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Abstract

In logic programming, dynamic scheduling indicates the feature by
means of which the choice of the atom to be selected at each resolution step
is done at runtime and does not follow a fixed selection rule such as the left-
to-right one of Prolog. Input consuming derivations were introduced to
model dynamic scheduling while abstracting from the technical details. In
this article, we provide a sufficient and necessary criterion for termination
of input consuming derivations of simply moded logic programs. The
termination criterion we propose is based on a denotational semantics
for partial derivations which is defined in the spirit of model-theoretic
semantics previously proposed for left-to-right derivations.

1 Introduction

Algorithm = Logic + Control.

The programmer should be responsible for the logic part. The control should
be taken care of by the logic programming system.

In reality, logic programming is far from this ideal. Without the program-
mer being aware of the control and writing programs accordingly, most logic
programs would be hopelessly inefficient or even non-terminating.

∗Contact author’s address: Sabina Rossi, Dipartimento di Informatica, Università Ca’
Foscari di Venezia, via Torino 155, 30172 Venezia, Italy.
This article is accepted for publication in the ACM Transactions on Computational Logic,
and is based on an earlier conference paper [8].
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One aspect of control in logic programs is the selection rule, stating which
atom in a query is selected in each derivation step. The standard selection
rule in logic programming languages is the fixed left-to-right rule of Prolog.
While this rule is appropriate for many applications, there are situations, e.g.,
in the context of parallel executions or the test-and-generate paradigm, that
require a more flexible control mechanism, namely, dynamic scheduling, where
the selectable atoms are determined at runtime.

To demonstrate that on the one hand, the left-to-right selection rule is
sometimes inappropriate, but that on the other hand, the selection mechanism
must be controlled in some way, consider the following programs APPEND and
IN ORDER:

% append(Xs,Ys,Zs) ← Zs is the result of concatenating the lists Xs and Ys
append([H|Xs],Ys,[H|Zs]) ← append(Xs,Ys,Zs).
append([],Ys,Ys).

% in order(Tree,List) ← List is an ordered list of the nodes of Tree
in order(tree(Label,Left,Right),Xs) ←

in order(Left,Ls),
in order(Right,Rs),
append(Ls,[Label|Rs],Xs).

in order(void,[]).

together with the query

Q : read tree(Tree), in order(Tree,List), write list(List).

where read tree and write list are defined elsewhere. If read tree cannot
read the whole tree at once – say, it receives the input from a stream – it would be
nice to be able to run the “processes” in order and write list on the available
input. This can only be done properly if one uses a dynamic selection rule
(Prolog’s rule would call in order only after read tree has finished, while other
fixed rules would immediately diverge and/or have an unwanted behavior1. Such
a mechanism is provided in modern logic programming languages in the form of
delay declarations (also called when declarations) [19]. In the above program, in
order to avoid nontermination one can declare that predicates in order, append
and write list can be selected only if their first argument is not just a variable.
Formally,

delay in order(T, ) until nonvar(T).
delay append(Ls, , ) until nonvar(Ls).
delay write list(Ls, ) until nonvar(Ls).

1For instance, the fixed rule that selects always the second atom in a clause body, and that
selects the first one only when the body contains only one atom can lead to nontermination, as
the query in order(Tree, List) can easily diverge. The same applies to the rule that always
selects the rightmost atom in a query, with the extra problem that write list(List) would
be called with a non-instantiated argument: if write list is non-backtrackable (as many IO
predicates are) this would imply that this selection rule yields a wrong output.
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These declarations prevent in order, append and write list from being se-
lected “too early”, i.e., when their arguments are not “sufficiently instantiated”.
Note that instead of having interleaving “processes”, one can also select several
atoms in parallel, as long as the delay declarations are respected. This approach
to parallelism has been first proposed by Naish [21] and – as observed by Apt
and Luitjes [4] – “has an important advantage over the ones proposed in the
literature in that it allows us to parallelize programs written in a large subset of
Prolog by merely adding to them delay declarations, so without modifying the
original program”.

Compared to other mechanisms for user-defined control, e.g., using the cut
operator in connection with built-in predicates that test for the instantiation
of a variable (var or ground), delay declarations are more compatible with
the declarative character of logic programming. Nevertheless, many important
declarative properties that have been proven for logic programs do not apply
to programs with delay declarations. The problem is mainly related to the fact
that delay declarations might cause deadlock situations, in which no atom in the
query respects its delay declaration. For instance, for such programs the well-
known equivalence between model-theoretic and operational semantics does not
hold. As an example, consider the query append(X,Y,Z) with the execution
mechanism described above: it does not succeed (it deadlocks) and this is in
contrast with the fact that (infinitely many) instances of append(X,Y,Z) are
contained in the least Herbrand model of APPEND.

In order to provide a characterization of dynamic scheduling that is reason-
ably abstract and hence amenable to semantic analysis, Smaus [26] introduced
input consuming derivations. The definition of input consuming program relies
on the concept of mode. A moded program is a program in which each atom’s
arguments are partitioned into input and output ones. Output arguments are
those which can be produced by the computation process, while input arguments
should be only consumed. Roughly speaking, in an input consuming program
only atoms whose input arguments are not instantiated through the unification
step are allowed to be selected.

In [8] we have demonstrated that – in many cases – the adoption of the
“natural” delay declarations is equivalent to considering only input consuming
derivations. This is the case – for instance – for the programs mentioned above
(together with their natural mode append(I,I,O)2, in order(I,O)): under
normal circumstances, the adoption of the just stated delay declarations enforces
nothing but a restriction to input consuming derivations. In both cases, whether
we consider selection rules defined in terms of a programming language construct
such as delay declarations, or whether we consider input consuming derivations,
we speak of LP with dynamic scheduling.

The contribution The adoption of dynamic scheduling has as ultimate goal
that of ensuring the termination of the program under construction, by prevent-

2In this mode, the first two positions are considered input positions, while the rightmost
one is an output one.
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ing possible diverging derivations. Nevertheless, while for pure Prolog programs
(i.e., logic programs employing the fixed leftmost selection rule) there exist re-
sults characterizing when a program is terminating [5], no such characterization
has been found yet for programs with dynamic scheduling. In addition, there
are relatively few contributions concerning the termination of programs with
dynamic scheduling.

In this paper we tackle the problem of establishing the termination of input
consuming logic programs. For this, we restrict our attention to the class of
simply moded programs, which are programs that are, in a well-defined sense,
consistent with respect to the intended producer/consumer behavior (modes).
As also shown by the benchmarks reported in [8], most practical programs are
simply moded.

The main contribution of this paper is a full characterization of the class of
simply moded input terminating logic programs, i.e., simply moded programs
whose input consuming derivations starting from a simply moded query are
finite.

In order to provide such a result, we had to define a new declarative semantics
that allows us to capture the inter-argument relationships of input-consuming
programs. Since dynamic scheduling also allows for parallelism, in this context
it is important to model the result of partial (i.e., incomplete) derivations. In
fact, partial computed answer substitutions may activate suspended processes
by means of interleaving therefore influencing the termination of the system.
To capture this appropriately, we defined a denotational semantics modeling
computed answer substitutions of incomplete derivations and enjoying a model-
theoretical reading as well as a natural bottom-up constructive definition. We
demonstrate that this semantics is correct and fully abstract with respect to the
computed substitutions of partial derivations.

A first attempt to tackle this problem has been presented in [27] and ex-
tended in [7] where we defined the class of input terminating programs, i.e.,
programs whose input consuming derivations are finite, and characterize the
subclass of simply moded quasi recurrent programs. It is worth stressing that
this latter class includes only programs whose termination does not depend on
the so-called inter-argument relationships and therefore it does not include pro-
grams such that quicksort, transpose, list tree. Further comparisons are
reported in the concluding section.

Structure of the paper The rest of this paper is organized as follows. The
next section introduces some preliminaries. Section 3 shows some useful proper-
ties of input consuming derivations. Section 4 provides a result on denotational
semantics for partial input consuming derivations. Section 5 provides a sufficient
and necessary criterion for termination of programs using input consuming par-
tial derivations. In Section 6 we report additional examples. Section 7 discusses
related work and draws some conclusions.
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2 Preliminaries

The reader is assumed to be familiar with the terminology and the basic results
of logic programs and their semantics [1, 2, 15]. In this section we introduce a
few notions that will be used in the sequel.

2.1 Terms and Substitutions

Let T be the set of terms built on a finite set of data constructors C and a
denumerable set of variable symbols V. For any syntactic object o, we denote
by Var(o) the set of variables occurring in o. A syntactic object is linear if
every variable occurs in it at most once. A substitution θ is a mapping from V
to T . Given a substitution σ = {x1/t1, . . . , xn/tn}, we say that {x1, . . . , xn} is
its domain (denoted by Dom(σ)), and Var({t1, . . . , tn}) is its range (denoted
by Ran(σ)). Note that Var(σ) = Dom(σ) ∪ Ran(σ). We denote by ε the empty
substitution: Dom(ε) = Ran(ε) = ∅. Given a substitution σ and a syntactic
object E, we denote by σ|E the restriction of σ to the variables in Var(E),
i.e., σ|E(x) = σ(x) if x ∈ Var(E), otherwise σ|E(x) = x. If t1, . . . , tn is a
permutation of x1, . . . , xn then we say that σ is a renaming. The composition
of substitutions is denoted by juxtaposition, i.e., θσ(x) = σ(θ(x)). The result
of the application of a substitution θ to a term t is said an instance of t and it
is denoted by tθ. We say that t is a variant of t′, written t ≈ t′, if t and t′ are
instances of each other. A substitution θ is a unifier of terms t and t′ if tθ = t′θ.
We denote by mgu(t, t′) any most general unifier (mgu, in short) of t and t′. An
mgu θ of terms t and t′ is called relevant iff Var(θ) ⊆ Var(t) ∪Var(t′).

2.2 Programs and Derivations

Let P be a finite set of predicate symbols. An atom is an object of the form
p(t1, . . . , tn) where p ∈ P is an n-ary predicate symbol and t1, . . . , tn ∈ T . Given
an atom A, we denote by Rel(A) the predicate symbol of A. A query is a finite,
possibly empty, sequence of atoms A1, . . . , Am. The empty query is denoted
by �. Following the convention adopted in [2], we use boldface characters to
denote sequences of objects: so, for instance, t denotes a sequence of terms,
while B is a query (i.e., a possibly empty sequence of atoms). A clause is a
formula H ← B where H is an atom (the head) and B is a query (the body).
When B is empty, H ← B is simply written H and is called a unit clause. A
program is a finite set of clauses. We denote atoms by A,B,H, . . . , queries by
Q,A,B,C,R, . . . , clauses by c, d, . . . , and programs by P .

Computations are constructed as sequences of “basic” steps. Consider a
non-empty query A, B,C and a clause c. Let H ← B be a variant of c variable
disjoint from A, B,C. Let B and H unify with mgu θ. The query (A,B,C)θ
is called a resolvent of A, B,C and c with selected atom B and mgu θ. A
derivation step is denoted by A, B,C θ=⇒P,c (A,B,C)θ. The clause H ← B is
called its input clause. The atom B is called the selected atom of A, B,C.
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If P is clear from the context or c is irrelevant then we drop the reference
to them. A derivation is obtained by iterating derivation steps. A maximal
sequence

δ : Q0
θ1=⇒P,c1 Q1

θ2=⇒P,c2 · · ·Qn
θn+1=⇒P,cn+1 Qn+1 · · ·

is called a derivation of P ∪ {Q0} provided that for every step the standardiza-
tion apart condition holds, i.e., the input clause employed is variable disjoint
from the initial query Q0 and from the substitutions and the input clauses used
at earlier steps.

