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Dynamic Input-Output Decoupling of Nonlinear Control 
Systems 

HENK NIJMEUER AND WITOLD RESPONDEK 

Abstract-In this note we study the problem of dynamic input-output 
decoupling of nonlinear control systems. Based on an analytic algorithm 
we obtain necessary and sufficient conditions for the solvability of this 
problem. The solution of the problem is constructive by applying a series 
of simple precompensations and linking maps. Some interesting connec- 
tions with other approaches in nonlinear control theory are discussed. 
Also we give a few (simple) examples to illustrate the methods used in the 
note. 

I. INTRODUCTION 

Over the last decade there has been much interest in the general 
problem of input-output decoupling or noninteracting of linear 
dynamic control systems. By noninteracting, we mean a situation where 
each (scalar) control variable only affects one (scalar) output variable and 
none of the other outputs. If the given system does not possess such a 
property of noninteracting, then we may try to add control loops to the 
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original system such that at the end we have achieved noninteraction. 
Depending on the sort of control strategy, one can formulate various 
different decoupling problems. One of the earliest attempts in this area 
goes back to Morgan in 1964 (see 1181) where static-state feedback in the 
control loops was allowed. Many other contributions on the question of 
noninteracting have been produced; see [3 I] for a very readable survey. 
Of particular interest here is the contributions in which one achieves 
decoupling by allowing dynamic state feedback in the control loops; see 
191, 1191 and especially 121, 1301. 

More recently, the same problem of noninteraction was formulated for 
nonlinear dynamic control systems, and depending on the sort of 
permitted control loops, the problem has been solved in particular cases. 
The first and simplest version in which one allows for static-state 
feedback, i.e., the nonlinear Morgan’s problem, was solved by Porter 
[241; see also 111, [81, 1141, 1281, and [29]. 

The problem of dynamic input-output decoupling was studied by Singh 
1251, 1261 via a generalization of Hirschorn’s nonlinear version [ 1 I] of the 
Silverman structure algorithm [32]. Recently, an interesting extension of 
linear dynamic decoupling as was used in 1301 to nonlinear systems was 
given by Descusse and Moog 131, who formulated and solved the 
nonlinear dynamic decoupling problem for strongly left-invertible sys- 
tems. This solution began an increasing interest in the problem of dynamic 
feedback for nonlinear systems (compare [I31 and 1331). 

In the present note we deal with a general solution of the dynamic 
decoupling problem for affine nonlinear control systems. We give 
necessary and sufficient conditions for the local solvability of this problem 
and our tool to do it consists of an analytic algorithm which at each step 
produces a decoupling matrix of the type introduced in [24]; see also 1121. 
The idea of our algorithm is like the one used in 131, i.e., to 
precompensate the inputs that appear “too early.” However, both 
algorithms suggest different feedback laws at every step. Using our 
algorithm we have a precise procedure for defining a simple precompen- 
sator and an iterative composition of linking maps. The resulting extended 
system possesses q* decoupled input-output channels and it turns out that 
q* is the maximal number of decouplable input-output channels for the 
original system. Therefore, decoupling is possible if and only if q* equals 
the number of output channels. Because our algorithm converges on an 
open dense submanifold of the state space we have an explicit way of 
testing the solvability of the dynamic decoupling problem, and moreover 
we have an explicit way to compute the required compensator and 
feedback which decouples the system. Although it is true that the 
algorithm “works” on an open dense submanifold of the state space, it is 
important to note that the initial state of the compensator also has to be 
chosen correctly from an open dense submanifold of the state space of the 
compensator. This fact, which was not emphasized in 131, is essential in 
our approach and cannot be avoided under additional conditions like in 
131; cf. Example 2.2. Furthermore, similar to the paper of Descusse and 
Moog [3] our algorithm only locally works in the situation that the 
nonlinear system is left-invertible; see also Example 2.1 where this notion 
of local dynamic input-output decoupling appears. For the concept of left 
invertibility we refer to [lo], 1111, 1201, [25]-[27] where definitions and 
characterizations are given. 

