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Viscosity Destabilizes Sonoluminescing Bubbles
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In single-bubble sonoluminescence (SBSL) microbubbles are trapped in a standing sound wave,
typically in water or water-glycerol mixtures. However, in viscous liquids such as glycol, methylforma-
mide, or sulphuric acid it is not possible to trap the bubble in a stable position. This is very peculiar as
larger viscosity normally stabilizes the dynamics. Suslick and co-workers call this new mysterious state of
SBSL ‘‘moving-SBSL.’’ We identify the history force (a force nonlocal in time) as the origin of this
destabilization and show that the instability is parametric. A force balance model quantitatively accounts
for the observed quasiperiodic bubble trajectories.
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In 1989 Gaitan succeeded in capturing a single light
emitting bubble in a standing sound wave in a water-
glycerol mixture. The phenomenon is called single-bubble
sonoluminescence (SBSL) [1–12]. In their recent work
Suslick and co-workers report that in liquids with large
viscosity a new mysterious state of single-bubble sonolu-
minescence (SBSL) can be observed [3]: In contrast to less
viscous liquids the bubbles are not spatially stationary
anymore but show quasiperiodic, often circular transla-
tional motion on a time scale of seconds. Accordingly,
Suslick and co-workers call the phenomenon moving-
SBSL (m-SBSL). The aim of the present work is to theo-
retically account for this new state of SBSL. This Letter is
organized as follows: We first briefly describe our mea-
surements and the processing of the experimental data; we
then develop a force balance model for the bubble’s trans-
lational motion with effective forces [13], namely, drag,
buoyancy, added mass, and, in particular, the history force
as described in Ref. [14]. The experimental data and the
predictions of our model are finally combined in a phase
diagram which compares theory and experiment to each
other showing excellent agreement.

Experiment.—We inject a single bubble of typical am-
bient radius R0 � 40 �m into a standard sonolumines-
cence flask (radius of the flask Rfl � 3 cm) filled with
degassed glycol (� � 20� 10�6 m2=s). The flask is
driven at its lowest resonance frequency of f ’ 23 kHz.
In contrast to the water case (� � 10�6 m2=s) or other
cases with lower viscosity where it is easy to trap the gas
bubble in the center, here the bubble cannot be trapped but
moves on an (often slowly drifting) ellipsoidal trajectory
with typical diameter of 1 mm. An example is shown in
Fig. 1, lower right panels. It should be noted that due to the
high viscosity of glycol the above described path instabil-
ities set in at moderate acoustical forcing already
(Pa ’ 0:8 bar)—unlike in the experiments of Ref. [3].
Accordingly, we do not observe any light emission. We
obtain the kinematics of the motion by simultaneous track-
ing of the bubble’s translational motion with a high speed
camera (2000 frames per second) and its radial oscillations
by means of Mie-scattering technique. The Mie signal
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subsequently is fitted to a Rayleigh-Plesset–type equation
of motion [cf. Equation (4)] with two fit parameters—the
ambient radius R0 of the moving bubble and the driving
pressure Pa of the sound field.

Modeling the acoustics.—The external pressure field the
bubble is subjected to is rather complex. It depends on
acoustical and geometrical properties of the flask like its
acoustical impedance or its symmetry. Assuming for the
time being spherical symmetry and a node at the flasks
surface, the pressure field of the lowest resonance is given
by the spherical Bessel function j0

pac�x; t� � Pa sin!tj0

�
�jxj
Rfl

�
; (1)

with Pa the center pressure, ! � 2�f the (angular) reso-
nance frequency of the field, x the position of the bubble
(with respect to the center), and Rfl the radius of the flask.
Since in addition we are only interested in small distances
jxj, Eq. (1) can be Taylor-expanded, giving

pac�x; t� � �Pa sin�!t�
�
1�

�2jxj2

6R2
fl

�
: (2)

As mentioned above the acoustical field in experiment is
not perfectly spherically symmmetric but somewhat dis-
torted as is confirmed by measurements of the spatial
pressure distribution. Though these distortions have no
influence on the overall features described in the present
work they do cause symmetry breaking; i.e., they are
responsible for the 3D structure of a bubble’s trajectory.
Where necessary, we conveniently account for such dis-
tortions by mapping the original spherically symmetric
field onto an ellipsoidal one with (dimensionless) main
axis a1; a2; a3: jxj �

�����������������������������������������������������������������
�x1=a1�

2 � �x2=a2�
2 � �x3=a3�

2
p

.
The velocity field of the standing wave is readily obtained
from Eq. (2). We compute it from the linearized, inviscid
momentum balance, �@tu � �rpac, yielding

ui�x; t� �
�2xiPa

3�!a2
i R

2
fl

cos!t: (3)