Derivations can be finite or infinite. If δ : Q0
θ1=⇒P,c1 · · ·

θn=⇒P,cn Qn is a

finite prefix of a derivation, also denoted by δ : Q0
θ−→ Qn with θ = θ1 · · · θn, we

say that δ is a partial derivation and θ is a partial computed answer substitution
of P ∪ {Q0}. If δ is maximal and ends with the empty query then θ is called
computed answer substitution (c.a.s., for short). In this case we say that the
derivation is successful. A finite derivation is called failed if it ends with a
non-empty query Q and there is no input clause whose head unifies with the
selected atom of Q. The length of a (partial) derivation δ, denoted by len(δ),
is the number of derivation steps in δ.

The following definition of D-step is due to Smaus [26].

Definition 2.1 ((D-step))

• Let A, B,C θ=⇒ (A,B,C)θ be a derivation step. We say that each atom
in Bθ is a direct descendant of B, and for each atom E in (A,C), Eθ
is a direct descendant of E. We say that E is a descendant of F if the
pair (E,F ) is in the reflexive, transitive closure of the relation is a direct
descendant of.

• Consider a derivation Q0
θ1=⇒ · · · θi=⇒ Qi · · ·

θj=⇒ Qj
θj+1=⇒ Qj+1 · · ·. We say

that Qj
θj+1=⇒ Qj+1 · · · is a D-step if D is a subquery of Qi and the selected

atom in Qj is a descendant of an atom in D.

Intuitively, a D-step occurring in a derivation δ is a derivation step that
concerns the derivation of the subquery D of some query in δ.

2.3 Moded Programs

Modes are a common tool for verification. A mode is a function that labels
as input or output the positions of each predicate in order to indicate how the
arguments of a predicate should be used. A program (resp. a query, an atom)
is called moded whenever it is provided with a mode.

Definition 2.2 ((mode)) A mode for a predicate symbol p of arity n, is a
function mp from {1, . . . , n} to {I ,O}.

If mp(i) = I (resp. O), we say that i is an input (resp. output) position of
p (with respect to mp). In examples, we often indicate the mode by writing the
atom p(mp(1), . . . ,mp(n)), e.g., append(I , I ,O).
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We assume that each predicate symbol has a unique mode associated to it;
multiple modes may be obtained by simply renaming the predicates. We denote
by In(Q) (resp. Out(Q)) the sequence of terms filling in the input (resp. output)
positions of predicates in Q. Moreover, when writing an atom as p(s, t), we are
indicating that s is the sequence of terms filling in its input positions and t is
the sequence of terms filling in its output positions.

In the literature, several correctness criteria concerning the modes have been
proposed, e.g., nicely and well-modedness [2]. In the sequel of the paper we will
restrict ourselves to programs and queries which are simply moded [3].

Definition 2.3 ((simply moded)) A clause H ← B1, . . . , Bn is simply moded
if

• Out(B1, . . . , Bn) is a linear vector of variables,

• Var(In(H)) ∩Var(Out(B1, . . . , Bn)) = ∅,
• for all i ∈ [1..n], Var(Out(Bi)) ∩Var(In(B1, . . . , Bi)) = ∅.

A query B is simply moded if the clause q ← B is simply moded, where q
is any variable-free atom. A program is simply moded if all of its clauses are.

Thus a clause is simply moded if the output positions of body atoms are
filled in by distinct variables, and every variable occurring in an output position
of a body atom does not occur in an earlier input position. In particular, every
unit clause is simply moded.

Example 2.4

• The program APPEND of the introduction in the mode append(I , I ,O) is
simply moded.

• The following program REVERSE with accumulator in the mode defined
below is simply moded.

mode reverse(I,O).
mode reverse acc(I,O,I)

reverse(Xs,Ys) ← reverse acc(Xs,Ys,[]).
reverse acc([],Ys,Ys).
reverse acc([X|Xs],Ys,Zs) ← reverse acc(Xs,Ys,[X|Zs]).

In Definition 2.3, if we drop the condition that output positions of body
atoms are filled in by variables then we obtain the definition of nicely moded
programs and queries. Therefore the class of simply moded programs is properly
contained in the class of nicely moded programs.
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2.4 Input Consuming Derivations

The notion of input consuming derivation was introduced in [26] as formalism
for describing dynamic scheduling in an abstract way and is defined as follows.

Definition 2.5 ((input consuming))

• A derivation step A, B,C θ=⇒ (A,B,C)θ is input consuming if In(B)θ =
In(B).

• A derivation is input consuming if all its derivation steps are input con-
suming.

Example 2.6 Consider the program REVERSE with accumulator in the modes
defined above. The derivation δ of REVERSE ∪ {reverse([X1,X2],Zs)} de-
picted below is input consuming.

δ: reverse([X1,X2],Zs) ⇒ reverse acc([X1,X2],Zs,[ ]) ⇒
reverse acc([X2],Zs,[X1]) ⇒ reverse acc([ ],Zs,[X2,X1]) ⇒ �.

Allowing only input consuming derivations is a form of dynamic scheduling,
since whether or not an atom can be selected depends on its degree of instantia-
tion at runtime. Given a non-empty query, if no atom is resolvable via an input
consuming derivation step and no failure arises, then we say that the query
deadlocks.

In previous works many important properties of input consuming derivations
have been proven by considering various classes of programs and queries. In this
article, we focus on the simply moded ones, but we consider results that hold
only for this class as well as results that hold for larger classes, e.g., the class of
nicely moded programs and queries.

The following lemma is a straightforward consequence of [4, Lemma 30].

Lemma 2.7 In a input consuming derivation, every resolvent of a nicely (resp.
simply) moded query and a nicely (resp. simply) moded clause is nicely (resp.
simply) moded.

The following result has been proven in [7] for nicely moded programs and
queries. It states that the only variables of a nicely moded query that can be
“affected” through the computation of an input consuming derivation with a
nicely moded program are those occurring in some output positions.

Lemma 2.8 Let the program P and the query Q be nicely moded. Let also
Q

θ−→ Q′ be a (partial) input consuming derivation of P ∪ {Q}. Then, for all
x ∈ Var(Q) and x 6∈ Var(Out(Q)), xθ = x.

The next lemma shows that input consuming derivations are invariant under
renaming.
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Lemma 2.9 Let P be a program, Q be a query and δ : Q
θ−→ Q′ be a (partial)

input consuming derivation of P ∪ {Q}. Then, for any renaming ρ there exists
a (partial) input consuming derivation δ′ : Qρ

ϑ−→ Q′ρ where ϑ = ρ−1θρ.

Proof. First notice that
(1) if c is a clause renamed apart with respect to a query Q then cρ is renamed

apart with respect to Qρ,

(2) if A and H are unifiable with mgu θ then Aρ and Hρ are unifiable with
mgu ρ−1θρ,

(3) if In(Aθ) = In(A) then In(Aρρ−1θρ) = In(Aθρ) = In(Aρ).

Consider now the list of clauses c1, . . . , cn employed in δ and the corresponding
list of mgu’s, θ1, . . . , θn, where θ = θ1, · · · , θn. By (1) and (2) we can construct
a derivation δ′ starting from Qρ with input clauses c1ρ, . . . , cnρ and unifiers
ρ−1θ1ρ, . . . , ρ−1θnρ. We obtain a derivation δ′ : Qρ

ϑ−→ Q′ρ which is input
consuming (by point (3) above) and whose computed answer substitution is ϑ =
(ρ−1θ1ρ)(ρ−1θ2ρ) · · · (ρ−1θnρ) = ρ−1θ1 · · · θnρ = ρ−1θρ. �

We recall below the Left-Switching Lemma that has been proven in [7].

Lemma 2.10 ((Left-Switching)) Let the program P and the query Q0 be
nicely moded. Let δ be a partial input consuming derivation of P ∪ {Q0} of
the form

δ : Q0
θ1=⇒c1 Q1 · · ·Qn

θn+1=⇒cn+1 Qn+1
θn+2=⇒cn+2 Qn+2

where

• Qn is a query of the form A, A,B, B,C,

• Qn+1 is a resolvent of Qn and cn+1 with respect to B,

• Qn+2 is a resolvent of Qn+1 and cn+2 with respect to Aθn+1.

Then, there exist Q′
n+1, θ′n+1, θ′n+2 and a derivation δ′ such that

θn+1θn+2 = θ′n+1θ
′
n+2

and

δ′ : Q0
θ1=⇒c1 Q1 · · ·Qn

θ′
n+1=⇒cn+2 Q′

n+1

θ′
n+2=⇒cn+1 Qn+2

where δ′ is input consuming and

• δ and δ′ coincide up to the resolvent Qn,

• Q′
n+1 is a resolvent of Qn and cn+2 with respect to A,

• Qn+2 is a resolvent of Q′
n+1 and cn+1 with respect to Bθ′n+1,

• δ and δ′ coincide after the resolvent Qn+2.
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Lemma 2.10 suggests the following definition which introduces a way of
ordering the selected atoms in an input consuming derivation of a simply moded
query.

Definition 2.11 A partial derivation δ : Q0 =⇒ Q1 · · · =⇒ Qn of a simply
moded query Q0 proceeds left-to-right if whenever an atom B is selected in a
resolvent Qi : A, B,C then no A-step is performed in the rest of the derivation
Qi+1 −→ Qn.

The next corollary is an immediate consequence of the Left-Switching Lemma.
Intuitively, it says that any resolvent in an input consuming derivation of a
simply moded query can be obtained by an input consuming derivation which
proceeds left-to-right.

Corollary 2.12 Let the program P and the query A,B be simply moded. Sup-
pose that δ : A,B θ−→ C is a (partial) input consuming derivation of P ∪ {A,B}.
Then there exist C1 and C2 and a (partial) input consuming derivation δ′ that
proceeds left-to-right of the form

δ′ : A,B θ1−→ C1,Bθ1
θ2−→ C1,C2

such that len(δ) = len(δ′), C = C1,C2, θ = θ1θ2, all the A-steps are performed
in the prefix A,B θ1−→ C1,Bθ1, all the B-steps are performed in the suffix
C1,Bθ1

θ2−→ C1,C2 and C1θ2 = C1.

Proof. By repeatedly applying the Left-Switching Lemma, δ is equivalent to
a derivation δ′ in which all the A-steps are carried out before the B-steps.
C1,Bθ1 is the resolvent that we obtain after carrying out the A-steps. By the
persistence of simply-moded queries (Lemma 2.7), C1,Bθ1 is simply-moded.
Therefore, by Lemma 2.8, θ2 has no influence on C1 (i.e., C1θ2 = C1). �

3 Simply Local Substitutions

When input consuming derivations are applied to simply moded programs and
queries, important properties follow from the way clauses become instantiated
during the derivation process. We introduce simply local substitutions to reflect
this instantiation mechanism. A clause c:= H ← B1, . . . , Bn becomes instan-
tiated by its “caller” (the atom that is resolved using c) and its “callees” (the
clauses used to resolve the body atoms of c). Thus, a simply local substitu-
tion is defined as the composition of several substitutions, σ0, σ1 . . . , σn, one for
each atom in the given clause, such that σ0 binds the input variables of the
head of the clause, and each σi (i > 0) creates a binding between the output
variables and the input terms of Bi (instantiated by the previous substitutions
σ0, . . . , σi−1). The definition involves variable sets v0, v1, . . . , vn. Intuitively, the
variables in v0 come from the “caller” and the variables in v1, . . . , vn come from
the “callees”.
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Definition 3.1 ((simply local substitution)) Let θ be a substitution. We
say that θ is simply local with respect to the clause H ← B1, . . . , Bn if there
exist substitutions σ0, σ1 . . . , σn and disjoint sets of fresh (with respect to c) vari-
ables v0, v1, . . . , vn such that θ = σ0σ1 · · ·σn where

• Dom(σ0) ⊆ Var(In(H)) and Ran(σ0) ⊆ v0,

• for i ∈ [1..n],
Dom(σi) ⊆ Var(Out(Bi)) and Ran(σi) ⊆ Var(In(Bi)σ0σ1 · · ·σi−1) ∪ vi.