The approach we have taken here is purely analytic. No differential 
geometric tools like foliations, distributions, involutivity, controlled 
invariance, etc., have been used. Because most often the state space of a 
nonlinear system is not a Euclidean space, we have chosen to work on 
manifolds and use concepts like vector fields and Lie derivatives, but if 
desired one may think of open neighborhoods in R”, mappings from 3“ 
into itself, and directional derivatives. It would be interesting to have a 
differential geometric counterpart to the theory we have developed so far. 

Let us note here that very recently Fliess was able to treat the same 
problem in a differential algebraic context; see [5]-171. Some relations 
with his approach and the solvability of the dynamic decoupling problem 
are discussed in 1351. 

Finally, we remark that, to our best knowledge, the method described 
here is new also for linear control systems, where it is known that a 
system is dynamically decouplable if and only if the rank of the 
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corresponding transfer matrix equals the number of output channels (see 
[30]) although there may exist a connection via the paper [2]. 

The outline of the note is as follows. In Section II some motivating 
examples and the problem formulation are given. Then in the next section 
our algorithm which is essential in the whole solution of the problem is 
given. Hereafter, we formulate and prove our main theorem on dynamic 
input-output decoupling in Section IV. Section V contains the conclusions 
of the note and some comments on related topics in nonlinear control 
theory. 

U. MOTIVATION, PROBLEM FORMULATION, AND NOTATION 

We will consider affine nonlinear control systems of the form 

( X = f ( x ) + g  g, (x)ui ,  x(0)=xo E M 
I =  I I 

where x = (xl, . . . , x,) are analytic local coordinates of an analytic 
manifold M, f, g, ,  . . . , g, are analytic vector fields on M, and h = (h , ,  
. . , h,) analytic functions from M into RP. As stated in the Introduc- 
tion we will discuss the general problem of dynamic decoupling of the 
system (2.1). Before giving a precise definition of dynamic compensators, 
we will first treat a few motivating examples. 

Example 2. I (See [I I]): 

It is straightforward to verify 

and so the nonlinear decoupling matrix (see the end of this section) of the 
system (2.2) is 

(2 ,  :) 
which has rank 1 ,  and therefore this system is not decouplable via static- 
state feedback (see [12]). Now add to the dynamics of (2.2) the 
precompensator with state z E R 

z = w , ,  u1=z. (2.3) 

The extended system has decoupling matrix 

and this matrix is full rank if xI # 0 and z # 1 .  So if xl  # 0 and z # 1 we 
can decouple the overall system (2.2), (2.3). Notice that this system is 
decouplable also by the algorithm given in [3], but the proofs given in [3] 
fail for this kind of system. 

Example 2.2: Let 
XI = U1 YI =XI 

x2 = x3 + ex3 uI y ,  = x2 (2.4) 
X,=u2. 

It is easy to verify that there does not exist a singular controlled invariant 
distribution in the kernel of the output function (cf. [20]), and therefore 
the system is dynamically decouplable; see [3]. If we take, following [3], 
the precompensator 

Z1=w,, uI=zI (2.5) 

then we get as decoupling matrix of (2.4) and (2.5) 

and this matrix is nonsingular provided that zI # - e - +  [or see (2.5)] uI 
= zI # -e-x3. That is, we have to be careful in initializing the 
precompensator (2.5). The above two simple examples illustrate the 
difficulties in establishing general results on the dynamic decoupling 
problem. Before we will formulate our algorithm that is essential in our 
solution of the dynamic decoupling problem, we will give a detailed 
problem description. 

Problem Formulation 

Suppose the system (2.1) is given. Then the dynamic input-output 
decoupling problem, or shortly decoupling problem, can be formulated as 
follows. First we introduce the notion of a dynamic compensator which is 
defined as a nonlinear system on W" of the form 

Z=+(x ,  z ) + $ ( x ,  z ) w  (2.7a) 

together with a closing loop 

u=(Y(x, z ) + P ( x ,  z ) w  (2.7b) 

where we assume that all the data occurring in (2.7a), (2.7b) are analytic; 
so the parametrized vector fields 4, . . . , $,:M x W' -+ W" are 
analytic; the functions a, PI,  ..., P,:M x W" -+ $Im are analytic. 
Together with the compensator (2.7a), (2.7b) we have to specify an initial 
state, say 

z(O)=zo E W'. (2.8) 

Now the dynamic input-output decoupling problem can be stated as 
follows. 

