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A cycle C of a graph G is called dominating cycle (D-cycle) if every edge of G is incident 
with at least one vertex of C. A D-path is defined analogously. If a graph G contains a D-cycle 
(D-path), the n its edge graph t(G) has a hamiltonian cycle (hamiltonian path). Necessary 
conditions and sufficient conditions are obtained for graphs to have a D-cycle or D-path. They 
are analogous to known conditions for the existence of hamiltonian cycles or paths. The notions 
edge degree and remote edges arise as analogues of uettex degree and nccnadjacent uetices, 
respectively. A result of Nash-Williams is improved. 

1. Introductin 

We use [Z!] for basic terminology and consider throughout only simple graphs. 
A tFail Q in a graph G is defined to be a dominating trail (D-trail) of G if every 
edge of G is incident with at least one vertex of Q. Equivalently, Q is a D-trail if 
V(G) - V(Q) is an inc’ependcnt set of G. 

In [7] Harary and Nash-Williams prove 

Theorem A. The edge graph L(G) of a graph G is hamiltonian if and only if either 
G has a closed D-trail or G is isomorphic to I& for some s 2 3. 

Our concern will be the existence of dominating cycles (D-cycles) and paths 
{D-paths) in graphs. Graphs containing a D-cvcle (D-path) will be called D-cyclic 
(D-traceable). Since a D-cycle is a closed D-trail, we have 

Corollary A.l. If G is a D-cyclic graph, then L(G) is hamiltonian. 

If a graph G contains a D-path P with endvertices u and U, then G + uu has the 
D-cycle P + UV, so that L(G + uu) contains a hamiltonian cycle. Since L(G) is 
obtained from L(G + UU) by deleting the vertex corresponding to the edge UZJ, 
L(G) is traceable, i.e. L(G) contains a hamiltonian path. 

C~mlby A.2. If G is a D-traceable graph, then L(G) is traceable. 
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Recognizing D-cyclic graphs is an NP-complete problem. This is easily seen, 
using the NP-completeness of the hamiltonian problem. 

In Sections 2 up to 6 necessary conditions and sufficient conditions are derived 
for the existence of D-cycles. The nature of the conditions is reflected by the 
section titles. There is a nice analogy with known results and proof techniques in 
hamiltonian graph theory. The conditions for D-cyclicity are weaker than the 
corresponding ones for hamiltonicity, in accordance with the fact that every 
hamiltonian graph is D-cyclic whereas the converse is not true. Analogous results 
on D-traceability of graphs are stated in Section 7. 

2. cut sets 

We start with a necessary condition. Theorem 4.2 of [3] states that if a graph G 
is hamiltonian, then o(G - S) s IS\ for every nonempty proper subset S of V(G). 
Hoe& [c(] showed that a D-cyclic graph satisfies a similar (but weaker) condition. 
1st w,(G) denote the number of components of G of order at least two. 

Theorem 1. If a graph G is D-cyclic, then, for every nonenzpty proper subset S of 
VCGL 

w&G -sPqq. 

Proof. L.ct S he a nonempty proper subset of V(G) and C a D-cycle of G. Then 
cvcry cdgc of G -S is incident with a vertex of C. Thus 

w,(G -SKISn V(C,l~ISl. cl 

3. Edge degrees 

OrA theorem [l l] asserts that a graph G is hamiltonian if d(u)+&+= v for 
every pair of nonadjacent vertices tl and o of G. The existence of a D-cycle is 
guaranteed by an analogous condition, in which the notions ‘edge degree’ and 
‘rcmotc edges’ emerge in a natural way. 

Two subgraphs I-f, and H2 of a graph G are said to be close in G if they are 
disjoint and there is an edge of G joinin? a vertex of Zf, and one of Hz. I[f N1 and 
H,? arc‘ disjoint and not close, then If, arid Hz are remote. The degree of an edge e 
or’ C‘ cf mwd d,;! e) w d(e). is the number of ver+ces of G close to e (viewed as 
a suftgrh,:!~ of G of order two). 

Theorem 2. Let C; be a graph other than a tree. [f. for every pair of remote edges e 

ccrtd f of G, 

d(e) + d(f) 2 v - 2, 

ken G is D-cyclic. 
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The proof is omitted, since all ingredients needed to prove ‘Yrcorem 2 can be 
found in the proof of Theorem 3, stated below. 

