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Synopsis 

Intersection of the eigenvalues e*(h) of an n-dimensional hermitian matrix A + hB 
(h being a real parameter) is discussed. An upper limit for the number of intersections 
is derived in terms of the rank of the Gramian of the symmetrized products of order 
0, 1, . . . . n - 1 of A and B. 

1. I&rod&ion. Consider an n-dimensional hermitian matrix p, defined 

bY 

%‘,,A +hB; (1.1) 

A and B are hermitian matrices, the eigenvalues of B all being different; 

h is a real scalar; without loss of generality we assume B diagonal. 
In general 2 has n different eigenvalues, q(k), which are functions of h. 

On account of the non-degeneracy of the spectrum of B, all &t(k) are different 
for sufficiently large values of lhl. Values h = h’, however, may exist, where 

some, say k, functions E&Z) intersect; this will be called a k-fold level 

crossing?. Caspersr) has proved that the number of level crossings does not 

exceed $n(n - l), more precisely that 

5 &k(k - 1) I +n(n - l), 
k=2 

(1.2) 

where ck gives the number of k-fold level crossings. 
The aim of this paper is to find a relation between the number and the 

kind of level crossings at one hand and properties of A and B at theother. 
Section 2 is devoted to the formulation of a necessary and, in general, 

sufficient condition for the occurrence of level crossing. 

t The case that two or more functions &i(h) are tangent, has to be considered as the 
limiting case of two or more coinciding intersections. 
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In section 3 it is shown that the upper limit for the left-hand member of 
(1.2) can be made smaller: 

(1.3) 

in this inequality qs denotes the number of independent linear relations 
between the symmetrized products of A and B of order 0, 1, 2 . . , n - 1 t. 

This research is a preparation for the study of quantum-mechanical 
systems of which the hamiltonian depends on an external parameter (e.g. 
a spin system with internal interaction placed in a slowly varying magnetic 
field). 

A survey of studies, devoted to the present subject, is given in ref. 1. 

2. A necessary and, in general, sufficient condition for level crossing. Con- 
sider the set of symmetrized products of order 0, 1, 2, . . , n - 1 of A and B, 
and denote the elements by St. The .si are hermitian matrices and the set {si}, 
which we call S, contains $n(n + 1) elements. The collection of all n- 
dimensional square matrices forms an &-dimensional vectorspace over the 
field of the complex numbers; an inner product, obeying the usual axioms, 
can be defined by 

(P, Q) = Tr(PtQ), 

where Pt is the hermitian conjugate of I’. 
Now we define a square matrix C of dimension &n(n + 1) 

(2.1) 

[Clti = (a Si), i,j= 1 Gz(n + 1). , ...I _ (2.2) 

This matrix is usually called the matrix of Gram or the Gramian and we can 
prove the following theorem. 

Theorem 1, A necessary condition for the occurrence of level crossing 
in the spectrum of A + hB is given by 

det C = 0. (2.3) 

Proof. If for some value h = h’, 8 = A + /z’B has some coincident 
eigenvalues, the degree of the minimal polynomial of X(/z’) is smaller than 
the degree of its characteristic polynomial; for this and other questions of 
linear algebra we are dealing with, we refer to Gantmacher”). 

t If k and 1 are non-negative integers and 1 5 k, (r) products of k - 1 factors A and I 
factors B can be formed, which differ by the permutation of the factors. The sum of 
all these different products is called a symmetrized product of order k and is denoted 
by {At-l@}. 
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This means that there exist numbers ca, not all equal to zero, so that the 

following equality is true 

11-l 

x Cafe = 0. (2.4) 
i=O 

From the relation 

(2.5) 

where {Ai-JBi} denotes a symmetrized product, it then follows that there 

exists a linear relation between the elements of S. Linear algebra tells us, 
that det C = 0 is a necessary and sufficient condition for such a linear 

relation, cl? 

Example. If n = 2, C has the form 

i 

2 TrA TrB 

C= TrA TrAs 

TrB Tr BA 

Then 

det C = 2 IA1212 (BII - B42, (24 

and so Al2 = 0 is a necessary condition for degeneracy, the eigenvalues of 
B being different. 

Now we shall investigate the question under what circumstances theorem 

1 gives a sufficient condition for level crossing. 

First we look at the sets of commutators {[sa, B]} and {[A, si]>, about 
which two lemmas shall be proved. 

Lemma 1. 

[A, {Ak-fBj)] = [{Akf+lBj-l), B], k= 1,2 ,...,...; 

j = 1, . . ..k. 

Proof. With [A + hB, Sk] = 0 it follows 

(2.7) 

[A, c%+] = h[s@, B]. 