Find-if possible-a nonlinear compensator of the form (2.7a) together 
with a proper initial state (2.8) and a feedback law (2%) such that the 
overall system, i.e., (2.1) together with (2.7), (2.8) is input-output 
decoupled. That is the first p components of the new control w ,  wlr . . . , 
w,, effectuate independently the p outputs yI,  . . . , yp and all the other 
components wp+ . . . , w, affect none of the outputs. 

In this note we solve the above problem in a local fashion, i.e., we find 
conditions which guarantee that we can solve the dynamic decoupling 
problem in a neighborhood of the initial state (xo, zo) of the system (2.1) 
and (2.7a). It will be clear that in general the map 6 is not full rank (in fact 
as will be seen later, this is true if and only if the decoupling of the system 
could be achieved with static-state feedback). 

Notation 

Consider the system (2.1) 

Throughout the note we use a vector notation, upper indexes denote 
vectors, e.g., h' = (hql- + ,, * . , hq/) and similarly for y'and U', where 
the index q/ is specified in the context. The remaining components will be 
denoted as h' as follows h = (h I ,  h2,  * e ,  h', hr) and similarly for 7' 
and zi'. Moreover, U' = ( u l ,  . * . ,  U') and so U = (U', U/). Time 
derivatives will be denoted as u : ~ )  = dku,/dtk and similarly for U, y , ,  and 
y. For the multiindex p' = . . * , pkr ) (  y')(p/) denotes the vector with 
components (y;)(p1) = dpf/dtpf(yj).  

The following simple lemma is essential in what follows in the next 
sections. 

Lemma 2.3: Consider the analytic system (2.1). Then we have the 
following. 

Cf(x)d-'),  where Cf(x) = L,h,(x) and the function Bf is polynomial 
in the components of U, . . . , dk-*). 

i i ) I fA' ,  ..., Akdonotdependonu,,thenalsoA', 1 s  I C  kdono t  
depend on U,, . * e ,  uy-l). 

i) ylk) = Af(x, U, . . * ,  d k - I ) )  = Bf(x ,  U, ..., u ( k - 2 ) )  + 

Proof: Straightforward by induction. 
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Static-State Feedback Decoupling 

We conclude this section with a brief review of the case that we can 
achieve input-output decoupling with applying only static-state feedback, 
see, e.g., 111, [8], 1121, 1241, [29]. Define integers p I ,  . e . ,  p,, as the 
smallest numbers for which the pith time derivative of yi, i.e., A: 
depends explicitly on the input U .  The (p, - 1)'s are the so-called 
characteristic numbers. Now form the ( p ,  m)-decoupling matrix D(x)  of 
which the ( i ,  j ) t h  entry is defined as (A?- ' (x ) ,  g j ( x ) ) .  The static-state 
feedback input-output decoupling problem is solvable if and only if rank 
D(x)  = p (=  constant), i.e., if this condition holds we can locally around 
the initial state find a feedback law U = a ( x )  + p(x)u, /3:M + R m x m  
being analytic maps, which applied to (2.1) achieves the input-output 
decoupling. 

III. THE ALGORITHM 

We now come to the algorithm that is essential in the dynamic 
decoupling problem. So we consider the analytic system on an analytic 
manifold M described in local coordinates. 

(3.1) 

initialized at xo E M .  Recall the notations and conventions given at the 
end of Section 11. In the first step we are dealing with the usual nonlinear 
version of the Falb-Wolovich matrix; see, e.g., [l], [8], [12], [24], [29]. 

