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Quantification of variability in bedform geometry
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[1] We analyze the variability in bedform geometry in laboratory and field studies.
Even under controlled steady flow conditions in laboratory flumes, bedforms are irregular
in size, shape, and spacing, also in case of well-sorted sediment. Our purpose is to
quantify the variability in bedform geometry. We use a bedform tracking tool to determine
the geometric variables of the bedforms from measured bed elevation profiles. For

each flume and field data set, we analyze variability in (1) bedform height, (2) bedform
length, (3) crest elevation, (4) trough elevation, and (5) slope of the bedform lee face.
Each of these stochastic variables is best described by a positively skewed

probability density function such as the Weibull distribution. We find that, except for the
lee face slope, the standard deviation of the geometric variable scales with its mean
value as long as the ratio of width to hydraulic radius is sufficiently large. If the ratio of
width to hydraulic radius is smaller than about ten, variability in bedform geometry is
reduced. An exponential function is then proposed for the coefficients of variation

of the five variables to get an estimate of variability in bedform geometry. We show that
mean lee face slopes in flumes are significantly steeper than those in the field.

The 95% and 98% values of the geometric variables appear to scale with their standard
deviation. The above described simple relationships enable us to integrate variability

in bedform geometry into engineering studies and models in a convenient way.
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1. Introduction

[2] Bedforms such as river dunes or marine sand waves
are rhythmic bed features which develop because of the
interaction between water flow and sediment transport.
Often bedforms are schematized as a train of regular
features (e.g., a sinusoidal wave, a train of identical triangles
or smoothly shaped asymmetric forms). The purpose of
such a simplification is, for instance, to explain the gener-
ation of sand waves through stability analysis [e.g.,
Hulscher, 1996], or to numerically [e.g., Yoon and Patel,
1996] or experimentally [e.g., Nelson et al., 1993; Lyn,
1993; McLean et al., 1999] analyze the turbulent flow
structures over bedforms. Bed elevation profiles from a
laboratory flume or the field show that bedforms are not
regular (Figure 1), even under steady conditions and for well-
sorted sediment [e.g., Nordin, 1971; Paola and Borgman,
1991].

[3] Previous studies have shown that variability in bed-
form geometry, i.e., size, shape and spacing, is not the
exception, but is the character of natural bedforms devel-
oping under and interacting with unidirectional flows
[Jerolmack and Mohrig, 2005a). Natural bedform topog-
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raphy continuously evolves, i.e., bedforms merge and
split [Gabel, 1993], even under steady flow conditions
[Leclair, 2002]. Bedform geometry under given flow con-
ditions is modified by variations in the sediment flux
[Jerolmack and Mohrig, 2005a]. A modification in bedform
geometry induces modification in flow acceleration, which in
turn induces modification in the sediment flux [Nelson et al.,
1993]. Jerolmack and Mohrig [2005a] hold the nonlinear
feedback between topography and sediment transport
responsible for the variability in bedform geometry.
Jerolmack and Mohrig [2005b] develop a surface evolu-
tion model for the topography of bed load dominated sandy
rivers. They add a noise term to the sediment flux to account
for local fluctuations in the sediment flux. Deterministic
model simulations in which the noise term is zero evolve
toward a static steady pattern of bedforms, i.e., uniform
periodic bedforms. Model simulations in which the noise
term has a mean value of zero and is Gaussian distributed
evolve toward a bed topography that is continuously
varying but in statistical sense homogeneous.

[4] In several studies, we need information not only on
the average geometric variables of bedforms, but also on
their stochastics. For example, dredging, which is necessary
to keep a navigational channel sufficiently deep, requires
information on the highest crest elevations. On the other
hand, construction of pipelines and cables buried in the sea
bed, which may not be exposed to the flow, demands
information on the deepest trough elevations. Similarly,
safety against uplifting of a tunnel underneath a river bed
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Figure 1. Bed elevation profile of the Waal branch of the

Rhine River in Netherlands. Measurements taken on
December 11, 2006. Flow is from left to right.

needs to be guaranteed when a deep trough migrates over
the tunnel [Amsler and Garcia, 1997].