The substitution θ is simply local with respect to a query B if θ is simply local
with respect to the clause q ← B where q is any variable-free atom.

Given a simply local substitution θ, we call the set of fresh variables of θ the
union of the sets v0, v1, . . . , vn introduced in the above definition.

Note that in the case of a simply local substitution with respect to a query,
σ0 is the empty substitution, since Dom(σ0) ⊆ Var(q) where q is an (imaginary)
variable-free atom.

Example 3.2 Consider the program APPEND with the modes append(I,I,O)
and its recursive clause

c : append([H|Xs], Ys, [H|Zs]) ← append(Xs, Ys, Zs).

The substitution θ = {Xs/[], Ys/W, Zs/W} is simply local with respect to c. In
fact, let σ0 = {Xs/[], Ys/W} and σ1 = {Zs/W} be two substitutions and v0 = {W}
and v1 = ∅ be two disjoint sets of fresh (with respect to c) variables. According
to Definition 3.1, we have that θ = σ0σ1, Dom(σ0) ⊆ Var(In(append([H|Xs], Ys, [H|Zs]))),
Ran(σ0) ⊆ v0, Dom(σ1) ⊆ Var(Out(append(Xs, Ys, Zs))) and also Ran(σ1) ⊆
Var(In(append(Xs, Ys, Zs))σ0) ∪ v1.

Consider now the query

Q : append([a, X, c], Ys, Zs), append(Zs, [b], Ls).

The substitution θ = {Zs/[a,X,c|Ys]} is simply local with respect to Q. In
fact θ = σ1σ2 where σ1 = {Zs/[a,X,c|Ys]} and σ2 is the empty substitution,
and v1 and v2 are empty sets of variables.

The following property follows immediately from Definition 3.1.

Proposition 3.3 Let the clause c be simply moded and ρ be a renaming. If
the substitution θ is simply local with respect to c then the substitution ρ−1θρ is
simply local with respect to cρ.

The next lemma provides us with a means of composing substitutions which
are simply local with respect to pieces of queries provided that they satisfy the
following variable compatible property.

Definition 3.4 Let ϑ1 be a substitution simply local with respect to A and ϑ2

be simply local with respect to Bϑ1. Then ϑ1 and ϑ2 are variable compatible
with respect to A and B if
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• the set of fresh variables of ϑ1 is disjoint from the set of fresh variables of
ϑ2,

• Var(A,B) is disjoint from the set of fresh variables of ϑ1 and ϑ2.

When two substitutions are variable compatible then we have a way of com-
bining them as described below.

Lemma 3.5 Let the query A,B be simply moded. There exists a substitution
θ simply local with respect to A,B iff θ = ϑ1ϑ2 where

• ϑ1 = θ|A = θ|Out(A) is simply local with respect to A,

• ϑ2 = θ|B = θ|Out(B) simply local with respect to Bϑ1,

• ϑ1 and ϑ2 are variable compatible with respect to A and B.

Proof. Let A = A1, . . . , Ai and B = Ai+1, . . . , An.
⇒) Let θ = σ1 · · ·σn be according to Definition 3.1. By definition of sim-

ply local substitution and properties of simply moded queries, for every k, j ∈
[1..n] and k 6= j, Dom(σk) ∩ Dom(σj) = ∅, Out((Ak+1, . . . , An)σ1 · · ·σk) =
Out(Ak+1, . . . , An) and ((A1, . . . , Ak)σ1 · · ·σk)σk+1 · · ·σn = (A1, . . . , Ak)σ1 · · ·σk.
Thus θ|A = σ1 · · ·σi is simply local with respect to A and σi+1 · · ·σn is simply
local with respect to (Ai+1, . . . , An)σ1 · · ·σi.
⇐) Let ϑ1 = σ1 · · ·σi and ϑ2 = σi+1 · · ·σn. To prove that ϑ1ϑ2 = σ1 · · ·σn

is simply local with respect to A,B, we observe that by definition of simply local
substitution and properties of simply moded queries, Out((Ai+1, . . . , An)σ1 · · ·σi) =
Out(Ai+1, . . . , An) and hence for all j ∈ [i + 1..n], Dom(σj) ⊆ Var(Out(Aj)).
The fact that ϑ1 and ϑ2 are variable compatible ensures that the composition
ϑ1ϑ2 satisfies the requirement on fresh variables in the definition of simply local
substitution. �

Analogously, one can prove the following result which allows us to combine
simply local substitutions applied to a clause rather than to a query.

Lemma 3.6 Let the clause c : H ← B be simply moded. There exists a substi-
tution θ simply local with respect to c iff θ = ϑ0ϑ1 where

• ϑ0 = θ|H = θ|In(H) is simply local with respect to H ←,

• ϑ1 = θ|B = θ|Out(B) simply local with respect to Bϑ0,

• ϑ0 and ϑ1 are variable compatible with respect to H and B.

The following definition introduces a property of mgu’s which can be nat-
urally satisfied by input consuming derivations, as shown in the subsequent
lemma. The proof of the lemma is reported in the appendix.

Definition 3.7 ((simply local mgu)) Let the atoms A and H be variable dis-
joint, A be simply moded and θ be a mgu of A and H such that In(Aθ) = In(A).
We say that θ is a simply local mgu of A and H if θ = σ0σ1 where σ0 is simply
local with respect to the clause H ← and σ1 is simply local with respect to the
atom A.
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Lemma 3.8 Let the atoms A and H be variable disjoint and A be simply moded.
Suppose that there exists ϑ = mgu(A,H) such that In(Aϑ) = In(A). Then there
exists a simply local mgu θ of A and H.

Note that the previous Lemma 3.8 together with Theorem 3.18 in [2] (on
derivations with different mgu’s), ensures us that as long as we are interested
in properties which are invariant under renaming, we can safely assume that
all the mgu’s employed in an input consuming derivation of a simply moded
program with a simply moded query are simply local.

Example 3.9 Consider the predicate p/2 in the mode p(I ,O) and the atoms

A = p(f(X, Y), Z) H = p(W, U).

Note that there exists an mgu ϑ of A and H such that In(Aϑ) = In(A). In fact,
there are actually two relevant mgus which enjoy this property:

ϑ1 = {W/f(X, Y), U/Z} ϑ2 = {W/f(X, Y), Z/U}

but only the second one is simply local.

Note that when two atoms A and H are variable disjoint and ϑ is a simply local
mgu of A and H then the variables in Out(A) do not occur anymore in Aϑ.

The next lemma shows a persistence property of simply local substitutions.
It provides one of the key intuitions for the development of the bottom-up
semantics of the next section. Its proof is reported in the appendix.

Lemma 3.10 Let Q : A,R be a simply moded query, Q′ : (B,R)ϑ and Q
ϑ=⇒

Q′ be an input consuming derivation step obtained by using the simply moded
clause c : H ← B and the simply local mgu ϑ. Let θ be a substitution simply
local with respect to Q′ such that the set of fresh variables of θ is disjoint from
Var(Q) and Var(c). Then (ϑθ)|Q is simply local with respect to Q.

4 A Denotational Semantics for Partial Deriva-
tions

As we mentioned in the introduction, input consuming derivations can be used
to model parallelism, and in this context it is very important to model the
results of partial computations. Indeed, standard semantics for concurrent logic
languages such as CCP [13, 25] and GHC [31] often capture such intermediate
results, or in any case, the results of non-successful computations [11]. In fact,
input consuming programs can have a reactive nature: the (partial) result of
a computation may trigger another computation by instantiating sufficiently
the input positions of another atom so that it becomes resolvable. Because of
this, when one wants to characterize for instance termination, the adoption of
a semantics modeling intermediate results becomes essential.
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In this section we define a denotational semantics that models partial com-
puted answer substitutions of input consuming derivations of simply moded
programs and queries. We will later see how this semantics allows us to char-
acterize termination of input consuming derivations.

4.1 Immediate consequence operator

In predicate logic, an interpretation states which formulas are true and which
ones are not. For our purposes, it is convenient to formalize this by defining an
interpretation I as a set of atoms closed under variance. Based on this notion
and simply local substitutions, we now define a restricted notion of model.

Definition 4.1 ((simply local model)) Let M be an interpretation. We say
that M is a simply local model of a clause c : H ← B1, . . . , Bn if for every
substitution θ simply local with respect to c,

if B1θ, . . . , Bnθ ∈M then Hθ ∈M . (1)

M is a simply local model of a program P if it is a simply local model of each
clause of it.

Clearly a simply local model is not necessarily a model in the classical sense,
since the substitution θ in (1) is required to be simply local. For example,
given the program {q(1)., p(X) ← q(X).} with modes q(I ), p(O), a model
must contain the atom p(1), whereas a simply local model does not necessarily
contain p(1), since {X/1} is not simply local with respect to p(X) ← q(X). On
the other hand, any term model (see [2]) is a simply local model, while there
are Herbrand models which are not simply local.

We now show that there exists a minimal simply local model and that it
is bottom-up computable. For this we need the following operator TSL

P on
interpretations.

Definition 4.2 ((TSL
P operator)) Given a program P and an interpretation

I, we define

T sl
P (I) = {Hθ | ∃ c : H ← B1, . . . , Bn variant of a clause in P,

θ is simply local with respect to c,
B1θ, . . . , Bnθ ∈ I}

and
TSL

P (I) = (T sl
P + id)(I) = I ∪ T sl

P (I).

It is easy to show that both T sl
P and TSL

P are monotonic and continuous
on the lattice where interpretations are ordered by set inclusion. We consider
powers of an operator T which are defined in the standard way as follows:
T ↑ 0(I) = I, T ↑ (i + 1)(I) = T (T ↑ i(I)), and T ↑ ω(I) =

⋃∞
i=0 T ↑ i(I).

We now show that if I consists of simply moded atoms then TSL
P ↑ ω(I) is a

simply local model of P containing I. In the following we denote by SM P the
set of all simply moded atoms of the extended Herbrand universe of P . The
proof of the next proposition is reported in the appendix.
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Proposition 4.3 Let P be simply moded and I ⊆ SM P be an interpretation.
Then TSL

P ↑ ω(I) is the least simply local model of P containing I.

The following lemma relates partial input consuming derivations of simply
moded programs and queries with powers of the TSL

P operator. It is the key
result to relate the operational semantics of partial input consuming derivations
to the denotational semantics introduced below. The proof is reported in the
appendix.

Lemma 4.4 Let the program P and the query A be simply moded and I ⊆ SM P

be an interpretation. The following statements are equivalent:

(i) there exists an input consuming derivation δ : A ϑ−→P C with C ⊆ I,

(ii) there exists a substitution θ simply local with respect to A, such that Aθ ⊆
TSL

P ↑ ω(I),

where Aϑ and Aθ are variant.