Step I: Define the integers p f , . . . , p ;  as the smallest numbers such 
that (yi)(") depends explicitly on U ,  i.e., p,! - I is the characteristic 
number of the ith output channel. We have (compare Lemma 2.3) 

for a ( p ,  ])-vector E'(x)  and a (p, m)-matrix D'(x).  Let 

(3.3) r I (x )  = rank D ' ( x ) .  

Clearly, rl (x)  is constant on an open dense submanifold M I  of M ,  say 
r I (x )  = rl for x E M I .  Assume we are working on an open neighborhood 
in M I .  Reorder the output functions h l ,  * . . , hp such that the first r ,  rows 
of the matrix D' are linearly independent and write h = (h ' ,  f i ' ) ,  where 
h' = ( h ~ ,  . .* ,  h,,)' and h' = ( h r l f 1 ,  ..., h,)'. Denote in the 
corresponding way y as ( y I ,  8') ' and (p f , . . . , p j  ' as (p I ,  6') '. Choose 
an (m, 1)-vector q(x) and an invertible (m, m)-matrix Pl(x) on a 
neighborhood in M I  such that after applying 

we arrive at 

(3.4) 

Now define the modified vector fields 

and consider the dynamics 

(3.7) 

What is done so far is nothing else as applying static-state feedback to 
achieve decoupling of rl input-output channels. 

Step 2: In this step we are only concerned about the remaining outputs 

I' = fil(x) and we want to examine their dependence on the remaining 
inputs PI. In order to do this we differentiate these outputs with respect to 
(3.7) to see when U' appears for the first time. Let fo r i  > rl the integer pf 
denote the smallest number such that the pfth time derivative of yt 
explicitly depends on PI. Observe that such a time derivative possibly also 
depends on components of U '  and their time derivatives. We have ( (Y,;  I ) ( p ; '  + 2) 

= E 2 ( x ,  0 ' ) + D 2 ( x ,  0 ' ) U '  (3.8) 

( Y P ) ( P 3  

for a ( p  - r l ,  1) vector E2(x, 0') and a ( p  - rI, m - r l )  matrix D2(x, 
U' ) ,  where 0' consists of all components of U I and their time derivatives 
u p ) ,  1 I i 5 r l ,  j 2 0 which occur in (3.8). We emphasize that the 
highest derivative of U I appearing in (3.8) is of order n - 1; soj I n - 
I is a natural upper bound in 0'; see [34]. So pI = dim 0' 5 (n  - I)rl 
when interpreting U and time derivatives (U I)(-') as independent variables. 
Let 

r2(x, uI)=rank D 2 ( x , 0 1 )  (3.9) 

then r2( .  , .) is constant on an open and dense submanifold M2 of Ml = 
MI x W, say r2 ( . ,  -) = r2. Let 

92= rl + r z .  (3.10) 

Assume we are working on an open neighborhood in M2. Reorder the 
output functions hl such that the first r2 rows of the matrix D2(x, 0') are 
linearly independent and write hl = (h2 ,  h2) with h2  = (h,,.,, ..., 
hq2) ', 62 = (hq2+ I ,  . . * , h,) '. Accordingly, we write y" = ( y 2 ,  y 2 )  ' 
and ( p r l + ' ,  .. ., p i ) T  = ( p 2 ,  p2)r .  Choose an (m - r l ,  1)-vector a2(x, 
0') and an invertible (m - T I ,  m - rl)-matrix p2(x, 0') on a 
neighborhood in M2 such that after applying 

a ' = a 2 ( x ,  0 ' ) + P 2 ( X ,  0' )  (it) 
we obtain 

(3.11) 

Define the modified parametrized vector fields 

and consider the dynamics 

(3.14) 

where U2 = ( U ' ,  u2)'. We will consider the controls U '  and their time 
derivatives (occurring in 0') as parameters. Alternatively-and this will 
be crucial in the proof of Section IV-we can interpret them as additional 
state variables and new controls for the extended system. From the 
foregoing reasoning the general step is easily established. 

Step I + I :  Assume we have defined a sequence of integers r l ,  . . . , r/ 
andq,  = E:=, r,. We haveh = ( h ' ,  ..., h', &')'and theparametrized 
dynamics. 

