker than Ore’s condition. To see this, let e,
and e, be two remote edges of a graph G satisfying Ore’s condition. If #, and u,
are vertices incident with e, and e,, respectively, then u, and u, are nonadjacent
and d(e)=d(w)—-1 (i=1,2). Thus

d(e)+d(e))=d(u)+d(uy)-2=v-2.

In the non-D-cyclic graph K,;v(K,+K,_3) (¢=5) each pair of remote edges
has degree-sum v —3, showing that Theorem 2 is best possible.

For blocks of order at least 3 we now prove a more general result, using the
following additional notation: if H is an oriented cycle or path in a graph and u
and v are vertices of H, then uHv and vEu denote, respectively, the segment of
H from u to v and the reverse segment from v to u.

Theorem 3. Let G be a k-connected graph (k=2) such that, for every k+1
mutually remote edges ey, e,, . .., ¢ of G,

k
Y. d(e)>3k(y—k).

i=0

Then G is D-cyclic.

Proof. By contraposition. Let G be a k-connected non-D-cyclic graph (k =2).
We will find a set of k+1 mutually remote edges with degree-sum at most
sk(v—k).

Let C be a longest cvcle among all cvcles C' of G for which £:G — V(C)) is
minimum. Fix an orientation on C. By Mzenger’s theoicm:, two consecutive
vertices w; and w, of C are connected by at least k internally-disjoint paths. One
of these paths may be the edge w,w,; each of the other paths contains zt least one
vertex of C as an internal vertex, otherwise C could be enlarged to a cycle C,
with (G- V(C)))<e(G-V(C)) and |V(C,)|>|V(C)|, contrary to hypothesis.
Hence C has length at least k+1.

Let ug,up; be an edge of G- V(C) and # ={P,, P,,...,P,} a collection of
paths with the following properties:

(1) P; has origin u,, and terminus on C (i=1,2,...,m),

(2) two distinct paths of ? have only uy, in common,

(3) no internal vertex of P, ison C (i=1,2,...,m),

(4) m is maximum, i.e. there exists no collection of more than m paths
satisfying (1), (2) and (3).

Since |V(C)| =k, a variation on Menger’s theorem asserts that m = k. Note that
-one of the paths in ? may contain u,.. Let v; be the terminus of P, (i=
1,2,...,m) and assume that v, v,,...,v, occur on C in the order of their
indices. From the choice of C it follows that v, and v;,, are not consecutive
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vertices of C (i=1,2,...,m, indices mod m). Define
Vi=U V(PHU V(IO U{ue}, Vo=V(G)-V,
i=1

and let u;, be the immediate successor of v; on C (i=1,2,...,m).
We make the following crucial observations:

(D u;, is neither adjacent to one of the vertices uy; and ugy, nor to an internal
vertex of one of the paths in @ (i=1,2,..., m). Assuming the contrary, v; and
u,, would be connected by a path none of whose internal vertices is on . Then C
could be enlarged to a cycie C, satisfying £(G — V(C,))<e(G - V(C)), con-
tradicting the choice of C.

(ID u;, and u;; are nonadjacent (i#j). If u;, u; were an edge of G, then the
cycle

Ci= U.Pi“mﬁ,'v,'(?unu“évi

would contradict the choice of C, since e(G — V(C,)) < €(G — V(C)). For the same

reason inc neighbour sets N(u;,) and N(y;;) have no vertex of V, in common.
(D It N(u;;)< V(C), then u;; and v,,, are not consccutive vertices of C,

otherwise the cycle vif’iumf’mvmévi would contradict the way C was chosen.

If N(u,,)= V(C), then define u;, as the successor of u;, on C; from (II) it
follows that u;, does not coincide with v,,, (i=1,2,...,m). If N(u,)¢ V(O),
then N(u;)) NV, is nonempty by (I); in that case let u;, be an arbitrary vertex of
Nu, )NV, Put ¢, =u;, u; (i=0,1,...,m) and F={e; |0<si<m}. By (II), the
cdges in F are mutually nonadjacent. In fact, by the way C was chosen, they are
mutually remote. Suppose, for example, that u;, and u;, were adjacent (i <j).
Then. additionally assuming that u;, is on C while w;, is not, the cycle

Cy = v,Pug, PoCuipu;u;, Cu;

would satisfy e(G — V(C,)) <&(G — V(C)), thus contradicting the choice of C. The
other nonadjacency conditions for ¢; and ¢; to be remote are checked similarly.