4.2 Modeling the results of partial derivations

The results of partial input consuming derivations of simply moded queries in
simply moded programs are captured by the following operational semantics.

Definition 4.5 ((partial c.a.s. semantics)) Let the program P be simply moded.

OSMP
(P ) = {Aθ| A is simply moded and there exists A

θ−→P C with C ⊆ SM P }.

The next theorem shows that the denotational semantics provided by the
least simply local model of P containing SM P is correct and fully abstract with
respect to the operational semantics of partial computed answer substitutions
OSMP

(P ). The proof follows immediately by Lemma 4.4 above.

Theorem 4.6 Let P be simply moded. Then OSMP
(P ) = TSL

P ↑ ω(SM P ).

In the following we denote by PM SL
P the least simply local model of P

containing SM P .

Example 4.7 Consider again program APPEND. PM SL
APPEND is obtained by repeat-

edly applying the TSL
P operator, starting from any simply moded atom, i.e., an

atom of the form append(s, t, x) where s and t are arbitrary terms but x is a
variable not occurring in s or in t. Hence,

PM SL
APPEND = {append([t1, . . . , tm], t, [t1, . . . , tm|t])}

∪ {append(s, t, x) | x is a fresh variable }
∪ {append([t1, . . . , tm|s], t, [t1, . . . , tm|x]) | x is a fresh variable}

where s, t, t1, . . . , tm are arbitrary terms, and m ≥ 0
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Consider the query append([a, b, c|X], Y, Z). The substitution θ={Z/[a, b|Z′]}
is simply local with respect to that query and append([a, b, c|X], Y, [a, b|Z′]) ∈
PM SL

APPEND. Using Theorem 4.6, we can conclude that the query has a partial
derivation with computed answer θ. Following the same reasoning, we can
also conclude that the query has a partial derivation with computed answer
θ′ = {Z/[a|Z′]}.

5 Termination

In this section, we show how the denotational semantics can be used to give a
characterization of termination of input consuming derivations, in a similar way
as this has been done previously for LD-derivations [5, 24].

Input consuming derivations were originally conceived as an abstract and
“reasonably strong” assumption about the selection rule in order to prove ter-
mination [27]. The first result in this area was a sufficient criterion applicable
to well- and nicely moded programs. This was improved upon by dropping the
requirement of well-modedness, which means that one also captures termination
by deadlock.

The previous approaches are applicable as long as each recursive clause in
the program is direct recursive, i.e., the structure upon which the recursion
is carried out is passed directly from the clause head to the recursive call in
the body. Typically, this means that the clause has the form p(. . . , s, . . .) ←
A, p(. . . , t, . . .),C, where t is a proper subterm of s.

In this section we define the class of simply acceptable programs which in-
cludes programs whose termination cannot be proven without taking into ac-
count inter-argument relations. This means that for a clause p(. . .)← A, p(. . .),C,
we need to take into account how A and C might instantiate the body atom
p(. . .) in order to establish termination. In this case, simply local models and
simply local substitutions convey the needed information.

5.1 Simply Acceptable Programs

Note that programs without recursion terminate trivially. In order to deal with
mutually recursive procedures we need the following standard definitions [2].

Definition 5.1 Let P be a program, p and q be relations. We say that p refers
to q in P if there is a clause in P with p in the head and q in the body; p
depends on q in P , and we write p w q, if (p, q) is in the reflexive and transitive
closure of the relation refers to; p and q are mutually recursive, written p ' q,
if p and q depend on each other (i.e., p w q and q w p). We also write p A q
when p w q and q 6w p.

To prove termination, it is common to use some measure of size for atoms in
a query, often called level mapping. To show termination of moded programs, it
is natural to use moded level mappings, where it is made explicit that the level
of an atom depends only on its input positions. This concept was originally
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defined for ground atoms [12]. Generalizing the definition to arbitrary atoms is
crucial for showing termination of input consuming derivations.

Definition 5.2 ((moded level mapping)) A function | | is a moded level
mapping if it maps atoms into N and for any two atoms A and B, if A and
B have the same predicate symbol and the same terms in their input positions,
then |A| = |B|.

In other words, the level of an atom has to be independent from the terms
occurring in its output positions. For our purposes it is not necessary to require
that the level mapping is invariant under renaming, yet this being the most
common case.

We now provide the central definitions of this section.

Definition 5.3 ((input terminating)) A program is called input terminat-
ing with respect to a given class C of queries if all its input consuming deriva-
tions starting in any query in C are finite.

In particular, we say that P is input terminating with respect to simply
moded queries if for each simply moded query Q, all input consuming derivations
of P ∪ {Q} terminate.

The basic notion for proving input termination is simply acceptability, which
is in analogy to acceptability [5].

Definition 5.4 ((simply acceptable)) Let P be a program and M a simply
local model of P containing SM P . A clause c is simply acceptable with respect
to the moded level mapping | | and M if for every variant H ← A, B,C of c
and every substitution θ simply local with respect to c,

if Aθ ∈M and Rel(H) ' Rel(B) then |Hθ| > |Bθ|.

The program P is simply acceptable with respect to M if there exists a moded
level mapping | | such that each clause of P is simply acceptable with respect to
| | and M . We also say that P is simply acceptable if it is simply acceptable
with respect to some M and moded level mapping | |.

The difference between acceptability and simply acceptability is that ac-
ceptability is based on the classical notion of model and consequently on ground
instances of a clause, whereas simply acceptability is based on simply local mod-
els containing SMP . These models allow us to model correctly the behaviour
induced by the dynamic scheduling and to capture the results of partial com-
putations. Another important difference with acceptability is that the level
mapping decreasing is now required for mutually recursive calls only.

It is important to realize why we need to model partial results. Consider the
following program

q(a) ← q(a).
p(a) ← fail.

mode q(I)
mode p(O)
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Notice that the query q(X) terminates by deadlock, while q(a) loops. Now con-
sider the query p(X),q(X). This query can yield to a nonterminating compu-
tation because the query p(X), before failing, reports the partial answer {X/a}.
If – in order to prove termination – we referred to a classical model (modeling
only successful derivations) then we would not be able to see that the above pro-
gram could diverge, because we would not consider {X/a} as a possible answer
substitution.

In the next two sections, we prove that simply acceptability is a sufficient and
necessary criterion for input termination with respect to simply moded queries.

5.2 Sufficiency of Simply Acceptability

The following corollary of [7, Lemma 22] allows us to restrict our attention to
queries containing only one atom.

Corollary 5.5 Let P be a simply moded program. P is input terminating with
respect to simply moded queries if and only if for each simply moded atomic
query A all input consuming derivations of P ∪ {A} are finite.

From now on, we say that a relation p is defined in the program P if p occurs
in a head of a clause of P , and that P extends the program R if no relation
defined in P occurs in R.

The following theorem shows that simply acceptability is a sufficient criterion
for input termination with respect to simply moded queries, and can be used in
a modular way.

Theorem 5.6 Let P and R be two simply moded programs such that P extends
R. Let M be a simply local model of P ∪R containing SM P . Suppose that

• R is input terminating with respect to simply moded queries,

• P is simply acceptable with respect to M (and a moded level mapping | |).

Then P ∪R is input terminating with respect to simply moded queries.

First, for each predicate symbol p, we define depP (p) to be the number of pred-
icate symbols it depends on: depP (p) = #{q| q is defined in P and p w q}.
Clearly, depP (p) is always finite. Further, it is immediate to see that if p ' q
then depP (p) = depP (q) and that if p A q then depP (p) > depP (q).

We can now prove our theorem. By Corollary 5.5, it is sufficient to prove
that for any simply moded atomic query A, all input consuming derivations of
P ∪ {A} are finite.

First notice that if A is defined in R then the result follows immediately from
the hypothesis that R is input terminating with respect to simply moded queries
and that P is an extension of R. So we can assume that A is defined in P .

For the purpose of deriving a contradiction, assume that δ is an infinite input
consuming derivation of (P ∪R) ∪ {A} such that A is defined in P . Then

δ : A
ϑ1=⇒ (B1, . . . , Bn)ϑ1

ϑ2=⇒ · · ·
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where c : H ← B1, . . . , Bn is the input clause used in the first derivation step
and ϑ1 = mgu(A,H). Clearly, (B1, . . . , Bn)ϑ1 has an infinite input consuming
derivation in P ∪R. By Corollary 2.12 and Lemma 3.8, for some i ∈ [1..n] and
for some substitution ϑ′2,

1. there exists an infinite input consuming derivation of (P ∪R) ∪ {A} of the
form

A
ϑ1=⇒ (B1, . . . , Bn)ϑ1

ϑ′
2−→ C, (Bi, . . . , Bn)ϑ1ϑ

′
2 · · · ;

2. there exists an infinite input consuming derivation of P ∪ {Biϑ1ϑ
′
2}

both employing only simply local mgu’s.
Let θ = (ϑ1ϑ

′
2)|c. It is not difficult to see that θ is simply local with respect to

c (this is a consequence of Proposition A.1, reported in the appendix). Consider
the instance Hθ ← (B1, . . . , Bn)θ of c. By Theorem 4.6, (B1, . . . , Bi−1)θ ∈M .

We show that (2) cannot hold, by induction on 〈depP (Rel(A)), |A|〉 with
respect to the ordering � defined by: 〈m,n〉 � 〈m′, n′〉 if either m > m′ or
m = m′ and n > n′.

Base. Let depP (Rel(A)) = 0 (|A| is arbitrary). In this case, A does not
depend on any predicate symbol of P , thus all the Bi as well as all the atoms
occurring in its descendants in any input consuming derivation are defined in
R. The hypothesis that R is input terminating with respect to simply moded
queries contradicts (2) above.

Induction step. We distinguish two cases:

1. Rel(H) A Rel(Bi),

2. Rel(H) ' Rel(Bi).

In case (a) we have depP (Rel(A)) = depP (Rel(Hθ)) > depP (Rel(Biθ)). There-
fore,

〈depP (Rel(A)), |A|〉 = 〈depP (Rel(Hθ)), |Hθ|〉 � 〈depP (Rel(Biθ)), |Biθ|〉.

In case (b), from the hypothesis that P is simply acceptable with respect to
| | and M , θ is simply local with respect to c and (B1, . . . , Bi−1)θ ∈ M , it
follows that |Hθ| > |Biθ|. Consider the partial input consuming derivation
A

θ−→ C, (Bi, . . . , Bn)θ. By Lemma 2.8 and the fact that | | is a moded
level mapping, we have |A| = |Aθ| = |Hθ|. Hence, 〈depP (Rel(A)), |A|〉 =
〈depP (Rel(Hθ)), |Hθ|〉 � 〈depP (Rel(Biθ)), |Biθ|〉.

In both cases, the contradiction follows by the inductive hypothesis. �

The above theorem suggests proving termination in a modular way, i.e.,
extending a program that is already known to be input terminating with respect
to simply moded queries by a program that is simply acceptable. Of course,
this theorem holds in particular if the former program is empty.

Theorem 5.7 Let P be a simply moded program. If P is simply acceptable then
it is input terminating with respect to simply moded queries.

Proof. The proof follows from Theorem 5.6, by setting R = ∅. �

19



% quicksort(Xs, Ys) ← Ys is an ordered permutation of Xs.

quicksort(Xs,Ys) ← quicksort dl(Xs,Ys,[]).

c1: quicksort dl([X|Xs],Ys,Zs) ←
partition(Xs,X,Littles,Bigs),
quicksort dl(Bigs,Ys1,Zs),
quicksort dl(Littles,Ys,[X|Ys1]).

quicksort dl([],Xs,Xs).

c2: partition([X|Xs],Y,[X|Ls],Bs) ← X =< Y, partition(Xs,Y,Ls,Bs).
c3: partition([X|Xs],Y,Ls,[X|Bs]) ← X > Y, partition(Xs,Y,Ls,Bs).

partition([],Y,[],[]).

