Bottleneck Effects in Turbulence: Scaling Phenomena in r versus p Space

Detlef Lohse1,* and Axel Müller-Groeling2,4

1The James Franck Institute, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637
2Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario MSS 1A7, Canada

(Received 4 May 1994)

We (analytically) calculate the energy spectrum corresponding to various experimental and numerical turbulence data analyzed by Benzi et al. We find two bottleneck phenomena: While the local scaling exponent $\xi_{r}(r)$ of the structure function decreases monotonically, the local scaling exponent $\xi_{p}(p)$ of the corresponding spectrum has a minimum at $\xi_{p}(p_{\text{min}}) \approx 0.45$ at $p_{\text{min}} \approx (10r)^{-1}$ and a maximum of $\xi_{p}(p_{\text{max}}) \approx 0.77$ at $p_{\text{max}} \approx 8L^{-1}$. A physical argument starting from the constant energy flux in p space reveals the general mechanism underlying the energy pileups at both ends of the p-space scaling range. In the case studied here, they are induced by viscous dissipation and the reduced spectral strength on the scale of the system size, respectively.

PACS numbers: 47.27.-i, 47.10.+g

In nonlinear dynamics scaling exponents in r space and p space are often identified with each other. In the case of fully developed turbulence the scaling exponent $\xi_{r,2}$ of the velocity structure function $D^{(2)}(r) = \langle [u(x) + r) - u(x)]^{2} \rangle \propto r^{\xi_{r,2}}$ is believed to coincide with the scaling exponent $\xi_{p,2}$ of the energy spectrum of the velocity field (multiplied by p), $E(p) \propto p^{-\xi_{p,2}-1}$. In this Letter we demonstrate that this identification only holds in the limit of a very large Reynolds number. For (Taylor-) Reynolds numbers $Re_{r} < 200$ typically achieved in full numerical simulations [1] bottleneck phenomena [2] lead to considerable differences between $\xi_{r,2}$ and $\xi_{p,2}$. First, for large p near the (inverse) scale of dissipation, the bottleneck effect accounts for the dissonant observation that the numerical spectrum is clearly flatter both in experiment [3,4] and in numerics [1,5] than $E(p) \propto p^{-5/3}$ instead of being steeper as expected from the possibility of intermittency corrections. Second, for small p near the inverse external length scale L^{-1} (where L is defined by the driving force), a similar bottleneck effect leads to steeper spectra. This is another hint that finite size effects as also found and analyzed in [6–9] have to be considered. Our observation has far-reaching consequences for both the numerical and experimental determination of asymptotic scaling exponents from spectra.

We first focus on the crossover between viscous subrange (VSR) and inertial subrange (ISR) and start from Benzi et al.’s [10] measured longitudinal [11] velocity structure function, assuming that the system size $L \to \infty$ [10], i.e., no large scale finite size effects [6,12] are considered. Benzi et al. [10] analyzed various numerical and experimental data by means of the extended self-similarity method [10,13] and found that for $r \gg \eta$ (where η being the Kolmogorov scale) the mth longitudinal velocity structure function $D_{L}^{(m)}(r)$ obeys $D_{L}^{(m)}(r) \propto C_{m}[r f(r/\eta)]^{m} \propto r^{\xi_{r,2}}$, with a universal function $f(r/\eta)$ for all moments m, for all Re_{r}, and for all kinds of isotropic flow. We restrict ourselves to the second order structure functions and drop the index 2 in what follows.

The structure functions $D_{L}(r)$ and $D(r)$ are connected by [11] $D(r) = D_{L}(r) + D_{e}(r) d \ln D_{L}(r)/d \ln r$. Both functions can be fitted by parametrizations of the Batchelor type [11,14]. Originally given by Batchelor as a parametrization, this formula (1) recently got theoretical support by Sirovich, Smith, and Yakhovtsev [8], who, moreover, find agreement between the Batchelor energy spectrum and numerical spectra [1,15] for 30 orders of magnitude. The high quality of the Batchelor fit has also been established by older experiments; for an overview, see [11,16]. Here, the Batchelor fit for $D(r)$,

$$D(r) \propto \frac{r^{2} - 3 \eta^{2}}{[1 + (1/3b)^{3/2} (r/\eta)^{2}]^{1/2}},$$

