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Transitions between Turbulent States in Rotating Rayleigh-Bénard Convection
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Weakly rotating turbulent Rayleigh-Bénard convection was studied experimentally and numerically.
With increasing rotation and large enough Rayleigh number a supercritical bifurcation from a turbulent
state with nearly rotation-independent heat transport to another with enhanced heat transfer is observed at
a critical inverse Rossby number 1/Ro. = 0.4. The strength of the large-scale convection roll is either
enhanced or essentially unmodified depending on parameters for 1/Ro < 1/Ro,, but the strength
increasingly diminishes beyond 1/Ro, where it competes with Ekman vortices that cause vertical fluid

transport and thus heat-transfer enhancement.
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Turbulence evolves either through a sequence of bifur-
cations, possibly passing through periodic and chaotic
states [1] as in Rayleigh-Bénard (RB) convection [2]
when the Rayleigh number Ra (to be defined below) is
increased, or through subcritical bifurcations [3] as in pipe
or Couette flow. Once the flow is turbulent, it usually is
characterized by large random fluctuations in space and
time and by a loss of temporal and spatial coherence. For
the turbulent state common wisdom is that the large fluc-
tuations ensure that the phase space is always fully ex-
plored by the dynamics, and that transitions between
potentially different states that might be explored as a
control parameter is changed are washed out.

Contrary to the above, we show that sharp transitions
between distinct turbulent states can occur in RB con-
vection [4] when the system is rotated about a vertical
axis at an angular velocity (). The angular velocity is given
by the dimensionless inverse Rossby number 1/Ro =
20 /4/BgA/L. Here L is the height of a cylindrical sample,
B the thermal expansion coefficient, A the temperature
difference between the bottom and top plate, and g the
gravitational acceleration. At relatively small Ra where the
turbulence is not yet fully developed, we find that the
system evolves smoothly as 1/Ro is increased. However,
when Ra is larger and the turbulent state of the nonrotating
system is well established [5], we find that sharp transitions
between different turbulent states occur, with different
heat-transfer properties and different flow organizations.
Sharp transitions between different states were reported
also for turbulent flows in liquid sodium [6,7], where the
increase of the magnetic Reynolds number beyond a cer-
tain threshold leads to bifurcations between different tur-
bulent states of the magnetic field. Sharp transitions
between turbulent states are found also in the rotating
von Karman experiment [8]. The transitions in RB con-
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vection are related to boundary-layer (BL) dynamics,
whereas it is not known whether the transitions, e.g., in
the dynamo experiment, are affected by boundaries. The
influence of a possible transition between different states
on the heat transport in RB convection is discussed in the
context of a theoretical model in Ref. [9]. We note that in
our case we have supercritical bifurcations, whereas all
other cases are subcritical.

We present both experimental measurements and direct
numerical simulations for a sample with diameter D equal
to L. They cover different but overlapping parameter
ranges and thus complement each other. Where they over-
lap they agree very well. Without or with only weak
rotation, it is known for this system that there are thermal
BLs just below the top and above the bottom plate, with a
temperature drop approximately equal to A /2 across each.
The bulk of the system contains vigorous fluctuations, and
in the time average a large-scale circulation (LSC) that
consists of a single convection roll with upflow and down-
flow opposite each other and near the sidewall.

The numerical scheme was already described in
Refs. [10-13]. The apparatus also is well documented
[13,14], and we give only a few relevant details. The
sample cell had D = L = 24.8 cm, with Plexiglas side-
walls of thickness 0.32 c¢cm and copper top and bottom
plates kept at temperatures 7; and T, respectively. The
fluid was water. The Rayleigh number Ra = BgAL?/(kv)
(v and k are the kinematic viscosity and the thermal
diffusivity, respectively), Prandtl number Pr = v/k, and
Ro were computed from the fluid properties at the mean
temperature T,, = (T, + T},)/2. The Nusselt number Nu =
Aot/ A was determined from the effective thermal conduc-
tivity Ao = OL/A (Q is the heat-current density) and the
conductivity A(T,,) of the quiescent state. Eight thermis-
tors, labeled Kk = 0, ..., 7, were imbedded in small holes