( y : )  i = f ' ( x ,  0'- 1 )  + g'(x, 0'- I )  (3.15) 

where U' = ( U ' ,  . . . , U')'. Similarly, to the second step we examine now 
the dependency of the outputs p' = f i / (x )  on the remaining inputs U/. So 
we differentiate these outputs with respect to (3.15) until U /  appears. Let 
for i > ql the integer pf+' denote the smallest number such that the p : +  'th 
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time derivative of yi explicitly depends on a'. Similarly to (3.8) we obtain 

for a (p  - qr, 1)-vector E'+ ' (x ,  0/) and a ( p  - q,, rn - q,)-matrix 
D'+ I(x, U'), where 0' consists of 0'- and (time derivatives of1 U' which 
occur in the above expression. Note that as in Step 2 p/ = dim U ,  satisfies 
pl  I (n - l)ql; see [34]. Let r /+ , (x ,  0') = rank D ' + ' ( x ,  0/), then 
r,+ I ( .  , .) is constant on an open and dense submanifold M,+ I of Mit I = 
M x Rp/. Reorder the output functions h/ such that the first rl+ rows of 
D'+' are linearly independent and partition h' = @/+I, hr+l)T accord- 
ingly. Let 

(3.17) 

In the same way partition I' = ( y'+ I ,  7" I )  and (p'+ ', PI+  I )  as the 
vector of characteristic numbers. Choose an (m - 41, 1)-vector a/+ ~ ( x .  
0)) and an invertible (m - 4,) matrix &+ ,(x, 0') on a neighborhood in 
MI+ I such that after applying the feedback 

(3.19) 

we arrive at 

(3.19) 

Define the new parametrized vector fields 

f ' + ' ( x ,  U ' )= f ' (x ,  0l-I) +g ' (x ,  0") ( ff/+l(:, 0')) ' 

and consider the dynamics 

X=f'"(x, O ' ) + g ' + ' ( x ,  0') (;:::) (3.21) 

where U / + ,  = ( U , ,  ..., u'+l). Observe that the sequence of 4:s is 
increasing and bounded by the number min ( p ,  rn), and therefore the 
algorithm will terminate after finite steps with a maximal number q*,  i.e., 
q* = qr for I sufficiently large, say 1 > k, for a certain k. This integer is 
well defined on an open and dense submanifold M* = MI n . . . n 
of M where Mi is the projection of Mi onto M .  In the next section we will 
show that q* is exactly the number of dynamically decouplable input- 
output channels. 

IV. MAIN THEOREM 

In this section we will state and prove our main result on dynamic 
decoupling. 

Theorem 4.1: Suppose the analytic system (2.1) is given. Then the 
system is locally input-output decouplable by precompensation and 
feedback if and only if q* = p. 

Remark 4.2: As it can be seen in the proof, if q* < p then q* is 
maximal number of decouplable input-output channels. 

Remark 4.3: The concept of reproducibility in the necessity part of the 
proof is obviously related to the notion of right-invertibility, and therefore 
there are links with the approach of Fliess [5],  [6]; see also [33]. 

Proof: "+" Suppose q* = p .  on an open and dense submanifold 
M ,  of M with q* = qk+ I .  For every 1 I i I qk let Y, denote the highest 

time derivative of U ,  present in Ok. Introduce the precompensator 

i,,=z,+1, I 5 j < v , ,  i , , ,=w,  (4.1) 

for all 1 5 i 5 qk satisfying U, > 1. Define rJ-dimensional vectors iJ, j 
= 1, .-., k, by 

f ' = ( f , , - ' + ' ,  . . .  1 i,,) (4.2a) 

where 

i?,=z,' if v,>O and i , = w ,  if v , = O .  (4.2b) 

Now define inductively the map linking the precompensator (4.1) with the 
system (2.1) as follows. Make the composition of (3.4) with (4.1), (4.2) 
via 

u ' = i '  (4.3a) 

f i '= f f * (x ,  0 ' ) + P 2 ( X ,  0') (r:) (4.3b) 

where a2 and p2 are given by (3.1 I) .  At the Ith step make the composition 
of the so far obtained system together with 