The condition of Theorem 2 is weaker than Ore’qcondition. To see this, let e1 
and e2 be two remote edges of a graph G satisfying Ore’s condition. If al and u2 
are vertices incident with e, and e2, respectively, then u1 and u2 are nonadjacent 
and d(ei) 3 d(y) - 1 (i = 1,2). Thus 

In the non-D-cyclic graph K1 v(K2+ Kv+) ( ZJ 2 5) each pair of remote edges 
has degree-sum v - 3, showing that Theorem 2 is best possible. 

For blocks of order at least 3 we now prove a more general result, using the 
following additional notation: if H is an oriented cycle or path in a graph and u 
and o are vertices of H, then- ufiu and &u denote, respectively, the segment of 
H from u to u and the reverse segment from v to u. 

Theorem 3. Let G be a k-connected graph (k 2 2) such that, for every k + 1 
mutually remote edges eo, e,, . . . , ek of G, 

i d(ei)>ik(v- k). 
i=O 

Then G is D-cyclic. 

Proof. By contraposition. Let G be a k-connected non-D-cyclic graph (k 2 2;. 
We will find a set of k + 1 mutually remote edges with degree-sum at most 
$k(v - k). 

Let C be a longest cyr!e zzzng s!! cycles C’ of G for which E ;G - V(C)) is 
minimum. Fix an orientation on C. By M&ger’s t&ore=, two consecutive 
vertices w1 and w2 of C are connected by at least k internally-disjoint paths. One 
of these paths may be the edge w1 w2; each of the other paths contains zt least one 
vertex of C as an internal vertex, otherwise C could be enlarged to a cycle C, 
with E(G - V(C,)) s E (G - V(C)) and 1 V(C,)l > 1 V(C)l, contrary to hypothesis. 
Hence C has length at least k + 1. 

Let uo1u02 be an edge of G - V(C) and 9 = {P1, P3,. . . , P,,,} a collection of 
paths with the following properties: 

(1) Pi has origin uol and terminus on C (i = 1,2, . . . , m), 

(2) two distinct paths of P have only uol in common, 
(3) no internal vertex of Pi is on C (i = 1,2, . . . , m), 

(4) m is maximum, i.e. there exists no collection of more than m paths 
satisfying (1), (2) and (3). 

Since 1 V(C)1 2 k, a variation on Menger’s theorem asserts that m 2 k. Note that 
one of the paths in 9 may contain uoz. Let vi be the terminus of Pi (i = 

1,2,..., m) and assume that q, u2, . . . . v, occur on C in the order of their 

indices. From the choice of C it follows that vi and Ui+l are not consecutive 
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vertices of C (i = 1.2, . . . , m, indices mod na). Define 

‘l= ii v(pi) U V(C) U (UO2), v, = V(G)- V, 
i-1 

and let Ui, be the immediate successor of vi on C (i = 1, ‘2, . . . , m). 
We make the following crucial observations: 

(I) uir is neither adjacent to one of the vertices uol and uo2 nor to an internal 
vertex of one of the paths in 5b (i = 1,2, . . . , nt). Assuming the contrary, q and 

u, I would be connected by a path none of whose internal vertices is on 07: Then C 
could be enlarged to a cycle Cz satisfying E (G - V(C,)) < E (G - V(C)), con- 
tradicting the choice of C. 

(II) Ui, and uil are nonadjacent (i # i). If Uil uil were an edge of G, then the 
cycle 

would contradict the choice of C, since e(G - V(CJ) < E(G - V(C)). For the same 
reason the neighbour sets M(4 1) and N(Uil) have no vertex of V, in common. 

(111) If N(ui,,c V(C), then uil and ui+l are not consecutive vertices of C, 
othcrwisc the cycle UiPiUol Pi + 1 Ui + 1 t?ui would contradict the way C was chosen. 

If N(u,,)~ V(C), then define Ui2 as the successor of Ui, on C; from (III) it 
follows that ui2 does not coincide with Ui+l (i = 1,2,. . . , m). If N(h,)$ V(C), 
then N(u,,) n V2 is nonempty by (I); in that case let lli2 be an arbitrary vertex of 
Nh,,mV,. Put 4i =Uil Ui2 (i=O, 1,. . . , WI) and F={q 10~ i s ITI}. By (II), the 
edges in F are mutually nonadjawnt. In fact, by the way C was chosen, they are 
mutually remote. Suppose, for e?ample, that Ui2 and c.+~ were adjacent (i <i). 
Then. additionally assuming that tii2 is on C while Lli2 is not, the cycle 

Cj - Ui~iU,,l~iUi~Ui2Ui2Uit~Ui 

would satisfy E(G - V(C..)) < E(G - V(C)), thus contradicting the choice of C. The 
other nonadjacency conditions for ei and ei to be remote are checked similarly. 