[5] Furthermore, variability in bedform geometry needs
to be taken into account when modeling (1) the thickness of
cross-strata sets, (2) vertical sorting, or (3) bed roughness.
The first example is illustrated by the fact that the variability
in trough elevations is relevant in the reconstruction of the
original heights of bedforms from the thickness of cross-
strata in preserved deposits as it mainly determines the
probability density function of cross-set thickness of pre-
served bedforms [e.g., Paola and Borgman, 1991; Leclair,
2002]. Second, the variability in trough elevations affects
the morphodynamic changes of the river bed when vertical
sorting within bedforms plays a role. A model predicting the
variability in trough elevations is required as a sub-model
for a stochastic model for mass conservation of sediment
mixtures [Blom et al., 2008]. The third example concerns
the effect of variability in bedform geometry upon form
roughness. Form drag due to the presence of bedforms
results in a component of flow resistance that is often called

Table 1. Characteristics of Data
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form roughness. As form roughness depends on the size,
shape, and spacing of the bedforms [e.g., Allen, 1983;
Nelson et al., 1993], we hypothesize that the variability in
geometric variables of individual bedforms within a reach
affects the reach-averaged form roughness. We ground this
hypothesis by making an analogy between grain roughness
and form roughness. Often the 65%, 84%, or 90% grain size
(De¢s, Dgy, or Do, respectively) is used as a representative
diameter of the grains in predicting the grain roughness, as
this diameter is representative in its effect on the flow [Van
Rijn, 1982]. Analogously, form roughness may also be
determined by bedforms that are higher, longer, or steeper
than the median or mean bedform height, bedform length,
or bedform steepness, respectively.

[6] The aim of this paper is to characterize variability in
bedform geometry by analyzing flume and field data. In
earlier work, researchers have reported mean values, standard
deviations, and histograms of bedform height, bedform
length, and bedform steepness (defined as bedform height
divided by bedform length) for their own flume or field data
set [e.g., Gabel, 1993; Wang and Shen, 1980]. In the present
paper we analyze a number of data sets of both flume and
field experiments with a wide range of bedform heights and
lengths and focus on finding generic relations describing
variability in five geometric variables: (1) bedform height,
(2) bedform length, (3) crest elevation, (4) trough elevation,
and (5) lee face slope. For each of these stochastic variables,
we consider (1) its probability density function, (2) its ratio of
standard deviation to mean value (coefficient of variation),
and (3) its extreme values (95% and 98%). In our data
analysis, we process each data set in the same way using a
new generally applicable bedform tracking tool.

2. Data
2.1. Flume Data

[7] We use laboratory flume data (Table 1) of Driegen
[1986], Klaassen [1990], Leclair [2002], and Blom et al.
[2003]. The experiments of Driegen [1986], Klaassen
[1990], and Blom et al. [2003] were conducted in the Sand
Flume of Delft Hydraulics in Netherlands. Leclair [2002]
performed a series of runs under varying flow conditions at
Binghamton University (BU), New York, USA. We use the

Data set n(=) m(=) L@m) W(@m) h (m)* U (m/s)* Dip (mm)  Dso (mm) Doy (mm)  pa (cm)?
Driegen [1986] 32 3 50 15 0.087-0.592  0.393-0.861 0.70 0.78 0.85 40-17.2
Driegen [1986] 3 3 50 1.125  0.204-0.306  0.488—0.582 0.70 0.78 0.85 6.5-9.7
Driegen [1986] 6 3 50 0.5 0.120-0.436  0.417-0.611 0.70 0.78 0.85 3.1-9.8
Klaassen [1990] 6 3 50 1.125  0.091-0.402  0.488-0.663 0.30 0.66 2.24 2.8-15.2
Leclair [2002] 3 1 7.6 0.6 0.15 0.50-0.75 0.24 0.43 0.60 44-56
Blom et al. [2003] 4 3 50 15 0.193-0.354  0.59-0.79 0.38 13 9.3 1.3-8.5
Blom et al. [2003] 4 3 50 1.0 0.154-0.389  0.63-0.83 mix® mix® mix® 1.1-13.1
Rhine December 2006 - - 6000 250 8 1.0 0.4 0.8 3 25-130
Rhine March 2007 - - 200 60 8 1.0 0.4 0.8 3 30.5
North Loup July 13, 1990 - - 30 15 0.25 0.27 0.17 031 1.5 7.3
North Loup July 22, 1990 — — 30 15 0.25 0.27 0.17 031 1.5 9.1

n denotes the number of flume experiments. m denotes the number of transect locations: 1 means that bed elevations were measured in the center line, 3
means that bed elevations were measured in the center line, as well as left and right of the center line. L and W denote the length and width of the flume, or
the length and width of the measured field section, respectively. 4, U, D,, and 5 denote water depth, average flow velocity, particle diameter for which x%

of the material is finer, and mean bedform height, respectively.
“Range within the data set.