(1)

is slightly superior to that of $D_{L}(r)$; see Fig. 1. Here, ξ denotes the asymptotic value of ξ_{r} for $r \gg \eta$, and η and b are the Kolmogorov velocity and Kolmogorov constant [11], respectively. The experimental value $f(r/\eta) \approx 8.577 \times 10^{-3} = f(1)$ determines $b = 11/45 f(1)^{2/3} = 5.834$, slightly smaller than $b = 6.04 \pm 8.4$ found in older experiments, which also show excellent agreement with (1) [11,16]. We determine $D(r)$ from a spline fit to the data and compare the result with the Batchelor parametrization (1) in Fig. 1. There are no visible deviations. The local logarithmic slope [6] of Eq. (1),

$$\xi(r) = \frac{d \ln D(r)}{d \ln r} = 2 - \frac{2 - \xi_{r}^{2}}{r_{d}^{2} + r^{2}},$$

(2)

is monotonically decreasing for increasing r. Here, $r_{d} = (3b)^{1/3} \eta$ (for $\xi = \frac{2}{3}$) determines the r-space crossover, defined by equating the limits for large and small r of Eq. (1), $(r_{d}/\eta)^{2} = b(r_{d}/\eta)^{2/3}$.

Next, we calculate the spectrum $E(p)$ which is, when neglecting boundary terms, given by [11,12]

$$E(p) = -\int_{0}^{\infty} \sin(pr) D(r) dr.$$

(3)
In view of our results in Fig. 1 we feel justified to consider Eq. (1) as an exact description of the experimental structure function of Ref. [10]. Inserting Eq. (1) into Eq. (3) we obtain

\[
E(p) = \frac{pr_d u_f^2}{12 \pi \eta^3} \int_0^\infty dx \frac{\exp(ipr_dx)}{1 + (x^2)^{\xi/2}} d^3 \vec{x}
\]

Here, \(\tilde{p} = pr_d = p/p_d \) and \(K_\nu(\tilde{p}) \) is the modified Bessel function [17]. A similar Fourier transformation of the longitudinal structure function was performed by Sirovich, Smith, and Yakhout [8]. When the transcriptional error in Eq. (20) of Ref. [8] is corrected, the bottleneck effect also shows up. Expanding Eq. (4) for small \(\tilde{p} \) and \(\xi > 0 \) gives

\[
E(p) \approx p^{-(\xi/2) - 1} \Gamma(1 - \xi/2) \frac{\Gamma(\xi/2)}{\Gamma(1 - \xi/2)} \left(1 + \frac{2 - \xi}{2 \xi(1 + \xi)} \frac{p^2}{\tilde{p}^{1+\xi/2}} + \cdots \right),
\]

i.e., we have a positive correction term to the expected asymptotic scaling \(E(p) \propto p^{-\xi-1} \). This correction signals the onset of an energy pileup around \(p_d \); see Fig. 2. For large \(\tilde{p} \gg 1 \) the spectrum decays as \(E(p) \propto p^{1-\xi/2} \exp(-p) \). Figure 2 also shows a frequently used parametrization [18] for \(E(p) \),

\[
E(p) = cp^{-\xi-1} \exp(-p/p_d^\nu),
\]

where \(p_d \) is chosen in such a way that the \(r \)-space crossover \(r_d \) corresponding to Eq. (6) coincides with \(r_d \); for details see Ref. [12]. This comparison emphasizes the energy pileup around \(p_d \) described by the (modified) Sirovich-Smith-Yakhout formula, Eq. (4), which can be considered to an experimental spectrum summarizing the various simulations and experiments of Ref. [10] and also those summarized in [16].

As already stated above, the energy pileup leads to a nonmonotonous local slope

\[
\frac{d \ln E(p)}{d \ln p} = \frac{\xi(p) - 1}{\xi(p) - 2} \frac{\tilde{p}^{1+\xi/2} - \tilde{p}^{5/2-\xi/2} K_{5/2+\xi/2}(\tilde{p})}{\tilde{p}^{1+\xi/2} K_{5/2+\xi/2}(\tilde{p}) + \tilde{p}^{5/2-\xi/2} K_{5/2+\xi/2}(\tilde{p})}.
\]

For \(\xi = \frac{3}{2} \), the maximum local slope is \(-1.448\) (instead of \(-5/3\)) and occurs at \(p_{\text{min}} \approx 0.85 p_d = (10 \eta)^{-1} \). Figure 3 shows \(\xi(p) \) together with \(\xi(r = 1/p) \) from Eq. (2), demonstrating the strikingly different behavior of the local slopes in \(r \) and in \(p \) space.