Figure 1: The QUICKSORT program

Example 5.8 Fig. 1 shows quicksort using a form of difference lists [30, pro-
gram 15.3] (we permuted two body atoms for the sake of clarity). This program
is simply moded with respect to the mode

{quicksort(I ,O), quicksort dl(I ,O , I ), partition(I , I ,O ,O), =<(I , I ),
>(I , I )}.

We show that it is simply acceptable. We start by defining the level mapping.
Define function len as

len([h|t]) = 1 + len(t),
len(a) = 0 if a is not of the form [h|t].

We use the following moded level mapping (where positions with are irrele-
vant):

|quicksort dl(l, , )| = len(l),
|partition(l, , , )| = len(l).

The level mapping of all other atoms can be set to 0. Concerning the simply local
model, the crucial aspect with respect to termination is that it has to express
the dependency between the list lengths of the arguments of partition. To
this end, the simplest solution is to choose it so that M restricted to partition
contains exactly the atoms of the form partition(t1, t2, t3, t4) where

len(t1) ≥ len(t3) and len(t1) ≥ len(t4). (2)

The presence (absence) of other atoms is irrelevant for showing simple-acceptability,
so the simplest way of building a simply local model is that of adding all other
atoms not defining partition. Let

M = {partition(t1, t2, t3, t4) | len(t1) ≥ len(t3) and len(t1) ≥ len(t4)}
∪ {quicksort dl(r, s, t) | for all r, s, t}
∪ {quicksort(r, s) | for all r, s}
∪ {=<(r, s), >(r, s) | for all r, s}.
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Notice that M includes all simply moded atoms. It is easy to show that the
program is simply acceptable with respect to M and | | and hence input termi-
nating with respect to simply moded queries. In fact:

• Consider c1, the first clause defining quicksort dl. For every substitu-
tion θ, simply local with respect to c1, we have to show that

- If partition(Xs, X, Littles, Bigs)θ ∈M , then
|quicksort dl([X|Xs], Ys, Zs)θ| > |quicksort dl(Bigs, Ys1, Zs)θ|.
This follows immediately from the definition of level mapping | | and
the fact that since partition(Xs, X, Littles, Bigs)θ ∈ M , we have
len(Bigs)θ ≤ len(Xs)θ.

- If (partition(Xs, X, Littles, Bigs), quicksort dl(Bigs, Ys1, Zs))θ ∈
M , then |quicksort dl([X|Xs], Ys, Zs)θ|> |quicksort dl(Littles, Ys, [X|Ys1])θ|.
This is analogous to the previous point and follows by the definition
of | | and the fact that since partition(Xs, X, Littles, Bigs)θ ∈M ,
len(Littles)θ ≤ len(Xs)θ.

• Next, we consider c2. We have to show that for each simply local substi-
tution θ such that (X =< Y)θ ∈M ,

|partition([X|Xs],Y,[X|Ls],Bs)θ| > |partition(Xs,Y,Ls,Bs)θ|.
This follows directly from the definition of | | (the fact that (X =< Y)θ ∈M
is not used here).

• Finally, we consider the other clauses. Clause c3 is handled as c2, while
all other ones are not recursive (not even mutually), and therefore they
are trivially simply acceptable.

There is one aspect we have neglected so far, namely that the program
contains calls to (built-in) predicates =< and > without defining clauses.
However, these predicates are conceptually defined by fact clauses such as
1>0., which are trivially simply acceptable.

By Theorem 5.7 we have that every query of the form quicksort(t , x ), where x
is a variable disjoint from t, yields a finite input consuming derivation. In par-
ticular, Theorem 5.7 shows that the query quicksort(Y,X) yields terminating
input consuming derivations. These derivations terminate by deadlock, while by
dropping the requirement of input consuming resolution steps it is easy to build
a non-terminating derivation starting in that query. This shows that Theorem
5.7 allows us to capture termination by deadlock, as further confirmed by the
necessity results we will provide in the next section.

It is worth remarking that with the tool of [7] it is not possible to prove
that QUICKSORT is input terminating (with respect to simply moded queries).
This is because in that paper the concept of quasi-recurrent program, which has
the same role as that of simply acceptable program, does not take into account
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the presence of inter-argument relationships, (which in the above example are
present in the form of equation (2)).

The following contrived example shows the necessity of referring to simply
local substitutions.

Example 5.9 Consider the program

c4: q(a) ← q(X).

together with the mode q(I). Every simply moded query terminates (either by
failure or by deadlock). Take the level mapping |q(t)| = 1 if t is not a variable
and |q(x)| = 0 otherwise. We now show that c4 is simply acceptable with respect
to | | and any simply local model M . In fact, for every θ simply local with
respect to c4 we have that q(X)θ = q(X): since Out(q(X)) = ∅, we have that
X 6∈ Dom(θ). Moreover trivially q(a)θ = q(a). Therefore |q(a)θ| > |q(X)θ|,
which implies simply acceptability.

Notice that if we drop the requirement that θ must be simply local then we
would have no guarantee that |q(a)θ| > |q(X)θ|, and so we would not be able
to demonstrate termination: simply let θ = {X/a}.

In the next section we will show that simply acceptability is a necessary
condition for termination.

5.3 Necessity of Simply Acceptability

We now prove the converse of Theorem 5.7, namely that our criterion for proving
input termination with respect to simply moded queries is also necessary. For
this we need some new definitions as well as some new preliminary results in
the spirit of those in [5].

The first definition concerns a concept analogous to that of SLD-trees in the
context of input consuming derivations.

Definition 5.10 ((IC-tree)) Let P be a program and Q be a query. An IC-
tree for P ∪ {Q} is a tree such that

• its root is Q,

• every node Q′ has exactly one descendant Q′′ for every atom A of Q′ and
every clause c such that Q′′ is an input consuming resolvent of Q′ with
respect to A and c.

Informally, an IC-tree for P∪{Q} groups all the input consuming derivations
of P ∪{Q} modulo the choices of the renaming of the program clauses used and
the choices of the mgu’s.

Notice that it can happen that a node contains no selectable atom, in which
case it has no children.

Branches of IC-trees are input consuming derivations. Therefore we can
characterize input termination in terms of IC-trees.
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Lemma 5.11 A IC-tree for P ∪{Q} is finite iff all input consuming consuming
derivations of P ∪ {Q} are finite.

Proof. By definition, the IC-trees are finitely branching. The claim now follows
by the classical result of König. �

Analogously to the case of acceptability, we measure atoms by counting the
number of nodes in the corresponding IC-tree. For a program P and a query
Q, we denote by nodes ic

P (Q) the number of nodes in an IC-tree for P ∪{Q}. We
need one last property of IC-trees.

Lemma 5.12 Let the program P and the query A, B be simply moded. Sup-
pose that P is input terminating with respect to simply moded queries and that
Aθ ∈ PM SL

P , where θ is a simply local substitution with respect to A. Then
nodes ic

P (A, B) ≥ nodes ic
P (Bθ).

Proof. Consider an IC-tree T for P ∪ {A, B}. By the hypothesis that Aθ ∈
PM SL

P , it follows that there exists a substitution ϑ such that – by Lemma 4.4
– A ϑ−→P C is a (partial) input consuming derivation and Aθ ≈ Aϑ. Hence
there exists an input consuming derivation A, B

ϑ−→P C, Bϑ and Bθ ≈ Bϑ.
Clearly, by definition of IC-tree, nodes ic

P (A, B) ≥ nodes ic
P (Bϑ) = nodes ic

P (Bθ).
Hence the thesis. �

We are now in the position to prove that the class of simply acceptable
programs comprises all the programs input terminating with respect to simply
moded queries.

Theorem 5.13 Let P be a simply moded program. If P is input terminating
with respect to simply moded queries then P is simply acceptable.

In particular, it is simply acceptable with respect to PM SL
P and a moded level

mapping which is invariant under renaming.

Proof. show that there exists a moded level mapping | | for P such that P is
simply acceptable with respect to | | and PM SL

P . We recall that PM SL
P is the

least simply local model of P containing SM P .
Given an atom A, we denote with A∗ an atom obtained from A by replacing

the terms filling in its output positions with fresh distinct variables. Clearly,
we have that A∗ is simply moded. Then we define the following moded level
mapping for P :

|A| = nodes ic
P (A∗).

Notice that the level |A| of an atom A is independent from the terms filling in its
output positions, i.e., | | is a moded level mapping. Moreover, since P is input
terminating with respect to simply moded queries and A∗ is simply moded, all the
input consuming derivations of P ∪{A∗} are finite. Therefore, by Lemma 5.11,
nodes ic

P (A∗) is defined (and finite), and thus |A| is defined (and finite) for every
atom A.

We now prove that P is simply acceptable with respect to | | and PM SL
P .
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Let c : H ← A, B,C be a clause of P and Hθ ← Aθ, Bθ,Cθ be an instance
of c where θ is a simply local substitution with respect to c. We show that

if Aθ ∈ PM SL
P and Rel(H) ' Rel(B) then |Hθ| > |Bθ|.

Consider a variant c′ : H ′ ← A′, B′,C′ of c variable disjoint from (Hθ)∗.
Let ρ be a renaming such that c′ = cρ. Clearly, (Hθ)∗ and H ′ unify. Let
µ = mgu((Hθ)∗,H ′) = mgu((Hθ)∗,Hρ) be a simply local mgu of (Hθ)∗ and
H ′. Then we have that Dom(µ) ⊆ Var(Out((Hθ)∗)) ∪ Var(In(Hρ)). Hence
(A′, B′,C′)µ = (A, B,C)ρµ, and

(Hθ)∗
µ

=⇒ (A, B,C)ρµ

is an input consuming derivation step, i.e., (A, B,C)ρµ is a descendant of
(Hθ)∗ in an IC-tree for P ∪ {(Hθ)∗}.

Moreover, (A, B,C)ρµ ≈ (A, B,C)(ρµ)|In(H) = (A, B,C)θ|In(H).
Let θ = θ|In(H)θ|Out(A)θ|Out(B,C). Hence, by Lemmas 3.5 and 3.6, θ|Out(A)

is simply local with respect to Aθ|In(H). Therefore, we have that

|Hθ| = nodes ic
P ((Hθ)∗) (by definition of | |)

> nodes ic
P ((A, B,C)θ|In(H)) (by definition of IC-tree)

≥ nodes ic
P ((A, B)θ|In(H)) (by definition of IC-tree)

≥ nodes ic
P ((Bθ|In(H)θ|Out(A)) (by Lemma 5.12)

= nodes ic
P ((Bθ)∗) (since θ is simply local with respect to c)

= |Bθ| (by definition of | |).

�

5.4 A Characterization

Summarizing, we have characterized input termination by simply acceptability.

Theorem 5.14 A simply moded program P is simply acceptable if and only if
it is input terminating with respect to simply moded queries. In particular, if
P is input terminating with respect to simply moded queries, then it is simply
acceptable with respect to PM SL

P and a moded level mapping which is invariant
under renaming.

Proof. Theorem 5.7 and Theorem 5.13. �

The following example shows how we can use Theorem 5.14 to reason about
termination of a program.