© 2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.103.024503

PRL 103, 024503 (2009)

PHYSICAL REVIEW LETTERS

week ending
10 JULY 2009

drilled horizontally from the outside into but not penetrat-
ing the sidewall [15]. They were equally spaced around the
circumference at the horizontal midplane (z = 0). A sec-
ond and third set were located at z = —L/4 and z = L/4.
Since the LSC carried warm (cold) fluid from the bottom
(top) plate up (down) the sidewall, these thermistors de-
tected the location of the upflow (downflow) of the LSC by
indicating a relatively high (low) temperature. To deter-
mine the orientation and strength of the LSC, we fit the
function

Tr(z=0)=T,+ 8ycos(kmr/4—6,), k=0,...,7

)

separately at each time step, to the eight temperature read-
ings T);(z = 0) obtained from the thermistors at z = 0.
Similarly we obtained 6,, §,, and T, , for the top level at
z=L/4. At z = —L/4 only the mean temperature T,
was used in the current work.

In Ref. [13] we explored Nu as a function of Ra, Pr, and
Ro in a large parameter regime, ranging towards strong
rotation (1/Ro >> 1) and from small to large Pr. Here we
focus on Pr = 4-7 (typical of water) and weak rotation
(Ro = 1) to study the transition from the nonrotating state
at 1/Ro = 0 towards the rotating case for different Ra.

We start with numerical results for the relatively small
Ra = 4 X 107 which is not accessible with the current
experimental apparatus because L is too large. Those
simulations where done on a grid of 65 X 193 X 129 nodes
in the radial, azimuthal, and vertical directions, respec-
tively, allowing for a sufficient resolution of the small
scales both inside the bulk of turbulence and in the BLs
adjacent to the bottom and top plates where the grid-point
density was enhanced [11,12]. The small Ra allowed for
very long runs of 4000 dimensionless time units and thus
excellent statistics. Figure 1 shows the ratio of Nu({2) in
the presence of rotation to Nu({) = 0) as function of 1/Ro.
This ratio increases rather smoothly with increasing rota-
tion. For the larger Ra = 2.73 X 108 and Pr = 6.26 where
the turbulence of the nonrotating system is well developed,
both numerical and experimental findings are very differ-
ent. In Fig. 2 one sees that now there is a critical inverse
Rossby number 1/Ro, = 0.38 at which the heat-transfer
enhancement suddenly sets in. For weaker rotation the data
are consistent with no heat-transfer modification as com-
pared to the nonrotating case. The experimental and nu-
merical data (now based on a resolution of
129 X 257 X 257, see [13]) agree extremely well. In
Ref. [12] data from direct numerical simulations were
reported on the relative Nusselt number for Ra =
1 X 10° and Pr = 6.4, which show a similar transition
also at 1/Ro, = 0.4.

The increase in Nusselt is thought to be due to the
formation of the Ekman vortices which align vertically
and suck up (down) hot (cold) fluid from the lower (upper)
BLs (Ekman pumping) [12,13,16-20]. This is supported by
the change in character of the kinetic BL near the bottom
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FIG. 1 (color online). The ratio Nu({2)/Nu() = 0) as a func-
tion of 1/Ro for Ra =4 X 107 and Pr = 6.26. Open black
squares indicate the numerical results. The numerical error is
approximately 0.2%, which is indicated by the size of the
symbols. Inset: The thickness of the kinematic top and bottom
BLs based on the maximum rms azimuthal [upper symbols:
black circles (red squares) for top (bottom) BL] and radial [lower
symbols: green diamonds (blue squares) for top (bottom) BL]
velocities. The vertical dashed lines in both graphs represent
1/Ro, and indicate the transition in boundary-layer character
from Prandtl-Blasius (left) to Ekman (right) behavior.