Let U = {U,i 1 I =G i s m, 1 s j ~2). To every vertex u E V(C) U U we define the 
wrtcx tl‘ F V(C) U U: 

(iI If t’ E VU?)-- U, then u+ is the successor of u on C. 
Iii) If u = U: !. then U* = Ui2 (i I= 1.2, . . . . IT!‘. 

(iii) If u x= u,? at!d U,?E V(C), then Y+ is r;he successor of Ui2 on C (i = 
1,2. . . . ? m 1. 

(iv) If TV = u,~ and Lriz$ V(C), then u'- is the successor of ui I on C (i = 
1.2 *..., 111). 

We I:OW determine an upper bound on d(e,)+ d(ei)+ a(ei), where ei and ej are 
arbitrary edges of F - {e,,}. Let S be the vertex set of the segment Ui 1CUi of C and 
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Al = s c){TJ+ 1 v Es -{vi}}, 

A*=;V(C)U U)-A,, 

A?,= V(G)-(V(C)U U), 

I1 z= {II E A 11 ei and V+ are close}, 

J1 = {U E AI 1 ej and v are close), 

Iz = {v E AZ 1 ei and v are close}, 

J2 = {II E A2 1 ej and v+ are close}, 

Z3={vEA3)ei and v are close}, 

J3={vEAs(ej and v are close}, 

Z=(uEA31eo and v are close}. 

From the choice of the collection 9 it follows that no vertex of (V(C) U U) - 

i VI, u2, l l a, v,} is close to eo. Thus 

d(e,) s lZl+ m. 

Since IJ --, v+ is a one-to-one correspondence of 

~(~i~=1~*l+lI,l+l131, 

d(ej) = lJ,l + IJ2l+ lJ3l. 

V(C) U U onto itself, we have 

The sets II, .ZI, Z2, .Z2, Z3, .Z3 and 2 are mutually disjoint. Again a contradiction 
with the choice of C arises if the opposite is assumed. As an illustration, suppose 
that II n.Z, contains the vertex w, say that w+ is adjacent to hl while w is 
adjacent to Uj2. Then, assuming Uj2E V(C), the cycle 

satisfies e(G - V(Q) c e (G - V(C)), a contradiction. 
Since the vertices uol, u02, ull, Use,. . . , u,,,, are in none *?f’ Ihe above- 

mentioned sets, we have 

Furthermore d(e,) 3 m 2 k, so that 

d(ei)+d(ej)sv-k-2. 

The above inequalities hold for arbitrary i and i. Thus 

(k- 1) i dfei)+ (7”) d(eJ = C (d(eo)+d(ei)+d(ej)) 
i=l b 1GiCjSk 
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and 

i=l 

or equivalently 

f(k-l)(k-2)i d(e~~~~i~)(k-2)(u-k-2). 
i-l 

($9 

Summing ( *) and (* ?:) Iields 

(i) $ d(i?ijs (3 (V-2+$(k-2)(V-k-2))* 
I 0 

so that 
k 

c d(e,)s$k (v-k). 0 
i -0 

For each rtc F: 2 there exists a non-D-cyclic k-connected graph containing a set 
of k + f mutuAly remote edges with degree-sum exactly [$k( v - k)]. Denoting by 
rrG the union of n disjoint copies of a graph G, the graph & v(k + l)K, has these 
properties. It seems unlikely that for each k 2 2 there exist infinitely many such 
graphs. In fact, the following proposition, stronger than Theorem 3, might hold. 

Conjecture 1. if G is a k-connected graph (k 2 2) such that, for every k + 1 
mutually remote edges e,,, e,, . . . . ek of G, 

k 

c d(e,)+(k+ lW-21, 
I 0 

then G is D-cyclic. 