U'=?' (4.4a) 

(4.4b) 

with a/+ I and P/+ I given by (3.19). This is done for all I = 1, . . . , k. 
Observe that U : )  present in can be expressed as z,. Moreover, 
according to Lemma 2.3, all above defined maps are affine with respect to 
the inputs w,. These two facts imply that the resulting composition is of 
the desired form (2.7b). In order to describe the input-output behavior of 
the extended system, let 

w / = ( w q / & I + I ,  '.., w,,), V ' = ( Y q J ,  I=1, ..., k (4.5) 

and put 

u ' = p ' + v ' ,  I=1, ..', k. (4.6) 

Then from ( 3 . 9 ,  (3.12), (3.19), (4.3a), (4.3b), (4.4a), (4.4b), and (4.5), 
(4.6) we get 

(4.7) 

Since = q* = p it follows from (4.7) that we have obtained input- 
output decoupling. Moreover, the open and dense submanifold Mk of M 
X Rfik gives the set of pairs of initial states (xo, zo) for which the input- 
output decoupling as described in (4.7) holds. 

Assume that there exist a precompensator of the form 

i = b ( x ,  z ) + $ ( x ,  z ) w ,  z E R", 

"+.' 

(4.8) 

initial state zo E a", and a feedback law 

U = a ( x ,  z )  + P(x,  z )  w (4.9) 

such that the precompensated system denoted by C, is decoupled in a 
neighborhood of (xo, zo). This implies that locally the behavior of the 
system is described by 

(4.10) 

for suitable u,'s and w,, p < i I rn do not influence the output vector y = 
( y I ,  . . . , y,,) T .  Observe that this implies the following local reproducibil- 
ity property. Given a set of any analytic functions 4, = d,( t ) ,  i = 1, . . . , 
p one is able to find controls u, ( t ) ,  i = 1, . . e ,  rn such that C, feeded by 
u ( t )  = ( u l ( t ) ,  . . . , products on a small time interval the output 
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y ( t )  = ( Y I ( ~ ) ,  ..., ~ , ( t ) ) ~ s u c h  that 
dui 
z Y , = $ , ( t ) ,  ; = I ,  ”. , P  (4.11) 

for any fixed v; 2 U,. Therefore, the original system (3. l ) ,  denoted by C, 
has the same property. To see this one should apply to C the control u ( t )  
given by 

u ( t )  = a ( x ( t ) ,  Z ( t ) ) + B ( X ( t ) ,  Z ( t ) ) U ( t )  (4.12) 

which obviously produces output y ( t )  satisfying (4.11). To prove that q* 
= p is necessary for decoupling, we show that if q* < p ,  then C does not 
possess the above reproducibility property. To see this take the 
decoupling procedure, based on the algorithm, up to the q*th step. We 
get 

(4.13) 

for suitable q ’ s ,  and y,  , i > q * do not depend on ui , i > q * (compare the 
proof of the implication). We show that given $i = 4, ( t ) ,  i = I ,  . . * , p it 
is not possible to find a control u ( t )  = ( u , ( t ) ,  * .  ., ~ , , , ( t ) ) ~  such that 
(4.11) is satisfied. Observe that (4.13) (locally) gives u, ( t ) ,  1 I i 5 q* in 
a unique way, however, this choice also uniquely determines y,, i > q*.  
Therefore, the derivatives of y;,  i > q* are specified by those of y;, i I 
q* and this contradicts the desired reproducibility. 

d - d tgL  Y ,  = w,, 1 sisq* 

v. FINAL REMARKS 

In this section we will elucidate our results and compare them to other 
approaches existing in the literature. 