and top walls based on the maximum root-mean-square
(rms) velocities in the azimuthal (and radial) direction. For
1/Ro =< 1/Ro, the BL thickness (based on the rms azimu-
thal velocity) is roughly constant or even slightly increases.
In contrast, for 1/Ro = 1/Ro, it behaves according to
Ekman’s theory and decreases with increasing rotation
rate; see the inset in Fig. 1 (1/Ro, = 0.5) and Fig. 2
(1/Ro, = 0.38), and see data for Ra = 1 X 10° and Pr =
6.4 in Ref. [21]. The scaling with rotation rate is in agree-
ment with Ekman BL theory A,/L ~ Ro'/2, whereas the
constant BL thickness is consistent with the presence of the
LSC and the Prandtl-Blasius BL. Furthermore, the numeri-
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FIG. 2 (color online). Nu(Q)/Nu(l =0) for Ra=

2.73 X 10® and Pr = 6.26. Red solid circles: experimental data
(T,, =24°C and A = 1.00 K). Open black squares: numerical
results. The experimental error coincides approximately with the
symbol size, and the numerical error is approximately 0.5%.
Inset: Thickness of the kinetic BL. For dashed vertical lines and
inset, see Fig. 1.
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cal results [22] confirm the presence of Ekman vortices at
the edge of the thermal BL above onset which are not
present below onset. Furthermore, particle image velocim-
etry measurements have also shown that vortices are
present close to the plates when rotation is applied
[19,20]. In addition these measurements show that the
number of vortices increases with the rotation rate.

To further characterize the flow field, we numerically
calculated the rms velocities averaged over horizontal
planes and over the entire volume, respectively. For
1/Ro > 1/Ro, the normalized (by the value without rota-
tion) volume-averaged vertical velocity fluctuations w
strongly decrease, indicating that the LSC becomes weaker
(see Fig. 3). The decrease in normalized volume-averaged
vertical velocity fluctuations coincides with a significant
increase of the horizontal average at the edge of the ther-
mal BLs, indicating enhanced Ekman transport (see also
insets in Figs. 1 and 2). These averages provide additional
support for the mechanism of the sudden transition seen in
Nu and indicate an abrupt change from a LSC-dominated
flow structure for 1/Ro < 1/Ro, to a regime where Ekman
pumping plays a progressively important role as 1/Ro
increases.

Our interpretation for the two regimes is as follows:
Once the vertical vortices organize so that Ekman pumping
sucks in the detaching plumes from the BLs, those plumes
are no longer available to feed the LSC which conse-
quently diminishes in intensity. A transition between the
two regimes should occur once the buoyancy force, caus-
ing the LSC, and the Coriolis force, causing Ekman pump-
ing, balance. The ratio of the respective velocity scales is
the Rossby number. For Ro >> 1 the buoyancy-driven LSC
is dominant, whereas for Ro << 1 the Coriolis force and
thus Ekman pumping is stronger. The transition between
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FIG. 3 (color online). The normalized averaged rms vertical
velocities w,,s for Ra =4 X 107 (left) and Ra = 2.73 X 108
(right) as a function of 1/Ro. The black line (with asterisks)
indicates the normalized volume-averaged value of w,,s. The red
line (with squares) and blue line (with diamonds) indicate the
normalized horizontally averaged w,, at the edge of the thermal
BL based on the slope at, respectively, the lower and upper plate.
The vertical dashed lines again indicate the position of 1/Ro,.

the two regimes should occur at Ro = O(1), consistent
with the observed Ro,. = 2.6.

One wonders of course why the transition between the
two regimes is sudden (in Nu) for Ra = 2.73 X 10% and
less abrupt for the smaller Ra = 4 X 107 shown in Fig. 1.
We do not know the answer. We speculate that below onset
at the lower Ra the main effect is the thinning of the
thermal BL through the rotation which is less pronounced
at larger Ra, as there the BL is already thinner anyhow,
thanks to the stronger LSC. The Nu vs Ra scaling at a fixed
Ro number changes due to the transition, because
Nu(Q)/Nu( = 0) decreases with increasing Ra [13].