*Mixture of three well-sorted size fractions: fine Dsy = 0.68 mm, medium Dsy = 2.1 mm and coarse Dso = 5.7 mm.
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Figure 2. Bed elevation measurements of a part of the
North Loup River taken on July 22, 1990 [Mohrig, 1994;
Mohrig and Smith, 1996; Jerolmack and Mohrig, 2005b].
Flow is from left to right.

data from the BU runs in which no net aggradation occurs.
We consider measured data from the flume region unaffect-
ed by the entrance and exit of the flume only. All measure-
ments were taken under equilibrium (i.e., steady and
uniform) conditions, which means that bedform geometry,
flow, and sediment transport rate varied around steady mean
values. We refer to Table 1 for details on the experiments.

2.2. Field Data

[s] We consider field data from the Waal branch of the
Rhine River in Netherlands, as well as field data from the
North Loup River, Nebraska, USA (Table 1). The reaches
are not influenced by river bends.

[9] Multi-beam echo sounder measurements were made
at two locations within the main channel of the Rhine River
branch by the Dutch Ministry of Transport, Public Works
and Water Management (Rijkswaterstaat). The first reach,
measured on December 11, 2006, is 6 km long and 250 m
wide, the second reach, measured in March 2007, is 200 m
long and 60 m wide. Both reaches have a sandy bed: Dy ~
0.4 mm, Dsq ~ 0.8 mm, Doy =~ 3 mm [Ten Brinke, 1997].
The measured bed elevations are projected on a regular grid
of 1 x 1 m? by averaging the available bed elevation
measurements (at least 10) within each grid cell. The effect
of the averaging procedure on bedform geometry is negli-
gible as the grid size is small with respect to bedform height
and length.

[10] The topographic data of the braided North Loup
River (Figure 2) are derived from low-altitude aerial pho-
tography [Mohrig, 1994; Mohrig and Smith, 1996]. The
river bed consists of sand with median grain diameter D5, =
0.31 mm [Mohrig and Smith, 1996]. We consider observa-
tions taken on two days (July 13 and 22, 1990), taken with
an interval of 2 minutes and 1 minute, respectively, for a
period of 2 hours and 40 minutes, respectively. The con-
sidered river reach is 30 m long and 15 m wide. Approx-
imately constant river stage ensured that flow was

VAN DER MARK ET AL.: VARIABILITY IN BEDFORM GEOMETRY

F03020

essentially steady over the observation period [Jerolmack
and Mohrig, 2005b].

3. Data Processing
3.1. Grouping of Streamwise Bed Elevation Profiles

[11] In the assessment of the variability in bedform
geometry we analyze the original bed elevation profiles
(BEPs). We only use series of bed elevations measured
along a transect, and no time series. In the flume experi-
ments BEPs were measured in streamwise direction. For the
field measurements we convert the original bed elevation
profiles in X and Y coordinates to bed elevation profiles in
the streamwise direction.

[12] Within a data set we can distinguish two types of sets
of BEPs (Figure 3): (1) a set of BEPs measured at the same
transect (e.g., in the center of a flume) at various moments
in time and (2) a set of BEPs measured at the same time, but
at different transects (e.g., one BEP measured in the center,
one BEP left from the center, and one BEP right from the
center of a flume). All BEPs from the flume experiments of
Leclair [2002] are of type 1. The BEPs from the Waal
branch data measured in December 2006 belong to type 2.
All other flume and field BEPs are of both type 1 and
type 2.

[13] It is allowed to group together bedform geometry
derived from BEPs that are statistically homogeneous in
both space and time [Paola and Borgman, 1991]. In that
case, the statistics of the BEPs as a whole are equal,
although individual migrating bedforms continuously merge,
split, and thus change in shape and size. We use a spatial
scaling technique [Nikora and Hicks, 1997; Jerolmack and
Mohrig, 2005b] to verify which BEPs within a data set are
statistically homogeneous in space and/or time. The spatial
scaling technique treats a series of bed elevations in a profile
as a random function [see Nikora et al., 1997] instead of
identifying individual bedforms in a profile. A measure of the
variability in bed elevations is the standard deviation of bed
elevations, sometimes referred to as the interface width
[Barabdsi and Stanley, 1995; Jerolmack and Mohrig,
2005b]. For a dune-covered bed, interface width grows as a
power law with increasing domain length or window size.
This power law growth holds for small window sizes. The
power exponent characterizes the scaling of elevation fluc-
tuations [Barabdsi and Stanley, 1995; Dodds and Rothman,
2000]. There is a gradual rollover of the interface width as the
window size increases. We may characterize the location of
rollover, i.e., the window size at which the rollover occurs, as