Referring to the proof of Theorem 3, the truth of Conjecture 1 would be 
established if it was shown that the degree-sum of every three edges of F is at 
most v - 2. Conjecture 1, if true, improves Theorem 3 for v 2 3k +2. On the 
other hand it is Implicit in the proof of Theorem 3 that every k-connected graph 
with less than 3k + 2 vertices is D-cyclic, so that we do not need Conjecture 1 for 
v < ..%I + 2. For each k -5 2 the collection { K[ v (t + l)Kz 1 f 3 k} consists of infinitely 
31. 71 k-connected non-D-cyclic graphs having, a set of k + 1 mutually remote 
edges bith degree-sum f( k + l)(v - 2). Thus Ccnjccture 1 would, in a sense, be 
best pos~~.ible. 

Although Theorem 3 is probably not the best one can do, it has a number of 
best possible corollaries. First note that for k 2 1? a k-connected graph containing 
no set of k + 1 mutually remote edges trivially sittisfies the condition of Theorem 
3. Similarly Theorem 2 trivially applies to connected graphs, other than trees, 
having no pair of remote edges. For a graph G, define L(G) to be the maximum 
carditlaiity of a set of mutually remote edges of G. 
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Cadary 3.1. Let G be a k-connected graph (k a P) other than a tree. If c s I:, 
then G is D-cyclic. 

For k 2 1 and va 3k + 2 tlht;: k-connected graph Kk v(k&+ I&,_& is non-D- 
cyclic while 

&(I& v(k&+ Kv-& = k f 1, 

showing that the result is sharp. 
Chvatal and ErdGs [4] showed that a k-connected graph with independence 

number cy is hamiltonian if cy < k. Corollary 3.1 is analogous to this result. Since 
every graph satisfies I sar, the condition of Corollary 3.1 is met whenever the 
condition of Chvital and Erdiis is. 

I& k = 2 Theorem 3 and Conjecture 1 coincide in 

Corollary 3.2. Let G be a 2-connected graph. If the degree-sum of every three 
mutually remote edges of G is at least v - 1, then G is D-cyclic. 

Since it is a special case of Conjecture 1, Corollary 3.2 is best possible. There 
even exist extremal graphs for all v 2 8: in the non-D-cyclic granh 
K,v(2&+ Kv_+,) all triples of mutually remote edges have degree-sum v - 2. 

Corollary 3.2 enables us to prove a result more general than the following,, due 
to Nash-Williams [9]. 

I&eorem B. Let G be a 2-connected graph. If 8 2 max(a, #v + 2)), then G is 
hamiltonian. 

Implicit in the proof of Theorem B is 

Theorem C. Let G be a 2-connected graph. If 8 2 $( v + 2), then every longest cycle 
of G is a D-cycle. 

The connection between Theorems B and C is expressed by 

Lemma 1. If G is a D-cyclic graph such that E 3 (Y, then G is hamiltonian. 

-of. Let C be a longest D-cycle of G. Assuming that C is not a hamiltonian 
cycle, there exists a vertex w not on C. Since C is a D-cycle, all neighbours of w 
are on c. Let q, t)2, . . . , v&) be the verticc,s of C adjacent to w and denote by 4 

the immediate successor of vi on C (i = 1,2, . . . , d(w)), C being arbitrarily 
oriented. Now I =(w, ul, . . _ , udtw)) is an independent set, otherwise there would 

exist a D-cycle longer than C. But then a~111=d(w)+1~6+1, a 

contradiction. n 
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l’lmwem I). IA G 6e a 2-connected graph. I’ the degree-sum of every three 
in.dependent uertices is ut !east v+ 2, then every longest cyck of G is a D-cycle. 

Combination of Lemma 1 and Theorem D yields a parallel improvement of 
Theorem B. However, a more general result is obtained by combining Lemma 1 

with Corollary 3.2, since the condition of Corollary 3.2 in turn is weaker than 
Bondy’s condition. 

Corollary 3.2.1. Let G be a 2-connected graph such that the degree-sum of every 
threu mutually remote edges is at least v - 1. If 6 Z= a, then G is hamiltonian. 

Note that the condition of Corollary 3.2 does not guarantee that every longest 
cycle of G is a D-cycle. However, in proving Corollary 3.2.1 this is irrelevant. 

4. size 

A consequence of Theorem 2 is 

Corollary 2.1. lf a graph G has at least 
v-2 

( ) 
2 +4 edges, then G is D-cyclic. 