In 11 I] Hirschorn proposed an algorithm, a nonlinear version general- 
ization of Silverman structure algorithm [32], for studying the (left-) 
invertibility of affine control systems. A modified version of this 
algorithm was proposed by Singh [26]. As can be seen from Example 2.1 
there are some connections between left invertibility and our algorithm. In 
[25] Singh has shown that for those nonlinear systems that are left- 
invertible under the condition of Hirschorn [ l l ]  one can achieve 
decoupling via precompensation and feedback. It is interesting to observe 
that Hirschorn’s algorithm [ l l ]  (and its modification by Singh [26]) 
allows for state-dependent transformations of the output (postcompensa- 
tion), whereas we allow for state-dependent input transformations 
(precompensation); so this is, in fact, a dual approach of our method. 

Descusse and Moog I131 (see also [33]) proposed an algorithm for 
solving the nonlinear decoupling problem and showed its converge under 
the nonverifiable assumption of the left-invertibility. However, in the 
very recent paper 1351 it is shown that the assumption given in [33] may in 
fact be verifiable. The algorithm we propose is based on the same idea of 
precompensation of those inputs which appear too “early” when 
differentiating the outputs. However, both approaches differ substantially 
in the feedback laws they suggest. In [3] one changes at every step only 
the controlled vector fields gi’s (0, is applied) while we change at every 
step both the drift termfand the controlled vector fields g:s, i.e., both a, 
and 0, are applied. In a sense our algorithm can be viewed as a dynamic 
feedback generalization of Krener’s algorithm for computing the maxi- 
mum local controlled invariant distribution contained in ker dh; see [15]. 
In the first step both algorithms yield the same but in the next steps they 
differ, since Krener uses only state feedback, whereas we use feedback 
which also depends on the controls that are treated as parameters or state 
variables of the extended system. 

The pair (a,, 0,) is chosen in our algorithm in such a way that at step I 
we transform a part of the studied system into q, independent pf-fold 
integrators. This allows us to obtain a verifiable necessary and sufficient 
condition for dynamic decoupling: the problem is solvable if and only if 
q*  = p .  This result can also be expressed in the following form: a 
nonlinear system is decouplable by means of general dynamic feedback 
(2.7a), (2.7b) if and only if it can be decoupled by our method. Observe 
that the latter implies in particular that if a nonlinear system is not 
decouplable by preintegration, then it cannot be. by any precompensator of 
the general form (2.7a), (2.7b) either. This generalizes an analogous 
result shown for linear systems by Wonham and Morse [31]. Finally, 
observe, what follows easily from the proof, that if q* < p ,  then the 
decoupling problem is not solvable and q * gives the maximal number of 
decouplable IIO channels. 

Very recently Fliess introduced in nonlinear system theory some very 
interesting new ideas based on differential algebraic techniques [5]-[7]. 
Using this frame he also solves the dynamic input-output decoupling 
problem in the following way. The dynamic decoupling problem is 
solvable if and only if the differential algebraic transcendence degree of 
the system equals p ,  the number of output channels. We refer the reader 
to [5]-[7] for a precise statement of the problem, the needed concepts, and 
the proof. For those who are not familiar with differential algebra we 
emphasize that the above statement is equivalent to the fact that there is no 
differential equation involving components of the outputs and their time 
derivatives. We refer to [35] for a comparison of the analytic approach 
and that of Fliess. 
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Design for Noninteracting Decomposition of Nonlinear 
Systems 

DAIZHAN CHENG 

Abstract-This note tackles the general input-output noninteracting 
decomposition problem of nonlinear systems. Under less regularity 
assumptions we give an alternative proof of the same necessary and 
sufficient conditions as in [4]. Our result gives an algorithm which 
constructs the feedback law a and /3 explicitly. Finally, we prove that the 
decomposed form is a canonical form. 

I. INTRODUCTION 

Consider an affine nonlinear system 

( 1.1 .a) 

y = h ( x )  (1.1 .b) 

where x E M; f ( x ) ,  gi(x) E V(M ); h : M + N is a C” mapping: M and 
N are C” manifolds with dimensions n and r, respectively. The input- 
output noninteracting decomposition problem (NDP) may be stated as 
follows. Given a partition of the outputs y, whether there exist a feedback 
control 

U =  .(X) + P ( x ) u  (1 4 

and a partition of the controls U, such that each block of U completely 
controls the corresponding block of y ,  and does not affect the other blocks 
of the outputs. 

