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We present and discuss a three-parameter class of exact solutions to the localized-induction-
approximation equations. These are one-soliton excitations (Bicklund transforms) of the circular
vortex motion. The corresponding generic vortex filament (of infinite or finite length) remains in
the interior of the sphere (or torus) moving with a constant velocity. The above solutions generate
a new class of exact solutions to the classical one-dimensional continuous Heisenberg ferromagnet

model.

PACS numbers: 03.40.Gc, 02.40.+m, 47.30.+s

Consider the following nonlinear system:
T, =T XTI, (1a)

rgrg=1, (1b)

where r=r(s,¢) is an E3-valued function of two real
variables s and ¢ the comma means differentiation,
and the multiplication sign (center dot) denotes the
skew (scalar) product in E*. There exist at least three
physical applications of the system (1). As an equa-
tion of motion of the single vortex filament in the
localized-induction approximation! (LIA) it can be ap-
plid to ordinary fluids!-® (I) and with some limitations,
to rotating superfluid helium® (II) too. Equations (1)
can also serve as a ‘‘potential’’ form for the classical
one-dimensional continuous (homogeneous) Heisen-
berg ferromagnet (CCHF) equation!® (III).

This paper is aimed at a presentation and short dis-
cussion of a new class of exact solutions to Egs. (1).
These can be interpreted [in case (I)] as one-soliton
excitations (Bicklund transforms) of the circular vor-
tex motion.

Ad (1) and (II).—In these cases a curve r=r(s,¢) (¢
fixed) represents an instantaneous (at rescaled ‘‘time”’
t) shape of some central vorticity line of a very thin
single vortex tube (vortex filament). Here sstands for
arc-length parameter. Moreover, it is assumed that
the vortex filament moves in a perfect unbounded and
homogeneous fluid which is at rest at spatial infinity
and which is subject to potential external forces. Fi-
nally, the essence of the LIA consists of the assump-
tions that (a) in a neighborhood of order A of an arbi-
trary boundary point of the vortex filament there ex-
ists a single segment of the filament and the corre-
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sponding piece of its central vorticity line can be ap-
proximated by a plane curve, and (b) A >> radius of
the vortex filament. All of the assumptions listed
above lead to Egs. (1).

We wish to stress that in the LIA the three-
dimensional object (vortex filament) is represented by
a one-dimensional object (central vorticity line).
From now on the term ‘‘vortex filament’’ means the
distinguished central vorticity line.

Ad (II).—The S%-valued function S(s,7) =r ((s,7)
solves the CCHF equation

S,=SxS, (S-S=1). @)

There exists experimental evidence that the system
(1) is a reasonable mathematical tool to model phe-
nomena in at least two areas, (I) and (III), of its appli-
cability.® 1112 Hasimoto? was the first to propose a
method to solve Egs. (1). His elegant method consists
of the following. Let us select an arbitrary solution
q(s,t) to the nonlinear Schrédinger (NL S) equation

ig,+qe+2lql2q=0. (3)

The complex-valued function ¢ =|qlexp(iargq) de-
fines two real functions k(s,r) =2|q(s,¢)| and 7(s,1)
= [argq(s,7)],. One can show that the functions
k(st) and 7(st) can be interpreted respectively as a
curvature and a torsion of some solution r=r(s,t) to
Egs. (1). According to the fundamental theorem of
curves!> smooth functions k(s¢) >0 and 7(s1t)
define a curve r=r(st) implicitly and modulo ¢-
dependent rigid motion in E3. In general this “‘inverse
problem’” of curves (to reconstruct a curve from its
curvature and torsion) is computationally very diffi-
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cult. It is also the most serious obstacle’”-8 to the di-
rect application of Hasimoto’s remarkable method.
Fortunately, the above ‘‘inverse problem’’ in the
discussed case becomes ‘‘tractable’’-!4 in some ge-
ometric approach to soliton systems (approach of soli-
ton surfaces!’®). Namely, the solution r=r(st) to
Egs. (1) associated with a given solution ¢ (s,t) to Eq.
(3) can be expressed directly in terms of the SU(2)-
valued wave function ® corresponding to the solution
q(s,t). Here we make use of the familiar terminology
of the inverse method!®1® of soliton theory in applica-
tion to the almost classical soliton equation (3). More
explicitly, ®=®(s,¢;{) is defined as an SU(2)-valued
solution to the following linear system'® of the NL S

equation (3):

ig q

b = g —i{](b’ (4a)
—2il?+ilql? —2qi+ig,

Cu=| 29t +ig;  2i2—ilqg|® (4b)

where the asterisk stands for complex conjugation and
the so-called spectral parameter { is real. The corre-
sponding vortex filament motion is given by

r(st)=x(st)e;+y(st)e,+z(st)es, (5)

where the e; form an arbitrary right-oriented orthonor-
mal frame in E® and the components of (5) are given
by the expression

& 1(540)® ;(50) = —ilx(s,)o,+y(s,t)oy+z(s51) 03] 6)

In (6) o, are standard Pauli matrices.