Moreover, the only non -D-cyclic graph with v vertices and 
v-2’ 

( 1 3 +3 edges is 

K,v(K,+K,_,) (~35). 
\ L ’ 

Proof. Ry contraposition. Let G be a non-D-cyclic graph. If G is a tree, 

E =v--IS + 3. Assuming now that G is not a tree, it follows 

Theorem 2 that G contains two remote edges e and f with degree-sum at 
v-3. Thus 

+2(v-3)+2= 

It is easily checked that there exist no disconnected non-D-cyclic graphs 
/U--73\ 

then 

from 

most 

with 
w _ 

t 1 2 
+ 3 edges and K1 v ( K2 + K,._,) is the cnly extremal graph of order v that 

is connected and has a cut vertex (v a5). As shown later on (Corollary 3.3.8). 

2-connected non-D-cyclic graphs of order v have at most + 10 edges. The 
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proof is completed by noting that 

(v~4)+10C (vi2)+3 for ~28, 

while for v < 8 there exist no 2-connected non-D-cyclic graphs of order v. 0 

The first part of Corollary 2.1 can also be deduced from Bondy’s result [1] that 

a graph G of order v and size at least 
v-2 

( ) 2 
+ 4 has a cycle of length v - 1, since 

cycles of length v - 1 are D-cycles of G. 

From Theorem 3 one deduces 

Corollary 3.3. Let G be a k-connected graph (k 2 2). If 

+(k-2)(v-k+3)+11, 

then G is D-cyclic. 

The proof is omitted, since it is analogous to the proof of the first part of 
Corollary 2.1. 

Probably the result is best possible only for k = 2; it then reads 

Corollary 3.3.1. If G is a 2-connected graph with c: a 

D-cyclic. 

+ll, then G is 

For v 3 8 the graph &v(2&+ K,,.+) is non-D-cyclic and has 

edges, showing that Corollary 3.3.1 is sharp. 

+ 10 

5. Forbidden subgraphs 

A number of results in hamiltonian graph theory asse,% that a graph is 
hamiltonian if it does not contain certain subgraphs or inch&d subgraphs. As an 
example, Goodman and Hedetniemi prove in [6] that a 2-zonnected graph is 1 

hamiltonian if it contains’ no induced subgraph isomorphid to either I& or 
K1,3+ e. Denoting by q, 72, TV, IP~ the graphs depicted in Fig. 1 we deduce a 
similar result on D-cyclic graphs. 

Theorem 4. Let G be a connected graph, other than a tree, containing no induced 
subgraph isomorphic to 73 or TV. If, moreover, at most one of the graphs q and r2 is 

an induced subgraph of G, then G is D-cyclic. 
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Proof. By contraposition. Let G be a connected non-D-cyclic graph other than a 
tree and C a cycle of G for which e(G - V(C)) is minimum. Then there exists an 

edge e = u,u2 such that ul, u2q! V(C) and one of the vertices incident with e, say 
u2, is adjacent to a vertex u of C. Fixing an orientation on C, let w1 and w2 be the 
immediate predecessor and successor, respectively, of u on C. By the way C was 
chosen the edge Y and the vertex w l are remote; so are e and w2. 

Let w3 be the successor of w2 on C if Rv(w2) c V(C) and an arbitrary vertex of 
N( w-,) n V(G - V(C)) otherwise. Note that w3 may coincide with wl. Putting 
f = w2wJ. the edges e and f are remote by the choice of C. 

Denoting by I-f, and H2 the subgraphs of G induced by (Us, u2, v, w,, ~2) and 
(u,. u2* t’, w2, w,), respectively, it follows that W2 is isomorphic to one of the 
graphs 72, Q and T+ If G contains neither 73 nor q, as an induced subgraph, then 
PJ,=q and H2= TV, completing the proof. Q 

Note that the condition of Theorem 4 is weaker than Goodman and Hedet- 
niemi’s condition, since the graphs q, 73 and q a!! ZX:& &her M 1,3 or & + e 
as an induced subgraph. 

Within the class of 3 &-connected graphs a weaker condition is sufficient for the 
existence of a D-cycle. Denote by T the graph of Fig. 2 and write Gt S G2 if G, is 
a spanning subgraph of G2. 

Fig. 2. T. 

Theorem 5. If (1 2-connected gfuph G contains no elenwnt of 3 = 
{H 1 T s H 6 K, v ( K2 + K,)} as an induced subgraph, then G is D-cyclic. 