Example 5.15 Consider the following program PERMUTE.

% permute(Xs,Ys) ← Ys is a permutation of the list Xs

c1: permute([X|Xs],Ys) ← insert(Zs,X,Ys), permute(Xs,Zs).
permute([],[]).
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% insert(Xs,X,Ys) ← Ys is the result of inserting X into the list Xs

c2: insert([U|Xs],X,[U|Zs]) ← insert(Xs,X,Zs).
insert(Xs,X,[X|Xs]).

First, let us consider it together with the mode permute(O , I ), insert(O ,O , I ).
Notice that the program is simply-moded. It is immediate to check that the pro-
gram is not input terminating in this mode: by repeatedly selecting the right-
most atom, the query permute(Xs,Ys) generates an infinite input consuming
derivation. This is basically due to the fact that c1 has a variable in its input
position. Therefore, the recursive call in the body can always be selected.

This suggests that one could obtain input termination by replacing c1 by:

c1’: permute([X|Xs],[Y|Ys]) ← insert(Zs,X,[Y|Ys]), permute(Xs,Zs).

Call the resulting program PERMUTE2. This program is still nonterminating
(the query permute(Xs,[Y|Ys]) has an infinite input consuming derivation).
However, this is not so obvious, and in essence, it has first been observed by
Naish [20], in the context of programs with delay declarations. We can use The-
orem 5.13 to demonstrate that and to understand why PERMUTE2 does not input
terminate. We show that the program cannot be simply acceptable with respect
to PM SL

PERMUTE2 and a moded level mapping which is invariant under renaming.
By applying TSL

P once to the the simply moded atom insert(Xs′, X′, Zs′) (where
Xs′, X′, Zs′ are fresh variables), one sees that insert([U′|Xs′], X′, [U′|Zs′]) ∈ PM SL

PERMUTE2.
The substitution {Y/U′, Ys/Zs′, Zs/[U′|Xs′], X/X′} is simply local with respect
to c1’. Therefore, for c1’ to be simply acceptable, by Theorem 5.13, there
would have to be a moded level mapping invariant under renaming such that
|permute([X′|Xs], [U′|Zs′])| > |permute(Xs, [U′|Xs′])|. This is a contradiction
since a moded level mapping depends only on the input arguments (the second
argument of permute).

Naish [20] suggested to obtain a terminating program by replacing c2 with
its most specific variant:

c2’: insert([U|Xs],X,[U|[H|T]]) ← insert(Xs,X,[H|T]).

Call the resulting program PERMUTE3. We show that PERMUTE3 is input termi-
nating.3 Note that PERMUTE3 is simply moded, and consider the following level
mapping:

|permute( , l)| = len(l),
|insert( , , l)| = len(l).

Concerning the simply local model, the crucial aspect with respect to termina-
tion is that it has to express the dependency between the lengths of the third

3This has not been observed previously and seems to contradict our previous claim that
Naish’s proposal for obtaining a terminating program does not work [28]. However, this claim
referred to Naish’s program with delay declarations, and, as we observed in [26], these delay
declarations do not ensure input consuming derivations.
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and first arguments of insert. We define:

M = {permute(l,m) | for all l,m}
∪ {insert(m,a, l) | either insert(m,a, l) is simply moded

or len(l) > len(m) }

Notice that this model contains also non-ground atoms. We have to verify
that M is a simply-local model. The only non-trivial proof obligation con-
cerns c2’. Now for any, not even necessarily simply local, substitution θ,
insert(Xs, X, [H|T])θ ∈ M implies insert([U|Xs], X, [U|[H|T]])θ ∈ M . Hence
M is a simply-local model.

We show that PERMUTE3 is simply acceptable with respect to M and | |.
Concerning c1’, we must show that for every substitution θ, simply local with
respect to c1’, insert(Zs, X, [Y|Ys])θ ∈M implies |permute([X|Xs], [Y|Ys])θ| >
|permute(Xs, Zs)θ|. By the definitions of M and | |, this even holds for arbitrary
θ. For the remaining clauses, it is immediate to check that they are simply-
acceptable. It follows that PERMUTE3 is input terminating with respect to simply
moded queries.

To conclude, consider the program PERMUTE4: that is, PERMUTE together with
the modes permute(I ,O), insert(I , I ,O). In this case, in order to make the
program simply moded we have to permute the two body atoms of the first
permute clause (but see the remark below) i.e., permute is redefined as

permute([X|Xs],Ys) ← permute(Xs,Zs), insert(Zs,X,Ys).
permute([],[]).

Notice that the program is now input terminating with respect to simply
moded queries. This is in fact the natural mode of the PERMUTE program. To
demonstrate the termination one can apply Theorem 5.7 using any simply local
model together with the following moded level mapping:

|permute(l, )| = len(l),
|insert(l, , )| = len(l).

In PERMUTE4 we reordered the body atoms of a program, but this was actually
an unnecessary operation.

Remark 5.16 Everything we state in this article that applies to the class of
simply-moded programs (resp. queries) applies to the class of permutation sim-
ply moded programs (queries) as well, i.e., to those programs and queries that
are simply moded possibly after a permutation of body atoms. For the sake of
notation simplicity, we avoid to refer to this in a structural way.

6 Other Examples

In this section we provide additional explanatory examples.
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Example 6.1 Consider the following program LISTTREE for converting a list l
into a binary tree t with labeled nodes, so that t contains as labels exactly the
elements of l, in the same left-to-right order (in can also be used to convert t
into l).

% list tree(L,T) ← L is a list and T is a binary tree with labelled nodes
% containing the same elements in a left-to-right order

list tree([],void).
c1: list tree([H|T],tree(TA,X,TB)) ←

extract([H|T],LA,X,LB),
list tree(LA,TA),
list tree(LB,TB).

% extract(Xs,Ys,X,Zs) ← Xs is the result of concatenating Ys, [X] and Zs

c2: extract([X|L],[],X,L).
c3: extract([X|[H|T]],[X|S],Y,R)← extract([H|T],S,Y,R).

mode list tree(I,O)
mode extract(I,O,O,O)

This program is simply moded. We now show that it is simply acceptable; for
this we employ the following moded level mapping:

|list tree(l, )| = len(l),
|extract(l, , , )| = len(l).

Concerning the simply local model, the crucial aspect with respect to termi-
nation is that it has to express the dependency between the lengths of the
arguments of extract. We define

M = {list tree(l, t) | for all l, t}
∪ {extract(l, l1, x, l2) | either l1, l2, l are distinct variables,

or len(l) > len(l1) and len(l) > len(l2) }.

We have to verify that M is indeed a simply-local model.
First, we have to show that M is a simply-local model of the clauses defining

list tree. This is trivial, since M contains all instances of list tree(X,Y).
Secondly, we have to show that M is a simply-local model of c2. We have to

show that for each θ simply-local with respect to c2 extract([X|L], [], X, L)θ ∈
M . But this holds by the model definition and the fact that for any substitution
θ, we have that len([X|L]θ) > len([]θ) and len([X|L]θ) > len(Lθ).

Thirdly, we have to show that M is a simply-local model of c3. Consider
any substitution θ such that extract([H|T], S, Y, R)θ ∈ M . Since [H|T]θ can-
not be a variable, by the definition of M , len([X|[H|T]]θ) > len([X|S]θ) and
len([X|[H|T]]θ) > len(Rθ); thus extract([X|[H|T]], [X|S], Y, R)θ ∈ M . There-
fore M is a simply-local model of c3.

Finally, we show that the program is simply acceptable with respect to M
and | | and hence input terminating with respect to simply moded queries. The
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only non-trivial case is clause c1. For every simply local substitution θ, we must
show that

1. If extract([H|T], LA, X, LB)θ ∈M
then |list tree([H|T], tree(TA, X, TB))θ| > |list tree(LA, TA)θ|.

2. If extract([H|T], LA, X, LB)θ, list tree(LA, TA)θ ∈M
then |list tree([H|T], tree(TA, X, TB))θ| > |list tree(LB, TB)θ|.

Both implications follow immediately from the definition of | | and of M .
Observe that it is essential that we have the non-variable term [H|T] in c1,

rather than simply a variable. Also, in c3, we must have [H|T] rather than
simply a variable. Otherwise, the program would not be input terminating.

Example 6.2 Consider the following program TRANSPOSE for transposing a ma-
trix. A matrix is represented as a list of lists: [[a,b,c],[1,2,3]] is a matrix
with two rows and 3 columns. Note the degenerate cases: [[],[]] is the ma-
trix with 0 columns and 2 rows, while [] is not a matrix (though it could be
regarded as any matrix with 0 rows but an unknown number of columns).

% transpose(M,N) ← N is the transposed matrix of matrix M.

transpose(M,[])← no cols matrix(M).
c1: transpose([R|Rs],[C|Cs])← cut col([R|Rs],C,M2),

transpose(M2,Cs).

% cut col(M,C,N) ← C is the first column of the matrix M
% and N is obtained by removing C from M

c2: cut col([],[],[]).
c3: cut col([[E|Es]|Rs],[E|C2],[Es|Rs2])← cut col(Rs,C2,Rs2).

% no cols matrix(M) ←matrix M has zero width (no columns)

no cols matrix([]).
c4: no cols matrix([[]|Rs])← no cols matrix(Rs).

mode transpose(I,O)
mode cut col(I,O,O)
mode no cols matrix(I)

This program is simply moded. We now show that it is simply acceptable. The
moded level mapping uses len and the usual term size norm and is defined as
follows:

|transpose(m, )| = size(m),
|cut col(m, , )| = len(m),

|no cols matrix(m)| = len(m).

where size(f(t1, . . . , tn)) = 1+ size(t1)+ · · ·+ size(tn) for n ≥ 0, and size(t) = 0
if t is a variable.
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Concerning the simply local model, the crucial aspect with respect to termi-
nation is that it has to express the dependency between the row widths of the
arguments of cut col. More specifically, in clause c1, [R|Rs] is a matrix (a list
of rows), and M2 is obtained from [R|Rs] by cutting off the first element in each
row. This decrease in row width is crucial for termination. We define

M = {transpose(m,n) | for all m,n }
∪ {cut col(m, r, n) | either cut col(m, r, n) is simply-moded

or m = n = []
or size(m) > size(n) }

∪ {no cols matrix(m) | for all m }.

We now verify that M is a simply-local model. We have non-trivial proof obli-
gations for c2 and c3. Concerning c2, cut col([], [], []) ∈M by construction.
Concerning c3, consider an arbitrary (not even necessarily simply-local) substi-
tution θ such that cut col(Rs, C2, Rs2)θ ∈M . There are three cases.

• If cut col(Rs, C2, Rs2)θ is simply-moded, then
Rs2θ is a variable, thus
size([[E|Es]|Rs]θ) > size([Es|Rs2]θ) and therefore
cut col([[E|Es]|Rs], [E|C2], [Es|Rs2])θ ∈M .

• If Rsθ ≡ Rs2θ ≡ [], then
cut col([[E|Es]|Rs], [E|C2], [Es|Rs2])θ ≡ cut col([[E|Es]], [E|C2], [Es])θ,
and since size([[E|Es]]θ) > size([Es]θ), it follows that
cut col([[E|Es]], [E|C2], [Es])θ ∈M .

• If size(Rsθ) > size(Rs2θ), then
size([[E|Es]|Rs]θ) > size([Es|Rs2]θ), thus
cut col([[E|Es]|Rs], [E|C2], [Es|Rs2])θ ∈M .