Substitution of (2.5) into (2.8) results in 

(24 

[A, fiokr(Ak-,gl)l = [ ; M+l {Ak-iBj}, B] 
j=o 

(2.9) 

t Here and in the following sections we use the symbol 0 to indicate the end of 
a proof. 
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or 

i hj[A, {AWBj)] = i hj[{AW+lBj-I}, Z?]. (2.10) 
i=l i=l 

(2.10) expresses that two matrix polynomials are identical and so the coeffi- 
cients of equal powers of h on both sides of (2.10) have to be equal; this is 
just the statement of this theorem. 

From lemma 1 it follows immediately that the two sets of commutators 

{[A, al} and {[st, Bl) are identical. Each set contains $n(n + 1) elements, 
n of them, however, being trivially equal to zero, namely the elements 
corresponding with respectively AI and Bj (i = 0, 1, . . ., n There are 
$(+z - 1) [si, B], respectively 

commutators will be called K; its 
elements will be denoted by ki. Between the elements of the collection of 

products S and the elements of K there exists a relation, which 
is expressed in the following lemma. 

Lemma 2. The number of linear relations between the 
elements of K equals the number of linear relations between 
the elements of S. 

Proof. Say, there exist qk linear relations between elements 

ki 
IC-1 k-l 

kzl ,FO ~lkji{Ak-W, Bl = 0, si = 1, 2, . (2.11) 

This implies, because the spectrum of B is non-degenerate, qk linear relations 
between the symmetrized products sf 

n-l k-l ?a-1 

C IZ wkj{Ak+Bj) = m~OPzmBn~. (2.12) 
k=l j=O 

Because the relations (2.11) are independent, the same holds for the relations 
(2.12) ; so, if qs gives the number of independent linear relations between the 
elements of S, we may conclude 

qs 2 (2.13) 

Now we take the case that there exist qs linear relations of the 
type (2.12) ; then one finds, commuting (2.12) with B, qs relations of the type 
(2.1 1). With the coefficients VeCtOrS 

COl(ollkj)(k = 1, . . . . vz - 1 ; j = 0, . .., k - 1) can be formed. These vectors 
are linearly independent, otherwise it should be possible, with (2.12), to 
form relations as 

n-l 

C ymBm =O, (2.14) 
m-0 
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with not all ym equal to zero; this, however, is excluded by the non-degeneracy 
of the spectrum of B. So we conclude that the qs relations (2.11) are in- 
dependent and 

qk 2 4s. (2.15) 

Eqs. (2.13) and (2.15) together, give the required result. 

Now we are able to indicate a case for which theorem 1 gives a sufficient 
condition for level crossing. 

Theorem 2. If the rank of matrix C equals &(m + 1) - 1 then the 
spectrum of %’ = A + hB is degenerate for one and only one value of h; 

this degeneracy is a two-fold one. 
Proof. With the theory of linear algebras) it can be proved that the rank 

of matrix C, rc, is given by 

rc=$&z+ 1) -q& (2.16) 

Then it follows from the assumption in this theorem, that there exists one 
and only one non-trivial linear relation 

n-l i 

C x cq,{&iBJ} = 0. (2.17) 
2=0 I=0 

Commuting (2.17) with respectively A and B one gets two relations 

n-l i 

c C au[A, (A+iBj}] = 0, (2.18) 
i=r i-1 

n-l i-l 

x c a,[{/WB~}, B] = 0. (2.19) 
i=l j=o 

With lemma 1, (2.18) turns into 

n-l i n-l i-1 

,'f;, ,f;, w[{A"-J+~B'-~}, Bl = {?I X0 w+dIW-~B~I~ Bl = 0. (2.20) 

Because there is only one linear relation between the si, this is also true for 
:t_ the commutators [{A”-Bj}, B] (1 emma 2), and so the coefficients of the lef 

hand members of (2.20) and (2.19) differ only by a constant factor, or 

w,j+l/wj = W/~lO dTf A; (2.2 

from (2.21) it follows 

1) 

q3 = c43. (2.22) 

With (2.17) and (2.5) we can write 

x ato(A + LB)2 = 0. 
i-o 

(2.23) 
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The last expression shows that there is a level crossing for 1~ = il. That this 
level crossing for h = 1 is a two-fold one and that it is the only one, follows 
immediately from theorem 3, proved in section 3 of this paper. 

Theorem 1 is only useful if det C is not identically equal to zero, and so 
we shall study now det C in more detail. Det C is a rational function of nz + n 
real variables (na from /l and n from B) which can be considered as in- 
dependent. This rational expression is not identical to zero, as can be shown 
with the following counter-example : 

n, = 0, ,i - il > 1, 

Aij # 0, ,i - ii = 1. 
(2.24) 

The explicit proof that for this case det C does not equal zero is not interesting 
and omitted here. So it holds in general that det C # 0. 