The proof resembles that of Theorem 4 and is omitted. Referring to the proof 
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of Theorem 4, the essential difference is that in a 2-connected non-D-cyclic graph 
the cycle C can be chosen to have length at least 5. 

Theorem 5 together with Corollary A.1 yield a sufficient condition for hamil- 
tonicity of edge graphs. 

CoroUary 5.1. If the edge graph L(G) of a 2-connected graph G contains no 
induced subgraph isomorphic to L(T), then L(G) is hamiltonian. 

Proof. Let G be a 2-connected graph and suppose that L(G) is nonhamiltonian. 
Then Corollary A.1 implies that G is non-D-cyclic. Consequently, G contains T 
as a subgraph. Thus L(G) contains L(T) as an induced subgraph. Cl 

i Fig. 3. L(T). 

Since the edge graph of a 2-connected graph is 2-connected and no edge graph 
contains an induced &, Corollary 5.1 is a special case of the followirlig result, 
recentiy proved by Duffus, Gould and Jacobson [5]. 

Theorem E. A 2-connected graph containing no 
ICI.3 or L(T) is hamiltonian. 

induced subgraph isomorphic to 

Note that Theorem E sharpens Goodman and Hedetniemi’s result. 

6. Contrac~luity 

We state two results in terms of contractibility. Only one of them is proved, 
since their proof involve the same arguments. In describing series of contractions 
and graphs resulting from them we omit loops and identify multiple edges 
whenever they occur. 

Theorem 6. Let G be a connected graph other than a tree. If G is riot contractibEe to 
TV, 73 or TV, then G is D-cyclic. 

D-cyclicity of 2-connected graphs is guaranteed by a weaker condition. Let @ 
be the graph of Fig. 4. 
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Fig. 4. 8. 

Tbeowm 7. ff Q 2-connected graph G is not contractible to an element of 
d = (H 10 s I-f s K2 v 3K,), then G is D-cyclic. 

Proof. By contraposition. In a 2-connected non-D-cyclic graph G, let C be a 
cycle for which E(G - V(C)) is minimum and let e, = uOLu02 be an edge of 
di - V(C). Fix an orientation on C. 

From Menger’s theorem it is easily deduced that e, belongs to a path P that 
connects two vertices u1 and u2 of C and is internally-disjoint from C. The choice 
of C implies that u1 and u2 are not consecutive vertices of C. 

Let u, , and ~4~~ be the successor; on C of u1 and 02, respectively and denote by 
S the set of vertices of G not belonging to C or I? As in the proof of Theorem 3, 
the vertex ui2 is defined to be the successor of &I on C if N&t) c V(C), while 
otherwise Ui2 is arbitrarily selected from N( 4 1) n S (i = 1,2). Putting ei = ~4~24~ 
(i = 1.2) it follows that the edges of F = {eo, e,, e2} are mutually remote. Hence, if 
x and y are vertices incident with distinct edges of F, then x and y are 
nonadjacent. Similarly x and y are not connected by a path that is internally- 
disjoint from C U t? The rest of the proof is based on this essential remark. 

If Uiz E S, then, since G is 2-connected, there exists a path Pi, internally-disjoint 
from C’. connecting Ui2 to a vertex of C other than Ui, (i = 1,2); by the way C was 
chosen, no vertex of Pi is incident with e3-i and Pi is internally-disjoint from I? 
Moreover, if both u12 and u22 belong to S, then P, and Pz are internally-disjoint 
on account of the choice of C. 

Let H be the subgraph induced by V(C) U V(P) U V(P,) t J V(P,), where 8 is to 
br: substituted for V(Pi) if ui2 is on C (i = 1,2). Denote by m the number of 
components of G - V(H). 

We csrrjj out \he following series of contl9ctions. 
Frrst the components of G - V(H) :hre contracted to single vertices 

Cl. cz, . . - , c,,. Since G is 2-connected, each ci has degree a2 in the resulting 
graph G I. Furthermore it follows from the choice of C that at most one of the 
edges of F is incident with vertices of No,(q) (i = 1,2, . . . , m j. If NoI(q) = 
{u, t, ui2) for some i E (0, 1,2), then ci is contracted onto one of the vertices 4 l and 
u,z; otherwise c, is contracted onto a vertex not incident with one of the edges of 
FCi=1,2,..., m). In the graph resulting from this Faust set of contractions the 
edges of F are still mutually remote. 
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Next all edges of the path P not incident with uol or uo2 are contracted. If 
h2 E S, then the edges of Pi not incident with 1.4~ are also contracted (i = 1,2). 
Again no two edges of F are close in the resulting graph. 