Thus in all cases, cut col([[E|Es]|Rs], [E|C2], [Es|Rs2])θ ∈ M . Therefore
M is a model of c3. We now show that the program is simply acceptable
with respect to M and | | and hence input terminating with respect to sim-
ply moded queries. Consider c1: for every substitution θ, simply local with
respect to c1, we have to show that if cut col([R|Rs], C, M2)θ ∈ M , then
|transpose([R|Rs], [C|Cs])θ| > |transpose(M2, Cs)θ|. This holds by the def-
inition of M . Next, consider c3. For every substitution θ, it is easy to see
that |cut col([[E|Es]|Rs], [E|C], [Es|Rs2])θ| > |cut col(Rs, C, Rs2)θ|. Equiv-
alently, for clause c4, it is immediate to check that for any θ, |no cols matrix([[]|Rs])θ| >
|no cols matrix(Rs)θ|. All other clauses are trivially simply acceptable. Hence
the thesis.

6.1 Delay Declarations

In practical systems, dynamic selection rules are implemented by means of con-
structs such as delay declarations and block declarations. Delay declarations,
advocated by van Emden and de Lucena [33] were introduced explicitly in logic
programming by Naish [22].
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In a previous paper [8] we have argued that in most cases delay declarations
are employed exactly to guarantee that the derivations are input consuming. We
have also provided a technical result establishing that under some syntactically
checkable conditions the use of delay declarations is equivalent to restricting to
input consuming derivations. This allows one to apply Theorems 4.6 and 5.14 to
a large class of programs employing delay declarations, thereby providing such
programs with a model-based semantics for partial derivations, and a result
characterizing their termination.

In this section we report some examples showing the analogies between the
use of delay declarations and the restriction to input consuming derivations.
Just for this subsection, we assume the reader to be familiar with the notion
and the notation of delay declarations.

Example 6.3 Consider again APPEND, in mode append(I,I,O) with the delay
declarations we mentioned in the introduction, namely

delay append(Ls, , ) until nonvar(Ls).

append([H|Xs],Ys,[H|Zs]) ← append(Xs,Ys,Zs).
append([],Ys,Ys).

In practice, this delay declaration can be seen as a compiler directive stating
that the selection rule is allowed to select an atom of the form append(t1,t1,t3)
iff t1 is a non-variable term. A derivation that respects this directive is called
delay-respecting.

This is the natural delay declaration of the program and achieves the purpose
that most natural queries are forced to terminate4. Now, it is easy to check that
every SLD derivation starting in a simply moded query is similar to an input
consuming derivation if and only if it is delay-respecting.

Thus, for APPEND we can say that input consuming derivations model in a
correct and complete way the operational behavior determined by the above
delay declaration. Formally, when we consider simply moded queries, we have
that:

- we can employ Theorem 5.14 to demonstrate termination,

- by Theorem 4.6, PM SL
P characterizes the behavior of APPEND in terms of

the intermediate computed answer substitutions.

Example 6.4 Consider PERMUTE4, i.e., PERMUTE of Example 5.15, with the
modes permute(I ,O), insert(I , I ,O). Consider the following delay declara-
tions for it:

delay permute(Xs, ) until nonvar(Xs)
delay insert(Xs, , ) until nonvar(Xs)

4An interesting example suggested by Apt of a contrived query that does not terminate
in combination of the above program is append([X|Xs],[],Xs). Notice that this query is not
simply moded. This demonstrates also the need for restricting to a class of “well formed”
programs and queries such as that of simply moded ones.
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The meaning of these declarations is equivalent to that of the previous example.
It is not difficult to see that for the above program, for every derivation starting
in a simply-moded query, the derivation is input consuming if and only if it is
delay-respecting.

Example 6.5 Consider again QUICKSORT. In the context of dynamic schedul-
ing, its standard delay declarations are:

delay quicksort(Xs, ) until nonvar(Xs).
delay quicksort dl(Xs, , ) until nonvar(Xs).
delay partition(Xs, , , ) until nonvar(Xs).
delay =<(X,Y) until ground(X) and ground(Y).
delay >(X,Y) until ground(X) and ground(Y)

While the first three declarations are equivalent to those used above, the last
two state that an atom of the form a =< b (resp. a > b) can be selected iff both
a and b are ground terms.

Now, if we think of the built-ins > and =< as being defined by a program
containing infinitely many ground facts of the form >(n,m), with n and m being
two appropriate integers, the derivations respecting the above delay declarations
are exactly the input consuming ones.

7 Conclusion and Related Works

In this article, we have studied the termination of input consuming programs. In
order to do this, we have provided a denotational semantics for input consuming
derivations that models the results of incomplete derivations. This semantics
uses a variant of the well-known TP -operator.

In a previous paper [6] we have introduced a different semantics for input
consuming programs. The two semantics, however, are quite orthogonal to each
other: while that of [6] models exclusively the result of successful derivations
and requires the program to be well-moded and nicely-moded, the semantics used
here models the results of also incomplete derivations and requires programs and
queries to be simply moded.

As mentioned in Subsection 4.2, in the context of parallelism and concur-
rency [21], one can have derivations that never succeed, and yet compute substi-
tutions. Thus we have provided a denotational semantics for such programs/program-
ming languages, which goes beyond the usual success-based SLD-resolution
mechanism of logic programming.

Input consuming derivations bear a certain resemblance with derivations in
the language of Moded (Flat) GHC [32]. Actually, input-consuming programs
can be seen as a simplified version of moded GHC, and the results we provide
here can be thus applied to some moded GHC programs. We want to note
however that Moded (F)GHC is a full-fledged programming paradigm, while
input-consuming programs are meant for abstraction purposes. In fact, Moded
(F)GHC enjoys a more complex computational mechanisms: In (F)GHC, a
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clause has the form H ← G |B, where G is called a guard. An atom A can be
resolved using H ← G |B only when A is an instance of H and Gθ is entailed,
where θ is an mgu of A and H. The atom A can become instantiated only later
via explicit unifications occurring in B. In Moded (F)GHC, there are (non-
trivial) conditions on clauses ensuring that when an argument position in A is
input, then the clause used to resolve A will never (not even via later resolution
steps) cause any bindings to that position.

Falaschi et al. [14] have defined a denotational semantics for CLP programs
with dynamic scheduling of a somewhat different kind: the semantics of a query
is given by a set of closure operators; each operator is a function modeling a
possible effect of resolving the query on a program state (i.e., constraint on
the program variables). Their semantics is the analogue of the bottom-up S-
semantics [9] for usual logic programs, where atoms are mapped to their set of
answers. In this respect, it corresponds to the semantics defined in [6]. The
approach presented here is more suited to termination proofs since we deal with
partial answers.

Concerning termination, we have provided a necessary and sufficient crite-
rion for it, applicable to a wide class of programs, namely the class of simply
moded programs. In previous papers [7, 27], we have already addressed the prob-
lem of the termination of input consuming programs. The results we present
here constitute a big improvement with respect to [7, 27] in that we can now
capture (by means of the model) the inter-argument relationships in the bodies
of the clauses. This improvement allows us to give a necessary and sufficient
condition for termination. In fact, we can now prove the termination of pro-
grams employing a non-trivial recursion scheme such as QUICKSORT, PERMUTE3,
TRANSPOSE; this was not possible using previous sufficient conditions of [7, 27]
(though, with the tools of [7, 27] we could prove the termination of PERMUTE4,
which employs direct recursion).

Finally, we have provided some examples showing analogies between the
use of delay declarations and input consuming derivations. A technical result
demonstrating equivalence (under some syntactically-checkable assumption) is
given in [8].

To conclude, we discuss some other works about termination of programs
with dynamic scheduling. First note that those works are usually about ter-
mination of programs with delay declarations, whereas we consider the more
abstract notion of input consuming derivations. As has been argued before [27],
this allows us to see more clearly which programs terminate under which as-
sumptions about the selection rule.

Apt and Luitjes [4] give conditions for the termination of append, but those
are ad-hoc and do not address the general problem. Naish [20] gives heuristics
to ensure termination, but no formal results.

There are several works in this area making assumptions about the selection
rule that are stronger than assuming input consuming derivations [16, 17, 18].

Marchiori and Teusink [17] assume a local selection rule, that is a rule under
which only most recently introduced atoms can be resolved in each step. More-
over, it is assumed that an atom is only selected once it is bounded with respect
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to a level mapping, that is, any instance of the selected atom has a level that is
below a certain bound. This is in contrast to our approach where any selected
atom, even one that is non-ground in its input, has a well-defined level, but this
level is not stable under instantiation.

Martin and King [18] achieve a similar effect by bounding the depth of the
computation introducing auxiliary predicates.

It is more difficult to assess Lüttringhaus-Kappel [16] since his contribution
is mainly to generate delay declarations automatically rather than prove termi-
nation. However in some cases, the delay declarations that are generated require
an argument of an atom to be a rigid list before that atom can be selected, which
is similar to the above approaches [17, 18]. Such uses of delay declarations go
well beyond ensuring that derivations are input consuming.

Some authors have considered a selection rule stating that in each derivation
step, the leftmost selectable atom is selected [4, 10, 20]. Due to the problem
of simultaneously reawaken atoms, this rule is actually not exactly the one im-
plemented in most Prolog versions, but this has been corrected by proposing
the left-based derivations [29]. Here it is enough to recall that such deriva-
tions “prefer” to select atoms that occur on the left of a query, which is an
assumption made in addition to input consuming derivations. As already shown
(Left-Switching Lemma) for nicely or simply moded programs and queries this
assumption does not influence the set of computed answer substitutions but
may affect partial computed answer as well as termination.

A survey classifying logic programs according to the selection rules for which
they terminate can be found in [23]. Among others, this survey considers input
termination and termination with respect to local selection rules as mentioned
above [17].

The specific problem of termination of input consuming derivations has been
treated also in [7] where nicely moded programs have been studied. By applying
those results to simply moded programs we obtain a characterization of a proper
subset of input terminating and simply moded programs. This class does not
contain programs like quicksort whose termination proof needs information on
partial computed answer substitutions.

APPENDIX

Proof of Lemma 3.8 First notice that, since A is a simply-moded atom,
Var(In(A)) ∩ Var(Out(A)) = ∅; therefore, by properties of mgu’s (see [2,
Corollary 2.25]), there exist substitutions σ0 and σ1 such that

• σ0 = mgu(In(A), In(H)),

• σ1 = mgu(Out(A)σ0,Out(H)σ0),

• σ0σ1 = mgu(A,H),

and all those mgu’s are relevant. Since, by hypothesis, ϑ = mgu(A,H) and
In(Aϑ) = In(A), In(A) is an instance of In(H). In particular, In(H)σ0 = In(A)
and thus
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• Dom(σ0) ⊆ Var(In(H)),

• Ran(σ0) ⊆ Var(In(A)).

Since Var(In(A)) is fresh with respect to H, this means that σ0 is simply local
with respect to the clause H ←. Moreover, by relevance of σ0, simple mod-
edness of A and the fact that A and H are variable disjoint, it follows that
Dom(σ0)∩Var(Out(A)) = ∅. Hence, σ1 = mgu(Out(A),Out(H)σ0). By simple
modedness of A, the fact that Out(A) is sequence of distinct variables and that
σ1 is relevant, we can assume that Out(A)σ1 = Out(H)σ0 and thus

• Dom(σ1) ⊆ Var(Out(A)),

• Ran(σ1) ⊆ Var(Out(H)σ0) ⊆ (Ran(σ0)∪Var(Out(H))) ⊆ (Var(In(A))∪
Var(Out(H))).