A similar problem rises by the interpretation of theorem 2, which is only 
useful if there are cases for which the condition yc = fn(n +- 1) - 1 is 
fulfilled. It can be shown that the following pair of matrices A and H satisfies 
this condition 

B = SA’S-1, A = SB’S-1 ; 

A’ is a matrix subjected to the condition (2.24), S is the diagonalizing matrix 
of A’, and B’ is a diagonal matrix for which only the following two elements 
are equal: RI, = Bzz. 

3. On the nunaber 01 level crossings. Consider the set of matrix polynomials 

((ei(h)) given by 

e&4) drf iv-l, i= I,...,n. (3.‘) 

If a matrix ZJ is defined by 

(&k are eigenvalues of 2”)) a necessary and sufficient condition for degeneracy 
of the spectrum of .% is (cf. the proof of theorem 1) 

det IJ = 0. (3.3) 

From (3.2) it follows 

det z) = ;“r (Q - ~i)s, 
i,j=l 

i,i 

(3.4) 

and SO det D equals the square of Vandermonde’s determinant (cf. ref. 1). 
From (3.4) we see that det D is a positive semi-definite expression and that 
a K-fold level crossing corresponds with a k(k - I)-fold zero of det D. 
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We shall prove a property of a set of n n-dimensional square matrix poly- 
nomials gz(k) of degree kt 

g*(h) = ; Ai,hJ. 
j=o 

(3.5) 

Lemma 3. If 4 equals the number of independent linear relations between 
the matrix coefficients Aij in the polynomials gi(Jz) (3.5), then the largest 
number (t) of linearly independent matrices ym = CL1 /&,rgz(&), which 
can be found by suitable chaises of i&i and hm, is given by 

t=n+ 5 ka-q. (3.6) 
i=l 

Proof. First we define by suitable choices of ,Jmz and h, a non-singular 
square matrix Q with dimension and rank rq = n + Cr=r kt 

IIQh,m &L&w i = l,..., n,j=O ,..., ki; (3.7) 

m = 1, . ..) Iq. 

Now note, that the collection of n-dimensional square matrices forms an 
G-dimensional vectorspace. F being an element of this space and the set{&} 
being a basis, it can be written F = CT:., aid%; co1 F then means the ns- 
dimensional column vector col(ar, 012, . . ., 01~~). With the aid of this notation 
we define matrices P and R of dimension n2 x r9 

m = 1, . ..) r,; 

i = l,..., n,j=O ,..., kt; 

k = 1, . . . . 4. 

(3.8) 

Then P = RQ and for the rank of P(rp) it follows with Silvesters inequality 2, 
(rr being the rank of R) 

yr + rq - yq i yp 5 min(r,, r9). (3.9) 

With lr. = r9 - q it follows from (3.9) yp = lr = n + X:=1 ka - q. From 
the definition of P we see that rp = t and so the proof of (3.6) is given. q 

Now the main theorem of this paper will be formulated and proved. 

Theorem 3. If ck denotes the number of k-fold level crossings, and yC 
denotes the rank of C (2.2), then it holds 

;: ck &k(k - 1) < &Z(TZ + 1) - rc. 
k=2 

(3.10) 

Proof. The set (e%(h)} (3.1) f orms a basis for the space of matrix poly- 
nomials in h that commute with %‘. If the number of real zeros of det D 
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(3.4) equals 2s, then 

(3.11) 

Furthermore, in that case the basis (ei(lf)S may bc rcplaccd by another one, 
{e;(h)}, where et(h) 1s a p ly o nomial in h of degree not larger than that of Q(A) 
and where the sum of the degrees of all elements e;(h) equals &z(n - 1) - s; 
this is proved by Caspersl). If qs equals the number of independent linear 
relations between the symmetrized products St, then for the maximum 
numbers t(t’) of linearly independent vectors CyZ 1 j5’miei(A,) (C:= I /&,&(hljl)) 

which can be formed by choosing suitnblc sets (pm{, h,] ({p&h&}) one has, 
with (3.6)) 

(3.12) 

On account of the equivalence of {pi(A)) and {e;(lz)], t equals t’ and so it 
follows 4s > S. Then, with yc = $n(n + 1) - qs and (3.1 l), (3.10) is proved. 

One may ask whether or not the equality sign in (3.10) ever applies, as 
in the special cast Y c = in(jz + I) - 1 (cj. theorem 2) ; an cxamplc, ~~NWYY, 
for which the inequality holds, is found in an easy way. 
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