At even higher Ra = 9.0 X 10° (where A is larger and
temperature amplitudes can thus more easily be measured)
and Pr = 4.38, an even more complex situation is revealed,
as seen in Fig. 4 (here a direct numerical simulation is not
available because it would be too time-consuming). We
find that now Nu(2)/Nu(Q = 0) [Fig. 4(a)], after a slight
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FIG. 4 (color online). Results for Ra = 9.0 X 10° and Pr =
4.38 (T, = 40.00°C, A = 16.00 K). (a) Nu(Q2)/Nu(Q) = 0) vs
1/Ro. The error bar is smaller than the size of the symbols.
(b) Solid symbols: time-averaged LSC amplitudes (5,)/A (z =
0, circles) and (8,)/A (z = L/4, squares) as a function of 1/Ro.
Open symbols: rms fluctuations about the cosine fit [Eq. (1)] to
the temperature data. (c) Vertical temperature variation AT,,/A
along the sidewall. (d) Circles: time-averaged normalized
sidewall-temperature profile ((7(0) — T, ]/J,) at the horizontal
midplane for 1/Ro =1 determined as in [15]. Solid line:
cos(® — 0).
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increase, first decreases, but these changes are only a small
fraction of a percent. Then Nu undergoes a sharp transition
at 1/Ro., = 0.415 [vertical dotted line in Fig. 4(a)] and
beyond it increases due to Ekman pumping. Comparison
with Figs. 1 and 2 shows that the transition of Nu is not
strictly at a constant 1/Ro,, but that Ro, depends weakly
on Ra and/or Pr.

The LSC amplitudes d, and &, determined from fits of
Eq. (1) to the sidewall-thermometer readings are shown in
Fig. 4(b) as solid symbols. Consistent with the results
reported in Ref. [15], §, <, when there is no rotation
(1/Ro = 0). This inequality disappears as 1/Ro increases.
Both amplitudes first increase by nearly a factor of 2. At
1/Ro,.; = 0.337, where the two amplitudes have just be-
come equal to each other, they begin to decrease quite
suddenly and remain equal to each other up to the largest
1/Ro. The transition at 1/Ro,.; is indicated by the leftmost
vertical dotted line in Figs. 4(b) and 4(c). At that point
there also is a transition revealed by the vertical tempera-
ture difference AT, =2 X [T, , — T, ] along the side-
wall as seen in Fig. 4(c) which shows AT,,/A as a function
of 1/Ro. Consistent with the initially enhanced LSC am-
plitudes &, and &,, these results first show a reduction of
the thermal gradient as the LSC becomes more vigorous,
but then reveal an increase due to enhanced plume and/or
vortex activity above 1/Ro,. ;.

Also of interest are the rms fluctuations 67/A =
([Ti(z = 0) = Tsi(z = 0))!/2/A about the fit of Eq. (1)
to the temperature measurements at the horizontal mid-
plane (z = 0), and similarly at z = L/4. They are shown as
open symbols in Fig. 4(b). These fluctuations begin to rise
at 1/Ro,., rather than at 1/Ro,.;. Then they soon become
comparable to §, and J,, suggesting that the LSC becomes
more and more hidden in a fluctuating environment.
Nonetheless, remnants of the LSC survive and can be
found when the fluctuations are averaged away, as shown
in Fig. 4(d). There we see that even for 1/Ro = 1.0 the
time average ([7T;(z=0)— T, 0]/8y) of the deviation
from the mean temperature 7, retains a near-perfect
cosine shape.

From these measurements we infer that the establish-
ment of the Ekman-pumping mechanism is a three-stage
process. First, up to 1/Ro,.;, the time-averaged LSC am-
plitudes, such as (8,)/A, nearly double in value [see
Fig. 4(b)] and thereby reduce the vertical thermal gradient
along the wall [see Fig. 4(c)]. Beyond 1/Ro,, there is an
enhanced accumulation of plumes and vortices, which
coincides with an increase of the BL thickness near onset
as shown by the simulations at lower Ra (see insets in
Figs. 1 and 2). This accumulation detracts from the driving
of the LSC, but the flow is not yet organized into effective
Ekman vortices. This organization sets in at 1/Ro,.,, leads
to Ekman pumping, and enhances Nu and reduces the
strength of the LSC as supported by the volume average

of w,, [see Fig. 3 (for lower Ra)]. This sequence of events
is altered as Ra (and presumably also Pr) is changed, but it
is remarkable that for fully developed turbulent RB con-
vection sharp supercritical bifurcations occur.
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