type 1 type 2

time —
R

direction perpendicular
to streamwise direction

streamwise direction

streamwise direction

Figure 3. Two types of sets of bed elevation profiles are
available: (1) time-dependent bed elevation profiles and
(2) space-dependent bed elevation profiles.
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Figure 4. Interface width against window size for bed

elevation profiles at 3 transects along the Waal branch of the
Rhine River.

a characteristic bedform length [Jerolmack and Mohrig,
2005b]. The interface width associated with the location of
rollover provides a characteristic bedform height. We con-
sider a set of BEPs within a data set as statistically homoge-
neous if the characteristic bedform length, characteristic
bedform height and the power exponent of the BEPs are
equal.

[14] Within each flume and field data set, we group
together BEPs of type 1 as, according to the spatial scaling
technique, these BEPs are statistically homogeneous.

[15] Inthe flume experiments of Driegen [1986], Klaassen
[1990], and Blom et al. [2003], BEPs were measured in the
center of the flume, as well as left and right from the center.
The spatial scaling technique shows that BEPs measured in
the center deviate statistically from BEPs measured left and
right from the center, which can be explained by sidewall
influences. Therefore, for these experiments, we did not
group together BEPs measured in the center with BEPs
measured left and right from the center. Table 1 illustrates
how for each experiment we have m x n sub data sets of
statistically homogeneous flume BEPs. As a result, we obtain
168 flume sub data sets.

[16] Within the Waal branch reach measured in December
2006 the flow conditions and thus bedform geometry varies
in space. For instance, near the banks the flow velocity and
bedform geometry deviate from those in the center. Figure 4
shows interface width against window size for 3 transects
along the Waal branch of the Rhine River. The location of
gradual rollover of the 3 BEPs is different, indicating that
these BEPs are not statistically homogeneous. The spatial
scaling technique enables us to divide the reach into smaller
reaches in which the BEPs are statistically homogeneous.
This procedure results in 15 homogeneous sub data sets for
the Waal data of December 2006, one homogeneous sub
data set for the Waal data of March 2007, and two
homogeneous sub data sets for the North Loup River data.

3.2. Bedform Geometry From Bed Elevation Profiles

[17] There exist several methods to find crest and trough
locations and determine the geometric characteristics of
individual bedforms. Examples of methods are (1) the
manual selection of crests and troughs, (2) the selection of
local maxima and minima and next the use of threshold
values for bedform height and/or bedform length for select-
ing which of the maxima and minima are considered as
crests and troughs, respectively, and (3) the selection of
crests and troughs between zero upcrossings and zero
downcrossings. Other matters that require consideration in
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the analysis of bedform geometry are how to detrend the
BEPs (e.g., by fitting a linear line or by applying a moving
average), and how to define the geometric variables. For
instance, some authors define bedform length as the dis-
tance between two successive bedform troughs [e.g., Wang
and Shen, 1980], others use the distance between two
successive zero upcrossings [e.g., Annambhotla et al.,
1972], or the distance between two crests [Crickmore,
1970].

[18] The method to find crest and trough locations and
the above considerations may influence the resulting bed-
form geometry [Prent, 1998]. Choices are usually made
subjectively on the basis of the whole bed configuration
[Crickmore, 1970]. In order to compare various sets of
measurements, we need to use the same method to find
crests and troughs and to use the same definitions of
geometric variables for each data set. Therefore it is gener-
ally not desirable to compare bedform data of different
researchers if the original BEPs are lacking [Crickmore,
1970].

[19] Van der Mark and Blom [2007] have developed a
bedform tracking tool which determines the geometry of the
individual bedforms from original BEPs. The code has been
applied to marine sand wave data [ Van der Mark et al., 2008],
flume data, and river data. Appendix A shortly describes the
details of the bedform tracking tool. Figure 5 illustrates the
definitions of geometric variables in the detrended BEP. In
developing the bedform tracking tool, subjective decisions
have been avoided as much as possible. The numerical code
can easily be applied to various data sets, without the
necessity to ‘tune’ the code to a data set or to define threshold
values.