The energy pileup around \(p_d \) has also been observed in further experiments [3] [fitted by a correction term \(\propto p^{2/3}\) instead of our \(p^2 \), cf. Eq. (5)], in full numerical simulations [1,5], and in a reduced wave vector set approximation (REWA) of the Navier-Stokes equations [7]. In Ref. [7] a correction term \(+2(p/p_{\text{peak}})^{1.8} \) was fitted to the data in nice agreement with our present result, \(+3p^2/5 = +2.6(p/p_{\text{peak}})^2 \), where \(p_{\text{peak}} \) is the point of maximum energy dissipation. Falkovich [2]...
The local p-space scaling exponents $\xi(p)$ from Eqs. (7) and (10) (solid), and the local r-space exponent $\xi(r_{pd} = 1/p)$ from Eqs. (2) and (9) (dashed). The inset shows the averaged p-space scaling exponent $\xi_{\text{avg}(\text{Re} _s)}$; see Eq. (11) (solid). Also shown is the local p-space scaling exponent $\xi_{\text{avg}(\text{Re} _s)}$, dashed. We chose $\xi = \frac{2}{3}$ throughout. The dots are the experimental [5] $\xi_{\text{avg}(\text{Re} _s)}$. In [5] only $\xi_{\text{avg}(\text{Re} _s)}$ is given, so we calculated $\text{Re} _s = c \text{Re}^{1/2}$ with $c = 0.17$ chosen to give agreement for small $\text{Re} _s$.

introduced the name “bottleneck phenomenon” for the energy pileup and predicts the correction term to be $\propto (p/p_d)^{\xi/3} / \ln(p_d/p)$.

We offer the following physical explanation (already given in [7]) of the bottleneck phenomenon: Consider the turbulent energy transfer downscale, $T(p) = p u(p) \int dp_1 dp_2 u(p_1) u(p_2) \delta(p + p_1 + p_2)$, which does not depend on p in the inertial range due to Kolmogorov’s structure equation [11]. Assume that the amplitudes $u(p_1), u(p_2)$ with $p_1, p_2 > p_d > p$ are already damped by viscosity. Then the energy transfer $T(p)$ would be reduced, and stationarity could not be achieved unless $u(p)$ increases. Because of the locality of the Navier-Stokes interaction in p space, the effect is strongest around p_d, leading to the energy pileup. Of course there is also viscous damping, but for $p < p_d < \eta^{-1}$ it is smaller than the eddy viscosity $T(p)$ [2]. Borne and Orszag’s simulations [5] indeed show that the pileup starts in a region where $T(p)$ is still constant. The above explanation rules out spectra of type (6). For an explanation of the bottleneck effect within the test field model we refer to Ref. [19]; see also [20]. For an analogous phenomenon in temperature spectra see [21].

Formally the bottleneck phenomenon reflects the relatively sharp crossover from r^2 scaling (VSR) to r^4 scaling (ISR) in the structure function (1). To illustrate this we transform the spectrum (6) back to r space. This spectrum does not show the bottleneck phenomenon, and the corresponding structure function

$$
D(r) = \frac{4c \Gamma(-\xi)}{r^{\xi+1} p_d} \left\{ p_d r (\xi + 1) - (1 + p_d^2 r^2)^{\xi+1/2} \sin[(\xi + 1)\arctan(p_d r)] \right\}
$$

(8)

differs from the Batchelor parametrization (1) by its considerably smoother transition (see the dotted curve in Fig. 1, showing a ratio of ≈ 1.8 around r_d).

Our explanation suggests that the bottleneck effect potentially accompanies any sudden change in spectra strength, provided the wave vector amplitudes interact nonlinearly and a conserved flux exits. We are consequently led to expect a similar effect at the infrared end of the scaling regime where the small-p modes are reduced in their spectra strength by the finite system size.

Let us therefore consider the crossover between ISR and the large r saturation domain, where $D(r) = 2(u^2) = 6u_{\text{rms}}^2$ becomes constant. Recall that $L = 1/p_L$ is the forcing scale. From experimental data [10,11,16] we conclude that the second crossover at $r = L$ is again well described by a Batchelor type transition,

$$
D(r) = 2(u^2) r^3 (r_d^2 + r^2)^{-1+\xi/2}(L^2 + r^2)^{-\xi/2};
$$

(9)

see Fig. 1. (This crossover is probably nonuniversal.

The important point here is simply the reduced spectral strength for small p, induced by the finite size, i.e., $E(p) \propto p$ as $p \to 0$.) The general mechanism outlined above should apply equally well in this regime: The velocity amplitudes of the modes $p_1, p_2 < p_1 < p$ (either of them) are reduced because of the finite size of the system. The mode $u(p)$ again has to increase in order to guarantee a p-independent energy flux, now resulting in a steeper spectrum.