Let U={u;|1<i=m, 1sj<2}. To every vertex ve V(C)U U we define the
vertex v' e V(CO)U U:

(0 If ve VICO)-U, then v* is the successor of v on C.
) Ho=uw, then v' =u, (i=1,2,....m".
(i) If v=u, and une V(C), then »* is the successor of u, on C (i=

(V) If v=u;, and u,¢ V(C), then v* is the successor of u, on C (i=
1.2,..., m).

We row determine an upper bound on d(ey)+d(e;)+d(e;), where ¢; and ¢; are
arbitrary edges of F—{e,}. Let S be the vertex set of the segment u,-lévi of C and
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define
A =SU{v"|veS-{y}},

A, ={V(C)UU)—-A,,

A;=V(G)-(V(O)U L),
I,={veA;|le and v* are close},
Ji={veA,|l¢ and v are close},
L={veA,|e¢ and v are close},
J,={veA,|¢ and v" are close},
I;={veA;|e¢, and v are close},
J;={veA;|e; and v are close},

Z ={veA;|le, and v are close}.

From the choice of the collection @ it follows that no vertex of (V(C)uU)—
{v1, 02, ..., 0,} is close to e,. Thus

d(eg) <|Z|+m.
Since v — v™ is a one-to-one correspondence of V(C)U U onto itself, we have
d(e) = |I|+| LI+ L,
d(e) = || +1J2| +1Jal.
The sets I, Jy, I, J,, I, J; and Z are mutually disjoint. Again a contradiction
with the choice of C arises if the opposite is assumed. As an illustration, suppose

that I, NJ, contains the vertex w, say that w* is adjacent to u;, whiie w is
adjacent to u;,. Then, assuming u;; € V(C), the cycle

C5 = U;ii,-u(" iiiv,'éw+u,- ‘éWllizévi
satisfies €(G — V(Cs)) < e(G — V(C)), a contradiction.

Since the vertices ug;, oz, Uir, Uziy-..., MU,y are in none of the above-
mentioned sets, we have

d(eo)+d(e)+d(e) <|Z|+m+|L|+| L]+ L]+ |J )|+ T2 + ]3|
Sv-m-2+tm=v-2.
Furthermore d(eg)=m =k, so that
de)+d(eg)sv—k-2.

The above inequalities hold for arbitrary i and j. Thus

k
k-1 Y d(ei)+(';) dleg)= Y (d(ep)+d(e)+d(e))
= 2

i Isi<j=k

s(l;)(v—2) (%)
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and ) k
k-1 Y diey= ¥ (d(ei)+d(e,»s(2)(v~k-2),
i=1

1=i<j=sk

or equivalently

(';)(k—Z)(v—k—Z). (% %)

[\ R

k
Yk—1)(k—=2)Y, d(e)s
i=1

Summing (*) and (* =) vields

k

/1
n

\
2,

_ / I\

(" 2 Yl N — b —
m“d(e,»)S(z)(v 2+3(k—=20v—k—2)),
50 that

k

Y de)<ik (v—k). O

i=0

For cach & =2 there exists a non-D-cyclic k-connected graph containing a set

of k + 1 mutually remote edges with degree-sum exactly [3k(» — k)]. Denoting by
nG the union of n disjoint copies of a graph G, the graph K, v (k + 1)K, has these
properties. It secems unlikely that for each k =2 there exist infinitely many such
graphs. In fact, the following proposition, stronger than Theorem 3, might hold.

Conjecture 1. If G is a k-connected graph (k=2) such that, for every k+1
mutually remote edges e, e, ....e of G,

k
Y die)>4k+ (v -2),

i

then G is D-cycliv.