The efficiency of the above-described method con-
sists in the fact that for several classes of exact solu-
tions to Eq. (3) (finite-gap solutions,!” pure soliton
solutions,!>1 and ‘“‘mixtures’ of cnoidal waves and
solitons!’) we know the corresponding wave functions
explicitly! For instance, insertion of a one-soliton
wave function into formula (6) gives the famous Hasi-
moto vortex”’ (one-soliton excitation of the straight
line vortex). Similarly, insertion of a two-soliton wave
function into formula (6) gives the scattering of two
Hasimoto vortices (two-soliton excitation of the
straight line vortex).” Finally, we mention that the

r=ro=(2K) [cos(2Ks)e; +sin(2Ks)e, + 4K re;].

Kida class’® of vortex filament motions in LIA can be
obtained from (6) on insertion of the wave function
corresponding to the cnoidal- (traveling-) wave solu-
tion to Eq. (3).18

The most simple nontrivial traveling-wave solution
to Eq. (3) is the following harmonic plane wave:

q=qo=K exp(2iK?t) @)

(K =positive constant). Solving system (4) with ¢
=qo gives the corresponding ® while formula (6)
leads to the motion of a circular vortex of radius 1/2K
moving with constant velocity 2K along the e; axis:

(8)

Equation (8) is a simplified model of smoke-ring motion.!® Surely, a more realistic model of the smoke-ring
motion has to be a kind of perturbation of the circular vortex motion (8). In the framework of LIA small pertur-
bations of the circular vortex motion have been considered in Ref. 4.

It is interesting that the method described above [Egs. (5) and (6)] enables one to compute some finite (exact)
perturbations of the circular vortex motion in LIA. These are N-soliton excitations (or N-fold Bicklund
transforms!’) of the circular vortex motion. The resulting formulas are fairly complicated and here we confine
ourselves to presentation of one-soliton excitations of the circular vortex motion only:

r=r1=19+d{[— n cos(2Ks) — nysin(2Ks) le; + [ — n; sin(2Ks) + nycos(2Ks) le, + nze; ), (9a)
where

d=1Im¢ /141> (L, a complex parameter, Im¢; > 0), (9b)

n=2Rel/(1+|£12), ny=(eP=1)/(1+1€2), n3=2Im¢/(1+ [¢]?), (9¢)

E=KY—-ig;+ Wtan[W(s—=2(,0)1}, (9d)

and, finally,
W= (K*+{})V2, (9e)

We point out that in the framework of the inverse
method!> 1 ¢, is an additional discrete eigenvalue. Of
course, Egs. (9) constitute a three-(real-)parameter
family of exact solutions to Egs. (1).

1508

Putting r,=ro+s one can easily notice that |s|
=const=d=Im¢,/|{;|2. Surely, in general, during
time evolution the vortex filament (9) remains in the
interior of the sphere of radius 1/2K + d moving with
the velocity 2K of the “‘carrier’’ circular vortex. How-
ever, in the case d < 1/2K the sphere can be replaced
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by a torus defined by its radii equal to 1/2K and d
This observation gives rise to the interpretation of the
solution (9) with d < 1/2K as modeling a smoke-ring
motion in the framework of LIA.

Depending upon the value of the parameter ¢,
(Img, > 0) all the solutions (9) can be classified into
three classes: (1) class 1, Re{;=0; (2) class 2, Re(;
=0 and Im{; > K+; and (3) class 3, Re{;=0 and
Im{l =K.

Ad class 1.—At a fixed instant of ‘‘time’’ fthe vor-
tex filament assumes a fairly curious shape. It
‘“‘starts’’ (asymptotically as s— —oo) its course as a
circle 1o(s+s_, +¢_) and ‘“‘ends’ (asymptotically as
s— +oo) its course as a circle ro(s+s4,t+17;) (54
and ¢+ are complicated functions of {; and K). More-
over, the motion (9) is quasiperiodic: After the time
m(2Im¢;) ~ImW~! the vortex filament assumes the
same shape but is rotated by the angle
2 (Im¢7 V) ~Um (7' W-1K). See Fig. 1.