Indeed, we find such a behavior for the spectrum corresponding to (9). For $r_d \ll r$ we derive the analytical result (for $\xi = \frac{2}{3}$)

$$
E(p) = \frac{(u^2)^2}{\pi} \left\{ \frac{\Gamma(5/6)}{\Gamma(1/3)} \sqrt{\pi} \left[\frac{5}{9} p^2 F_1 \left(\frac{11}{6}, \frac{5}{2}, \frac{5}{2}, \frac{p^2}{4} \right) + \frac{11 \sqrt{5}}{405} p^4 F_1 \left(17 \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{p^2}{4} \right) \right] \right. \\
+ \pi \left[\frac{1}{3} \sqrt{\pi} F_1 \left(1, 2, 3, \frac{3}{2}, \frac{3}{2}, \frac{p^2}{4} \right) + \frac{2}{27} \sqrt{\pi} F_1 \left(1, 2, 3, \frac{3}{2}, \frac{3}{2}, \frac{p^2}{4} \right) \right],
$$

(10)

where $\bar{p} = p/p_L$ and $F_1(a, b, c, z)$ denotes a generalized hypergeometric function [17]. The spectrum and the corresponding $\xi_p(p)$ are shown in the left parts of Figs. 2 and 3, respectively. We find $p_{max} = 8p_L$, and $\xi(p_{max}) = 0.77$. Thus the deviations from classical scaling are again much larger than the discussed intermittency corrections. Note that
our result agrees with theoretical [6,9] and experimental hints (summarized in [9]) that the spectra are steeper for small p.

We finally calculate the effective scaling exponent $\zeta^{(eff)}_p(Re_\lambda)$ that will be measured in p-space simulations. Here we only consider the bottleneck phenomenon for large p, as in most numerical schemes the smallest wave vectors are forced and no $p < p_L$ are included. Let us express r_d in terms of L and the Taylor-Reynolds number $Re_\lambda = \lambda u_{ rms}/\nu$, where $\lambda = u_{ rms}/(\partial_1 u_1)_{ rms}$ is the Taylor length. We have $\epsilon = c_\epsilon u_{ rms}^3/L$ with $c_\epsilon = (6/\nu)^{3/2} = 1$, which is also known from grid turbulence experiments [22]. On the other hand, $\epsilon = 15\nu(\partial_1 u_1)_{ rms}^3$ [11]. Using these relations we finally get $\eta = 15^{3/2}c_{\epsilon}^{-1}LRe_\lambda^{-3/2}$ or $(\epsilon = 2/3) r_d = (3b)^{1/4} \eta \approx 63LRe_\lambda^{-3/2}$. This connection between r_d/L and Re_λ allows us to calculate $\zeta^{(eff)}_p(Re_\lambda)$ as the average

$$\zeta^{(eff)}_p(Re_\lambda) = 1 \ln(p_{\text{min}}/p_L) \int_{p_L}^{p_{\text{max}}} \zeta_p(p) d \ln p,$$

where p_{min} is, as above, the wave vector of minimal $\zeta_p(p)$. The function $\zeta^{(eff)}_p(Re_\lambda)$ is shown in the inset of Fig. 3. The deviations from the asymptotic value $\zeta^{(eff)}(Re_\lambda \to \infty) = \zeta$ are large. Assuming $\zeta = 2/3$, even for the largest $Re_\lambda = 200$ achieved in numerical simulations [1] we have $\zeta^{(eff)}_p = 0.58$, which very well agrees with what is observed in numerical simulations [1]. Impressive experimental confirmation of our prediction follows from recent measurements by Zocchi et al. [4]. We include their data for $\zeta^{(eff)}_p(Re_\lambda)$ in our figure.

Let us finally remark that our physical explanation of the bottleneck energy pileups is very general; it only assumes some inertial range with a constant energy flux in p space. For example, these conditions hold for surface or capillary waves [23], where bottleneck phenomena are also expected [2], or for Kuramoto-Sivashinsky dynamics [24]. How bottleneck phenomena manifest themselves in higher order moments and in power spectra remains a question for further research.

We are grateful to R. Benzi, who kindly supplied us with his experimental data. We thank him and M. Brenner, S. Eispov, A. Esser, G. Falkovich, A. Golubtsev, S. Grossmann, J. Herring, M. Jensen, L. Kadanoff, R. Kerr, S. Kida, A. Praskovsky, and L. Sirovich for discussions and hints. D.L. acknowledges support by a NATO grant through the Deutsche Akademische Auslandsdienst (DAADD) and by DOE. A.M.-G. was supported by NSERC.

\[\text{On leave of absence from Fachbereich Physik, Universität Marburg, Renthof 6, D-35032 Marburg, Germany.}
\]

\[\text{Present address: C.E.A., Service de Physique de l’État Condensé, Centre d’Études de Saclay, 91191 Gif sur Yvette Cedex, France.}\]