The NDP has been studied extensively and from various points of view. 
The discussion for linear systems is founded in [l], [2], etc. 

Recently, the NDP of nonlinear systems has been studied in [3] and 
[4]. Reference [3] gives precise formulation and solves NDP for the 
single-input and block-output case by “controllability distribution” 
approach. Reference [4] proves the same results for the block-input and 
block-output case under more regularity assumptions by using the concept 
of zeros at infinity. 

The main goal of this note is to give an alternative proof of the same 
result of [4] under less regularity assumptions as required in [3]. Our 
proof is constructive, thus it yields an algorithm. Using it, an input-output 
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decomposed form has been obtained. Finally, we prove that the 
decomposed form obtained is a canonical form. 

For investigating the decoupling problem of linear systems, the 
geometric concepts of (A, E)-invariant subspaces and controllability 
subspaces play a very important role. In the geometric approach to 
nonlinear systems, the concept of (A, B)-invariant subspaces has been 
extended to that of (f, g)-invariant distributions [SI, [6], and the concept 
of controllability subspaces has also been extended to that of controllabil- 
ity distributions [7], [8]. 

Since our discussion depends particularly upon the concept of ( f, g)- 
invariance, we state the following definition which is slightly different 
from the original one given in [6]. 

For the sake of compactness, let C ; ( U )  be the set of rn x 1 vectors 
with the entries in C m ( U ) ,  and Gl(rn, C ” ( U ) )  be the set of rn x rn 
nonsingular matrices with the entries in C m ( U )  too, where U is an open 
subset of M. 

Definition I .  1: A distribution A is said to be weakly (f, g)-invariant at 
p E M if there exists a neighborhood U of p, such that on U 

Lf, AI C A + G ,  ( 1.3 .a) 

[g,,  A] C A+G, i = l ,  ... , m  (1.3.b) 

where G = Sp { g, , . * , g, } . A is said to be strongly ( f, g)-invariant at p 
E Mifthereexistaneighborhood U o f p , a  E C;(U)andp E Gl(rn, 
Cm(U)), such that on U 

[ f + g a ,  AI C A. (1.4.a) 

[(go),,  AI C A, ; = I ,  . . .  , m. (1.4.b) 

The local equivalence of these two kinds of ( f ,  g)-invariances is proved 
in [6] and [12] independently. 

U. COMPATIBLE (f, g)-INVARIANCE 

To study decoupling problems of nonlinear systems, we have to 
consider several ( f, g)-invariant distributions simultaneously. Thus, we 
introduce the concept of compatible (f, g)-invariance. 

.., Ak be k weakly (f, g)-invariant 
distributions atp.  AI, . . . , Ak are said to be compatible (f, g)-invariant at 
p, if there exist a neighborhood U o f p ,  a E C ; ( U )  and E Gl(rn, 
C ” ( U ) ) ,  such that on U 

Definition 2.1: Let AI, 

[ f + g a ,  4 1  C A, (2.1 .a) 

(2.1.b) 

Let A be an involutive distribution with constant dimension. According 
to Frobenius’ theorem, there exists a local coordinate chart (U, (x, y ) ) ,  x 
= (XI, . . * , xp) ,  and y = ( y l ,  

[(go),, A,] C A,, j =1 ,  . . e ,  m; i = l ,  ..., k. 

. , yn-p ) ,  such that 

This coordinate chart is called a flat chart [lo]. Let (W, (x’, U’)) be 
another flat coordinate chart and W n U # d. Then on W n U 

Y ’  =v’(u). (2.2) 

Assume a vector field X i s  expressed in a flat chart (x, y) as 

X=(a1,  . * . ,  a,)T E T ( ( I ) .  

Then the canonical projection i r (X) of X on TM/A is defined as 

7f (W=(up+1,  ..., (2.3) 

and denoted as X/A. Using (2.2), it is easy to prove that X/A is 
independent of the choice of the flat frame. 

Likewise, for a distribution G we may define the canonical projection 

0018-9286/88/1100-1070$01.00 0 1988 IEEE 