Referring to the proof of Theorem 3, the truth of Conjecture 1 would be
established if it was shown that the degree-sum of every three edges of F is at
most v—2. Conjecture 1, if true, improves Theorem 3 for v=3k+2. On the
other hand it is implicit in the proof of Theorem 3 that every k-connected graph
with less than 3k +2 vertices is D-cyclic, so that we do not need Conjecture 1 for
v <3k + 2. For each k =2 the collection {K, v (t+ 1)K, | t =k} consists of infinitely
e k-connected non-D-cyclic graphs having, a set of k+1 mutually remote
cdges with degree-sum 3(k + 1)(v —2). Thus Conjecture 1 would, in a sense, be
best poscible.

Although Theorem 3 is probably not the best vne can do, it has a number of
best possible corollaries. First note that for k =2 a k-connected graph containing
no set of k + 1 mutually remote edges trivially satisfies the condition of Theorem
3. Similarly Theorem 2 trivially applies to connected graphs, other than trees,
having no pair of remote edges. For a graph G, define +(G) to be the maximum
cardinality of a set of mutually remote edges of G.
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Corollary 3.1. Let G be a k-connected graph (k= 1) other than a tree. If « <!,
then G is D-cyclic.

For k=1 and v=3k +2 the k-connected graph K v(kK,+K,_3;) is non-D-
cyclic while

L(Kk V(sz"f‘K,,..:;k) = k + 1, :

showing that the result is sharp. ;

Chvital and Erdos [4] showed that a k-connected graph with independence
number « is hamiltonian if a <k. Corollary 3.1 is analogous to this result. Since
every graph satisfies ¢ <a, the condition of Corollary 3.1 is met whenever the
cundition of Chvatal and Erdos is.

For k =2 Theorem 3 and Conjecture 1 coincide in

Corollary 3.2. Let G be a 2-connected graph. If the degree-sum of every three
mutually remote edges of G is at least v—1, then G is D-cyclic.

Since it is a special case of Conjecture 1, Corollary 3.2 is best possible. There
even exist extremal graphs for all »=8: in the non-D-cyclic graph
K>v(2K,+ K, _¢) all triples of mutually remote edges have degree-sum v —2.

Corollary 3.2 enables us to prove a result more general than the following, due
to Nash-Williams [9].

Theorem B. Let G be a 2-connected graph. If 8 =max(a,i(v+2)), then G is
hamiltonian.

Implicit in the proof of Theorem B is

Theorem C. Let G be a 2-connected graph. If 8 =3(v +2), then every longest cycle
of G is a D-cycle.

The connection between Theorems B and C is expressed by
Lemma 1. If G is a D-cyclic graph such that &= a, then G is hamiltonian.

Proof. Let C be a longest D-cycle of G. Assuming that C is not a hamiltonian
cycle, there exists a vertex w not on C. Since C is a D-cycle, all neighbours of w
are on C. Let vy, vy, . . ., Vg be the vertic<s of C adjacent to w and denote by y;
the immediate successor of v; on C (i=1,2,...,d(w)), C being arbitrarily
oriented. Now I={w, u,,. .., Uy} is an independent set, otherwise there would
exist a D-cycle longer than C. But then a={ll=d(wj+i=é+1, a
contradiction. [
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Bondy [2] improved Theorem C to

Theorem D. Let G be a 2-connected graph. If the degree-sum of every three
independent vertices is at least v+2, then every longest cycle of G is a D-cycle.

Combination of Lemma 1 and Theorem D yields a parallel improvement of
Theorem B. However, a more general result is obtained by combining Lemma 1
with Corollary 3.2, since the condition of Corollary 3.2 in turn is weaker than
Bondy’s condition.

Corollary 3.2.1. Let G be a 2-connected graph such that the degree-sum of every
three mutually remote edges is at least v—1. If 8=a«a, then G is hamiltonian.

Note that the condition of Corollary 3.2 does not guarantee that every longest
cycle of G is a D-cycle. However, in proving Corollary 3.2.1 this is irrelevant.

4. Size

A consequence of Theorem 2 is

-2
Corollary 2.1. If a graph G has at least (V 5
Moreover, the only non-D-cyclic graph with v vertices and (v-2-2)+3 edges is

K,v(K,+K,_;) (v=5).

>+4 edges, then G is D-cyclic.