Since Var(Out(H)) is fresh with respect to A, this means that σ1 is simply local
with respect to the query A. �

Proof of Lemma 3.10 Since both Q and c are simply moded, by Lemma
2.7 also Q′ is simply moded. Then by Lemma 3.5 there exist α and β such that

(a) θ = αβ;

(b) α = θ|Bϑ is simply local with respect to Bϑ;

(c) β is simply local with respect to Rϑα;

(d) α and β are variable compatible with respect to Bϑ and Rϑ.

The proof proceeds by proving that

(a1) (ϑθ)|Q = (ϑα)|Aβ;

(b1) (ϑα)|A is simply local with respect to A;

(c1) β is simply local with respect to R(ϑα)|A;

(d1) (ϑα)|A and β are variable compatible with respect to A and R.

The result will follow by applying again Lemma 3.5.
(a1) follows from the fact that (ϑα)|Aβ = (ϑα)|Qβ = (ϑαβ)|Q = (ϑθ)|Q.
To prove (b1) we prove that

(b11) Dom(ϑα)|A ⊆ Var(Out(A))

(b12) Ran(ϑα)|A ⊆ Var(In(A)) ∪ V where V ∩Var(A) = ∅.

(b11) Dom(ϑα)|A ⊆ Dom(ϑ|A)∪Dom(α|A). Now, Dom(ϑ|A) ⊆ Var(Out(A)),
since ϑ is a simply local mgu of A and H, and Dom(α|A) ⊆ Var(Out(Bϑ)) ∩
Var(A), since α is simply local with respect to Bϑ. Then, Dom(α|A) ⊆ Var(Out(B))∩
Var(A), since Dom(ϑ) ∩ Var(Out(B)) = ∅. But, Var(Out(B)) ∩ Var(A) = ∅,
by standardization apart.

(b12) Since Ran(ϑ|A) ⊆ Var(Out(H)), then Ran((ϑα)|A) ⊆ Var(Out(H)) ∪
Var(In(A)) ∪ Var(B) ∪ V1 ⊆ Var(In(A)) ∪ V1 ∪ Var(c) where V1 is the set of
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fresh variables of α and V1 ∪Var(c) is disjoint from A by standardization apart
and lemma’s hypothesis.

(c1) holds since β is simply local with respect to Rϑα and R(ϑα)|A =
R(ϑα)|Q = Rϑα.

Finally, (d1) follows from (d), the assumption on the fresh variables of θ
(which implies that the sets of fresh variables of α and β are are disjoint from
Var(Q) and Var(c)) and the fact that ϑ is a simply local mgu. �

Proof of Lemma 4.3 We first prove that TSL
P ↑ ω(I) is a fixpoint of TSL

P .
In fact

TSL
P (TSL

P ↑ ω(I)) = TSL
P ↑ ω(I) ∪ T sl

P (TSL
P ↑ ω(I))

=
⋃

i≥0 TSL
P ↑ i(I) ∪

⋃
i≥0 T sl

P (TSL
P ↑ i(I))

=
⋃

i≥0(T
SL
P ↑ i(I) ∪ T sl

P (TSL
P ↑ i(I)))

=
⋃

i≥0 TSL
P ↑ i(I)

= TSL
P ↑ ω(I).

We now prove that TSL
P ↑ ω(I) is the least fixpoint of TSL

P containing I.
Let J be a fixpoint of TSL

P containing I, i.e., I ⊆ J = TSL
P (J). We prove

that TSL
P ↑ ω(I) ⊆ J . More precisely, we prove by induction on i, that for all

i ≥ 0, TSL
P ↑ i(I) ⊆ J .

Base. i = 0. In this case TSL
P ↑ 0(I) = I ⊆ J .

Induction step. i > 0. In this case TSL
P ↑ i(I) = TSL

P (TSL
P ↑ i− 1(I)).

By the inductive hypothesis, TSL
P ↑ i− 1(I) ⊆ J . By monotonicity of TSL

P ,
TSL

P ↑ i(I) = TSL
P (TSL

P ↑ i− 1(I)) ⊆ TSL
P (J) = J .

By definition of simply local models and of TSL
P , we have that J is a simply

local model of P containing I iff TSL
P (J) ⊆ J and I ⊆ J . This proves that

TSL
P ↑ ω(I) is the least simply local model of P containing I. �

Proof of Lemma 4.4 (i)⇒ (ii). We first assume that δ proceeds left-to-right
and employs only simply local mgu’s and prove that: ϑ|A is simply local with
respect to A and Aϑ ⊆ TSL

P ↑ ω(I). The general case follows from Corollary
2.12 and Theorem 3.18 in [2] on derivations employing different mgu’s.

We proceed by induction on the length of δ.
Base. len(δ) = 0. In this case A = C ⊆ I and ϑ = ε (the empty

substitution). The thesis follows from the fact that, by definition of TSL
P ,

I ⊆ TSL
P ↑ ω(I).

Induction step. len(δ) > 0. Let A = L, A,R and A be the leftmost atom
of A such that there is some A-step in δ (and hence there are no L-steps in δ).
Assume also that c : H ← B is the input clause used in the first derivation step
of δ and ϑ1 is the simply local mgu of A and H used in this step. By Corollary
2.12,

δ : A ϑ1=⇒ (L,B,R)ϑ1
ϑ2−→ L,C′

such that C = L,C′, ϑ = ϑ1ϑ2 and Lϑ1 = Lϑ1ϑ2 = L.
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Hence
L ⊆ I ⊆ TSL

P ↑ ω(I) (3)

and there exists the input consuming derivation: δ′ : (B,R)ϑ1
ϑ2−→ C′ where

len(δ′) = len(δ)− 1 and (B,R)ϑ1 is simply moded.
By the inductive hypothesis, ϑ2|(B,R)ϑ1 is simply local with respect to (B,R)ϑ1

and
(B,R)ϑ1ϑ2 ⊆ TSL

P ↑ ω(I). (4)

Note also that since ϑ1ϑ2 is computed in a derivation of (A,R), by stan-
dardization apart and Lemma 3.10 we have that

(ϑ1ϑ2|(B,R)ϑ1)|(A,R) = (ϑ1ϑ2)|(A,R) is simply local with respect to (A,R). (5)

Since (ϑ1ϑ2)|L = ε and (ϑ1ϑ2)|(A,R) is simply local with respect to (A,R)
and the fact that variable compatibility is guaranteed by standardization apart,
by Lemma 3.5

(ϑ1ϑ2)|(L,A,R) is simply local with respect to (L, A,R). (6)

To conclude the proof it remains to shown that

Aϑ1ϑ2 ⊆ TSL
P ↑ ω(I). (7)

Then, the result will follow from (3), (4), (6) and (7).
In order to prove (7) note that ϑ1 is a simply local mgu of A and H, so

(ϑ1)|H is simply local with respect to H ←. Moreover, by Lemma 3.5, (ϑ2)|Bϑ1

is simply local with respect to Bϑ1. Note also that, by standardization apart,
ϑ1|H and ϑ2|Bϑ1 are variable compatible with respect to H and B. Hence, by
Lemma 3.6, (ϑ1)|H(ϑ2)|Bϑ1 = (ϑ1ϑ2)|c is simply local with respect to c.

By Definition 4.2 and property (4), this proves that

H(ϑ1)|H(ϑ2)|Bϑ1 = Hϑ1ϑ2 = Aϑ1ϑ2 ⊆ TSL
P ↑ ω(I)

(ii)⇒ (i). Let Aθ ⊆ TSL
P ↑ ω(I) with A : A1, . . . , An. Let k be the minimum

index such that Aθ ∈ TSL
P ↑ k(I). The proof proceeds by induction on k.

Base. k = 0. In this case, Aθ ⊆ TSL
P ↑ 0(I) = I with θ simply local with

respect to A. Since both A and Aθ consist of simply moded atoms, and θ is a
simply local substitution with respect to A, it follows that θ is just a renaming
of the output variables of A. The thesis follows by taking ϑ to be the empty
substitution and δ to be the derivation of length zero.

Induction step. k > 0. We proceed by induction on n, the number of atoms
in the query.

Base. n = 1. In this case A = A, θ is simply local with respect to A and
Aθ ∈ TSL

P ↑ k(I). By definition of TSL
P and Proposition 3.3, there exist a variant

c : H ← B of a clause of P variable disjoint from A and a substitution ϑ such
that

ϑ is simply local with respect to c (8)
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Bϑ ⊆ TSL
P ↑ (k − 1)(I) (9)

Aθ = Hϑ. (10)

By (8) and Lemma 3.6 there exist σ0 and σ1 such that ϑ = σ0σ1, σ0 = ϑ|H
is simply local with respect to H ← and σ1 is simply local with respect to Bσ0.

Hence, by (9) and the inductive hypothesis on k, there exists an input con-
suming derivation

δ′ : Bσ0
ϑ2−→ C

where C ⊆ I and Bσ0ϑ2 ≈ Bσ0σ1.
Note also that Hσ0σ1 ≈ Hσ0ϑ2, since the only variables of Hσ0 which can

be affected by σ1 or ϑ2 are those occurring also in Bσ0.
Finally, note that by Proposition 3.3 we can assume Var(A) ∩ Var(c) = ∅

and then by (10) and the fact that θ is simply local with respect to A (which
implies that In(A) = In(Aθ)), θσ0 is a simply local mgu of A and H, and

δ : A
θσ0=⇒ Bσ0

ϑ2−→ C

is an input consuming derivation where Aθσ0ϑ2 = Hσ0ϑ2 ≈ Hϑ = Aθ.
Induction step. n > 1. In this case A = A,R and Aθ ∈ TSL

P ↑ k(I). By
Lemma 3.5 there exist θ1 and θ2 such that θ = θ1θ2, θ1 = θ|A is simply local
with respect to A and θ2 is simply local with respect to Rθ1, and θ1 and θ2 are
variable compatible with respect to A and R. By the inductive hypothesis on
n,

δ1 : A
ϑ1−→ C1

where C1 ⊆ I and Aϑ1 and Aθ|A = Aθ are variant.
Again by the inductive hypothesis on n, there exists an input consuming

derivation
δ′2 : Rθ1

ϑ′
2−→ C′

2

where C′
2 ⊆ I and Rθ1ϑ

′
2 ≈ Rθ1θ2. Since Rθ1 ≈ Rϑ1, by Lemma 2.9 there

exists
δ2 : Rϑ1

ϑ2−→ C2

where C2 ⊆ I and Rϑ1ϑ2 ≈ Rθ1ϑ
′
2. Without loss of generality, we can assume

that the input clauses used in δ2 are standardized apart with respect to δ1.
Then there exist δ,

δ : A,R ϑ1−→ C1,Rϑ1
ϑ2−→ C1C2

such that Aϑ1ϑ2 and Aθ are variant. �
The following result is a corollary of the above proof. It states that the

relation between computed answers of input consuming derivations employing
simply local mgu’s and simply local substitutions.
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Proposition A.1 Let A be a simply moded query and P a simply moded pro-
gram. Let δ : A ϑ1=⇒ C1

ϑ2−→ C2 be an input consuming derivation in P that
proceeds left-to-right and employs only simply local mgu’s. Let c : H ← B be
the input clause used in the first derivation step of δ and ϑ1 be a simply local
mgu employed in this step. Then (ϑ1ϑ2)|A is simply local with respect to A and
(ϑ1ϑ2)|c is simply local with respect to c.

Proof. It follows from (5) in the proof of Lemma 4.4 (the proof above). �
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