[20] We now have 186 sub data sets containing bedform
geometry taken from the BEPs. The number of bedform
heights, bedform lengths, crest elevations, and trough ele-

1.5

0.5} . |

detrended bed elevation (cm)
o

1720 1760 1800

x co—ordinate (cm)

1680

Figure 5. Definitions of the geometric variables in a
detrended BEP: A\ denotes bedform length, A denotes
bedform height, and 7. and 7, denote crest elevation and
trough elevation, respectively. The lee face slope S is defined
as A,/ ). Crests and troughs are indicated with circles and
squares, respectively. Flow is from left to right.
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(a) Measured and imposed probability density functions of dimensionless bedform height

(i.e., bedform height divided by mean bedform height) for a single sub data set, i.e., measurements in the
center of the flume for experiment T37 [Driegen, 1986]. The number of bedform heights N equals 1826.
(b) Measured and imposed probability density functions of dimensionless bedform length (i.e., bedform
length divided by mean bedform length) for the same sub data set. The number of bedform lengths N

equals 1793.

vations in one sub data set equals at least 50, and on
average, about 900.

4. Probability Density Functions
4.1. Results

[21] We analyze whether the five geometric variables are
distributed according to a known probability density func-
tion. For each sub data set we determine the Exponential,
Gamma, Gaussian, Gumbel, Log-normal, Rayleigh, Wei-
bull, and Uniform distributions for each geometric variable.
The distributions are determined using the mean and stan-
dard deviation of the geometric variable for each sub data
set.

[22] Figure 6 shows an example of imposed probability
density functions (PDFs) for dimensionless bedform heights
and lengths measured in one of the flume experiments.
Dimensionless bedform height is defined as the bedform
height divided by the mean bedform height of the sub data
set. For each sub data set we determine the goodness of the
PDFs using an expression for the relative error Ey«, which is
equal to the integral of the absolute value of the difference
between the measured and imposed PDF:

Eys = / " lpw (%) — pi(x)] dx* (1)

where X* denotes the dimensionless geometric variable,
Pm(X*) denotes the measured PDF, and p,(X*) denotes the
imposed PDF. By definition, the integrals of the imposed
PDF and measured PDF are equal to 1. If the measured PDF

and imposed PDF are equal, the error is 0, whereas if the
measured PDF and imposed PDF do not overlap at all, the
error is 2. For each of the imposed PDFs we determine
the average error Ey« by averaging over all sub data sets.
The imposed PDF with the smallest average error
corresponds to the best approximation of the data. Table 2
presents the average error values for each imposed PDF for
each geometric variable. In finding the best approximation,
we have not fitted the PDFs to the data. We have imposed
the mean value and the standard deviation of the specific
geometric variable from the specific sub data set to the
distribution.

[23] We find that for bedform height the Gaussian,
Gamma, and Weibull distributions provide the best approx-
imations. The Gamma, Log-normal, and Weibull distribu-
tions provide the best approximations for bedform length.
For crest elevation, trough elevation, and lee face slope we
find that the Weibull distribution yields the best approxi-
mation. It appears that for all five geometric variables, the
Weibull distribution performs well. Depending on its shape
parameter, k, the Weibull distribution can be positively
skewed (k < 2.6), negatively skewed (k> 3.7), or not/hardly
skewed (2.6 < k < 3.7). All sub data sets appear to have
shape parameters in the range 1.8—2.7, which means that
the imposed Weibull distributions are positively skewed.

[24] Many phenomena can be approximated well by the
Gaussian distribution [e.g., Jenkins and Watts, 1968]. It
appears that, except for the Gaussian distribution, the
distributions yielding the best approximations are positively
skewed. The reason we find positively skewed distributions
to be good approximations of the data, may be that, by

Table 2. Average Error Values Eyx for the Goodness of the Imposed PDF for the Following Dimensionless Geometric Variables (X*):
Bedform Height A*, Bedform Length \*, Crest Elevation n¥, Trough Elevation 7}, and Lee Face Slope S*

Gaussian Gamma Rayleigh Weibull Exponential Log-normal Gumbel Uniform
A* 0.28 0.28 0.39 0.29 0.87 0.32 0.42 0.74
¥ 0.41 0.32 0.41 0.34 0.82 0.32 0.61 0.95
n* 0.33 0.36 0.32 0.28 0.59 0.48 0.47 0.55
n* 0.35 0.32 0.37 0.28 0.55 0.44 0.51 0.70
S* 0.47 0.53 0.52 0.43 0.73 0.63 0.50 0.52
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