Ad class 2.—Now the motion (9) is periodic and the
above discussed circles coincide.

Ad class 3.—This class is distinguished by the fol-
lowing symmetry: A rotation by the angle 2mw[1—
(Im¢;)2K~21~Y2 around the e, axis leaves the vortex
filament invariant. Moreover, it is worthwhile to dis-
tinguish the subclass 3 £;=iK[1—(m/n)*1Y2 (m
and nintegers, 0 < m < n).

Ad subclass 3'.—In this case the vortex filament is a
closed curve. It constitutes a locally isometric n-fold
covering of the “‘carrier’’ circular vortex (8). The cor-
responding time evolution seems to be quite interest-
ing. Asymptotically (1— —oo) all n “‘copies’’ of (8)
coincide. At further stages of the evolution m of them
undergo some distinguished transformation: Roughly
speaking, each of them makes a full 27 rotation
around a local axis tangent to some variable ‘‘average’’
circle. Asymptotically (z— + oo) all » copies coincide

FIG. 1. Torus confinement of vortex filament: Instan-
taneous shape of solution (9) with K=04 and (;
=0.2+0.015; (class 1).

again. It is well known that Eqs. (1) admit an integral
of motion: It is the length / of the vortex filament.
The ‘“‘flower opening’’ process described above is sub-
ject to this constraint: /= nw/K. See Fig. 2.

Now we proceed to discuss some physical aspects of
the solution (9). First of all we point out that as far as
the ferromagnet application (III) is concerned all the
solutions S=r , to the CCHF equation (2) are fully ac-
ceptable. For instance, the subclass 3’ generates spin
configurations on the ferromagnetic sample of finite
length nw/K.

t=-1.80
(a)
t=-0.68
]
(b)
t=-0.33

(c)

(d)

FIG. 2. Time sequence of vortex filament shape with
K=1 and {;=i[1-($)?]¥2 (subclass 3): Front view of
““flower opening’’ process.
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On the other hand, since LIA is an approximate
theory of the single vortex filament motion it may
happen that an instantaneous curve r=r(s¢) (¢
=const) can cross itself (see Fig. 2) and this is not ac-
ceptable from the physical point of view.>'> Neverthe-
less, some properties of the solution (9) seem to be
quite appealing from a physical standpoint:

(a) The confinement property: The vortex filament
remains in the interior of the sphere (torus) which
moves with a constant velocity. See Fig. 1.

(b) The oscillation property: For class 1 (2) the
motion is quasiperiodic (periodic). It is interesting
that the pulsating character of the motion of real
smoke rings has been confirmed experimental-
ly.419.20.21

(c) Kambe and Takao in their paper* on theoretical
and experimental aspects of smoke-ring motion ob-
served ‘‘a pattern of waves developing on the surface
of a ‘smoke doughnut’ which grows after traveling
some distance from the orifice. It develops often to al-
most hexagonal shape, but this does not destroy the
smoke ring.”’ It is interesting that this feature of real
smoke rings can be also imitated by the solution (9)
provided Re{;=0 and Im¢;= K. Compare, for in-
stance, Fig. 9 of Ref. 4 with Fig. 2 of this work.

Some final remarks are in order.

In the case of N-soliton excitations (N-fold Bick-
lund transforms) of the circular vortex motion we
have at our disposal a 2N + 1-(real-) parameter family
of exact solutions to Egs. (1); and, making an ap-
propriate choice of these parameters, we are in a posi-
tion to improve our modeling of the smoke-ring reali-
ty.
Some further improvements are also available!®:
N-soliton excitations of the circular vortex motion can
be superposed with a wavy excitation corresponding to
the cnoidal wave solution to Eq. (3).

The stability problem of the discussed solution (9) is
postponed for future investigation. In general, the sta-
bility problem of the solutions to the LIA equations
(1) is fairly difficult and deserves special attention.
See Kida’s remarks in Sect. 6 of his paper.®

Surely, all the classes of exact solutions to Egs. (1)
mentioned above can be used as ‘‘unperturbed’’ solu-
tions in some future ‘‘improved’’ LIA based on a
proper perturbation of Egs. (1). This is one more
reason to compute and classify exact solutions to Egs.
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(1) by means of the soliton geometry approach.!?
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