Finally all edges of C not equal or adjacent to el or e2 are contracted. Denoting 
the resulting graph by G2, the graph @ is a spanning subgraph of G2. Since the 
edges of F are still mutually remote, it follows that G2 s K2v3K2, completing the 
proof. Cl 

Note that none of the graphs in 94 U {TV, TV, TJ satisfies the necessary condition 
of Theorem 1. 

Again there is a nice analogy with a theorem in hamiltonian graph theory. In 
[8] Hoede and Veldman proved that a 2-connected graph is hamiltonian if it is 
not contractible to one of the graphs 8 and 8* depicted in Fig. 5. As expected, the 

Fig. 5. 

con$htion of Theorem 7 is weaker than this condition, since ail graphs in Se are 
coniractible to 8 or to 0 *. A related analogy is the one between the graph 
invariants (Y and L, as emerged in Section 3. This may be clarified by noting 1 hat 

(e,e*}={H( e<HGC*v3K,}. 

Without proof we mention that Theorem 7 is more general than Theorem 5. 
Since, in a way, Theorem 6 and Theorem 4 paral!el Theorem 7 and Theorem 5, 
respectively, one might expect Theorem 6 to be more general than Theorem 4. 
This is, however, not true: the D-cyclic graph of Fig. 6(a) satisfies the condition of 
Theorem 4, whereas the condition of Theorem 6 is not met; on the other hand, 
Theorem 6 applies to the graph of Fig. 6(b) while Theorem 4 does not. 

(4 (b) 
Fig. 6. 
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The conditions for D-cyclicity derived in preceding sections have analogues for 

D-traceability. We start with an obvious lemma. 

E,~IRUM 2. A graph G is W-traceable if and only if G v K1 is W-cyclic. 

!Uost of the results stated below can be proved by combining the corresponding 
results on D-cyclicity with Lemma 2. 

Tlwrem 8. If u graph G is W-traceable, then, for every non-empty proper subset S 

of V(G). 

o,(G -S,~jS\+ 1. 

Thearem 9, Let G be a k-connected gruph 
mutually remote edges e,, e,, . . . , ek+ 1 of G, 

k+l 

C d(ei)>i(k+l)(V-k-2)-1. i z-0 

Then G is W-traceable. 

Theorem 9 might be improved to 

Conjecture 2. If G is a k-connected graph 
mutually remote edges e,, e,, . . . , ek+l of G, 

(k 2 1) such thut, for every k + 2 

(k > 1) such that, for every k + 2 

k+l 1 
1 d(ei)>,(k+2)(ZJ-4), 
i -0 3 

then G is D-traceable. 

For k = 1 Theorem 9 and Conjecture 2 coincide in 

Corollary 9.1. Let G be u connected graph. If the degree-sum of every three 
mutually remote edges of G is at least v-3, then G is W-traceable. 

“erallm 9.2. ht G be a k-connected gm~h (k 3 1). If 6s k + 1, then G is 
D- trticeable. 

Corollary 9.3. Let G be a k-connected graph (k 3 1). If 

Ea(“-22k-y +(k-l)(v-k+l)+4, 

then G is W-traceable. 
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This resullt is probably sharp only for k = 1. It then becomes 

CorMary g”3.1. A connected graph with E a 3-7 is D-tracetible. 

lImorem 10. If a connected graph G contains no eZement of r as an induced 
subgraph, then G is D-traceable, 

Theorem 11. If a conrzected graph G is not contractible to an element of {H 1 T c 
H s K1 v 3KJ, then G is D-traceable. 

Theorem 11 is more general than Theorem 10. 
As a final remark, sufficient conditions for the existence of Hamilton paths can 

be obtained by combining sufficient conditions for D-traceability with 

Lemm:~ 3. If G is a D-traceable graph with 6 2 ar - 1, then G is truceable. 

Note added in proof 

If G is a graph other than a tree and 

min{d(e) 1 e e E(G)}a$ u- 1, 

then L(G) is hamiltonian. For G+ KI,,+ this consequence of Corollary A.1 and 
Theorem 2 generalizes Theorem 2 of a recent paper by Brualdi and Shanny (Jr 
Graph Theory 5 (1981) 307-314). 
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