Proof. By contraposition. Let G be a non-D-cyclic graph. If G is a tree, then
€ -:v—IS(V;2)+3. Assuming now that G is not a tree, it follows from
Theorem 2 that G contains two remote edges e and f with degree-sum at most

v—3. Thus

-4
es("z )+2(d(e)+d(f))+2
v—4 v—2
s( 5 )+2(v—3)+2=( 5 )+ 3
It is easily checked that there exist no disconnected non-D-cyclic graphs with
-2
(V 5 )+3 edges and K, v(K,+K, ) is the cnly extremal graph of order v that
is connected and has a cut vertex (v=35). As shown later on (Corollary 3.3.1),

)+ 10 edges. The

v—4

2-connected non-D-cyclic graphs of order v have at most ( 5
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proof is completed by noting that

v—4 v—2
( 5 )+10<( 5 )+3 for v=8,

while for » <8 there exist no 2-connected non-D-cyclic graphs of order ». [

The first part of Corollary 2.1 can also be deduced from Bondy’s result [1] that
v—2

5 )+4 has a cycle of length v —1, since

a graph G of order v and size at least (

cycles of length »—1 are D-cycles of G.
From Theorem 3 one deduces

Corollary 3.3. Let G be a k-connected graph (k=2). If
€ Z(V;Zk)+(k -(v—k+3)+11,
then G is D-cyclic.

The proof is omitted, since it is analogous to the proof of the first part of
Corollary 2.1.
Probably the result is best possible only for k =2; it then reads

Corollary 3.3.1. If G is a 2-connected graph with ez(v;“)+ll, then G is
D-cyclic.

-4
For v=8 the graph K,v(2K,+K,_¢) is non-D-cyclic and has (v 5 )+10

edges, showing that Corollary 3.3.1 is sharp.

5. Forbidden subgraphs

A number of results in hamiltonian graph theory asse:t that a graph is
hamiltonian if it does not contain certain subgraphs or induceid subgraphs. As an
example, Goodman and Hedetniemi prove in [6] that a 2-g-connected graph is
hamiltonian if it contains no induced subgraph isomorphic to either K, s or
K, ;+e. Denoting by 7, 7,, 73, 7, the graphs depicted in Fig. 1 we deduce a
similar result on D-cyclic graphs.

Theorem 4. Let G be a connected graph, other than a tree, containing no induced
subgraph isomorphic to 75 or 7,. If, moreover, at most one of the graphs T, and 7, is
an induced subgraph of G, then G is D-cyclic.
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Fig. 1.

Proof. By contraposition. Let G be a connected non-D-cyclic graph other than a
tree and C a cycle of G for which (G — V(C)) is minimum. Then there exists an
edge e = u,u, such that u,, u,¢ V(C) and one of the vertices incident with e, say
u,, is adjacent to a vertex v of (. Fixing an orientation on C, let w, and w, be the
immediate predecessor and successor, respectively, of v on C. By the way C was
chosen the edge e and the vertex w, are remote; so are e and w,.

Let w; be the successor of w, on C if N(w,)< V(C) and an arbitrary vertex of
N(w,)N V(G - V(C)) otherwise. Note that w; may coincide with w,. Putting
f = wow;. the edges e and f are remote by the choice of C.

Denoting by H; and H, the subgraphs of G induced by {u,, u,, v, w;, w,} and
{uy. uz. v, wy, wi}, respectively, it follows that H, is isomorphic to one of the
graphs 7,, 73 and 7,. If G contains neither 75 nor 7, as an induced subgraph, then
H, =7, and H,=1,, completing the proof. O

Note that the condition of Theorem 4 is weaker than Goodman and Hedet-
niemi’s condition, since the graphs 7,, 7; and 7, all contain cither K, ;3 or K, 3+e
as an induced subgraph.

Within the class of 2-connected graphs a weaker condition is sufficient for the
existence of a D-cycle. Denote by T the graph of Fig. 2 and write G, <G, if G, is
a spanning subgraph of G,.

o———o-————~—~<r% o )

$
|

Fig. 2. T.

Theorem 5. If a 2-connected graph G contains no elem:nt of I =
{H| T<H=<K,v(K,+K,)} as an induced subgraph, then G is D-cyclic.

The proof resembles that of Theorem 4 and is omitted. Referring to the proof



Existence of dominating cycles and paths 291

of Theorem 4, the essential difference is that in a 2-connected non-D-cyclic graph
the cycle C can be chosen to have length at least 5.

Theorem 5 together with Corollary A.1 yield a sufficient condition for hamil-
tonicity of edge graphs. ;

Corollary 5.1. If the edge graph L(G) of a 2-connected graph G contains no
induced subgraph isomorphic to L(T), then L(G) is hamiltonian.

Proof. Let G be a 2-connected graph and suppose that L(G) is nonhamiltonian.
Then Corollary A.1 implies that G is non-D-cyclic. Consequently, G contains T
as a subgraph. Thus L(G) contains L(T) as an induced subgraph. [

i Fig. 3. L(T).

Since the edge graph of a 2-connected graph is 2-connected and no edge graph
contains an induced K, 3, Corollary 5.1 is a special case of the following result,
recently proved by Duffus, Gould and Jacobson [5].

Theorem E. A 2-connected graph containing no induced subgraph isomorphic to
K, 3 or L(T) is hamiltonian.

Note that Theorem E sharpens Goodman and Hedetniemi’s result.

6. Contractibility

We state two results in terms of contractibility. Only one of them is proved,
since their proof involve the same arguments. In describing series of contractions
and graphs resulting from them we omit loops and identify multiple edges
whenever they occur.

Theorem 6. Let G be a connected graph other than a tree. If G is not contractible to
To, T3 OF T4, then G is D-cyclic.

D-cyclicity of 2-connected graphs is guaranteed by a weaker condition. Let ®
be the graph of Fig. 4.
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Fig. 4. 6.

Theorem 7. If a 2-connected graph G is not contractible to an eclement of
A ={H|O<H=<K,v3K,}, then G is D-cyclic.

Proof. By contraposition. In a 2-connected non-D-cyclic graph G, let C be a
cycle for which (G- V(C)) is minimum and let ey =ugy Uy, be an edge of
G — V(C). Fix an orientation on C.

From Menger’s theorem it is easily deduced that e, belongs to a path P that
connects two vertices v; and v, of C and is internally-disjoint from C. The choice
of C implies that v, and v, are not consecutive vertices of C.

Let uy, and u,, be the successors on C of v, and v,, respectively and denote by
S the set of vertices of G not belonging to C or P. As in the proof of Theorem 3,
the vertex u;, is defincd to be the successor of u;; on C if N(u;,)< V(C}, while
otherwise u;, is arbitrarily selected from N(u,)NS (i =1, 2). Putting e; == u;,u;>
(i =1.2) it follows that the edges of F ={e,, e,, e,} are mutually remote. Hence, if
x and y are vertices incident with distinct edges of F, then x and y are
nonadjacent. Similarly x and y are not connected by a path that is internaliy-
disjoint from C U P. The rest of the proof is based on this essential remark.

If u;;€ S, then, since G is 2-connected, there exists a path P, internally-disjcint
from C, connecting u;, to a vertex of C other than u;, (i =1, 2); by the way C was
chosen, no vertex of P, is incident with e;_; and P, is internally-disjoint from P.
Morcover, if both u,, and u,, belong to S, then P, and P, are internally-disjoint
on account of the choice of C.

Let H be the subgraph induced by V(C)U V(P)U V(P))) V(P,), where @ is to
be substituted for V(P) if y;, is on C (i =1,2). Denote bty m the number of
components of G — V(H).

We carry out vhe following series of contractions.

First the components of G- V(H) are contracted to single vertices
€12 €2, ..., Cy. Since G is 2-connectcd, each ¢; has degree =2 in the resulting
graph G,. Furthermore it follows from the choice of C that at most one of the
edges of F is incident with vertices of Ng(¢) (i=1,2,...,m). If Ng(c)=
{u;1, u;5} for some je€{0, 1, 2}, then ¢; is contracted onto one of the vertices ;, and
u;,; otherwise ¢, is contracted onto a vertex not incident with one of the edges of

F(i=1,2,...,m). In the graph resulting from this first set of contractions the
edges of F are still mutually remote.
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Next all edges of the path P not incident with uy, or uy, are contracted. If
u;; € S, then the edges of P; not incident with u;, are also contracted (i =1, 2).
Again no two edges of F are close in the resulting graph.

Finally all edges of C not equal or adjacent to e, or e, are contracted. Denoting
the resulting graph by G,, the graph @ is a spanning subgraph of G,. Since the
edges of F are still mutually remote, it follows that G, < K, v 3K,, completing the
proof. O

Note that none of the graphs in &f U{r,, 73, 7,4} satisfies the necessary condition
of Theorem 1.

Again there is a nice analogy with a theorem in harmiltonian graph theory. In
[8] Hoede and Veldman proved that a 2-connected graph is hamiltonian if it is
not contractible to one of the graphs  and 8* depicted in Fig. 5. As expected, the

[+

Fig. 5.

conijition of Theorem 7 is weaker than this condition, since all graphs in o are
contractible to 6 or to 6% A related analogy is the one between the graph
invariants a and ¢, as emerged in Section 3. This may be clarified by noting that

{6,6*}={H|6<H=<K,Vv3K,}

Without proof we mention that Theorem 7 is more general than Theorem 5.
Since, in a way, Theorem 6 and Theorem 4 parallel Theorem 7 and Theorem 5,
respectively, one might expect Theorem 6 to be more general than Theorem 4.
This is, however, not true: the D-cyclic graph of Fig. 6(a) satisfies the condition of
Theorem 4, whereas the condition of Theorem 6 is not met; on the other hand,
Theorem 6 applies to the graph of Fig. 6(b) while Theorem 4 does not.

(a) (b)
Fig. 6.
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7. D-paihs

The conditions for D-cyclicity derived in preceding sections have analogues for
D-traceability. We start with an obvious lemma.

Lemma 2. A graph G is D-traceable if and only if GV K, is D-cyclic.

Most of the results stated below can be proved by combining the corresponding
results on D-cyclicity with Lemma 2.

Theorem 8. If a graph G is D-traceable, then, for every non-empty proper subset S
of V(G),

Theorem 9. Let G be a k-connected graph (k=1) such that, for every k+2
mutually remote edges e, ey, ..., e, of G,

k+1
y d(e,-)>%(k+1)(v—k—2)—1.

i=0

Then G is D-traceable.
Theorem 9 might be improved to

Conjecture 2. If G is a k-connected graph {k=1) such that, for every k+2
mutually remote edges ey, ey, ..., €., of G,

k+1
y d(ei)>%(k+2)(v~4),

i =0

then G is D-traceable.

For k =1 Theorem 9 and Conjecture 2 coincide in

Corollary 9.1. Let G be a connected graph. If the degree-sum of every three
mutually remote edges of G is at least v—3, then G is D-traceable.

Corollary 9.2. Let G be a k-connected graph (k=1). If v<k+1, then G is
D-truceable.

Corollary 9.3. Let G be a k-connected graph (k=1). If

—2k-2
E?(V N )+(k—l)(v~k+1)+‘7.

then G is D-traceable.
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This result is probably sharp only for k =1. It then becomes
Corollary 9.3.1. A connected graph with € = (P;4)+7 is D-traceable.

Theorem 10. If a connected graph G contains no element of J as an mduced
subgraph, then G is D-traceable.

Theorem 11. If a connected graph G is not contractible to an element of {H| T <
H=<K,v3K,}, then G is D-traceable.

Theorem 11 is more general than Theorem 10.
As a final remark, sufficient conditions for the existence of Hamilton paths can
be obtained by combining sufficient conditions for D-traceability with

Lemm: 3. If G is a D-traceable graph with 8 = a —1, then G is traceable.

Note added in proof
If G is a graph other than a tree and
min{d(e) | e « E(G)}?% v—1,

then L(G) is hamiltonian. For G# K, ,_, this consequence of Corollary A.1 and
Theorem 2 generalizes Theorem 2 of a recent paper by Brualdi and Shanny (J.
Graph Theory 5 (1981) 307-314).
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