The radial motion of the bubble is described by a Rayleigh-
1-1 © 2006 The American Physical Society
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FIG. 1 (color online). Phase diagrams in the ambient radius R0

vs driving pressure Pa phase space for the bubbles in water (� �
10�6 m2=s, upper) and glycol (� � 20� 10�6 m2=s, lower) for
a driving frequency of f � 23 kHz and a liquid temperature of
T � 18 	C. In the lower left area (blue online) the bubbles are
shape and path stable. In the medium gray area (green online) the
bubbles are shape unstable and path stable. In the light gray area
(yellow online) they are both shape and path unstable. Hence, in
the medium and light gray area bubbles cannot exist. In the
glycol case there is a new and additional phase (dark gray, red
online) of shape stable, but path unstable bubble which we
identify with the observed m-SBSL. Here the bubbles spiral
out of the center of the flask, as demonstrated through the three-
dimensional bubble trace in the physical (x; y; z) space (lower
right) and its projection y�t�: dark (blue online) curves corre-
spond to our experimental observations, lighter (red online)
curves to the result of our model. The corresponding curves
for the water case show very different behavior, namely, only a
bubble moving to the center of the cell (upper right). In the phase
diagram for glycol additional symbols are plotted. They mark
our experimental data points. Dark (blue online) circles denote
moving bubbles, the single white square a bubble where addi-
tional shape oscillation could be observed and the single white
circle a still bubble. The agreement with the predictions from the
theoretical phase diagram is very good; i.e., the blue circles are
all inside or close to the dark (red online) area. Note that we have
found various nonspiralling bubbles (white circles) in the blue
area (where they belong), but as simultaneously shape- and path-
stable bubbles are well understood, for clarity we did not include
these points in the diagrams. Only one nonspiralling shape stable
bubble is slightly off the blue regime (white circle at 0.95 bar and
40 �m in the lower figure). The reason may be that the Mathieu
tongue around 40 �m is less pronounced in our model as
compared to the experiments.
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Plesset type equation [15], which takes into account first
order corrections for the liquid compressibility [16]:�
1�

_R
c

�
R �R�

3

2
_R2

�
1�

_R
3c

�
�

�
1�

_R
c

�
1

�
�pg�pac�P0�

�
R _pg
�c
�

4� _R
R
�

2�
�R

: (4)

Here, �, c, �, and � are the density, speed of sound, surface
tension, and viscosity of the liquid. We investigate two
different liquids—water and ethylene glycol. A collection
of the corresponding material constants is shown in Table I.
In addition, pg denotes the gas pressure at the bubble
surface, P0 � 1:013 bar the ambient pressure, and
pac�x; t� the local pressure of the acoustic driving accord-
ing to Eqs. (2). Note that Eq. (4) is derived under the
assumption of spatial homogeneity. In our case this is,
strictly speaking, not the case because pac � pac�x; t�.
However, spatial changes of pac occur on a length scale
of the order of Rfl. The typical change of position of the
bubble during one cycle turns out to be much smaller than
that (submicrons) such that the assumption of spatial ho-
mogeneity a posteriori is fairly well fulfilled.

Equation (4) needs to be closed with a suitable expres-
sion for the gas pressure at the bubble surface. In accor-
dance with Ref. [18], we use an isothermal, van der Waals–
type equation of state,

pg �
NkT0

V � NB
� pvap ; (5)

with N the number of particles of the bubble, V its (time
dependent) volume, T0 � 291 K the ambient temperature,
NB the excluded volume of the gas, and pvap the equilib-
rium vapor pressure of the liquid.

Force balance model.—Asymptotic expressions for the
hydrodynamic force on a bubble which is exposed to an
external velocity field and the radius of which in addition
varies with time analytically have been obtained in
Ref. [14]. Based on the results of that reference we now
derive an equation for the translational motion of the
bubble which combines those asymptotic limits. Our
method also offers a way to efficiently handle the history
integral, in order to avoid the numerical difficulties asso-
ciated with the temporal nonlocality of the ordinary differ-
ential equation (ODE).

Given the relative velocity between the fluid and the
bubble, U � u� v, and the bubble wall speed _R, two
limiting cases are distinguished in Ref. [14].
TABLE I. material constants of ethylene glycol and water
taken from Ref. [17]. The vapor pressure of ethylene glycol is
negligible. Hence we use pvap � 0 Pa.

liquid c �ms � � �kg
m3� � �m

2

s � � �Nm� pvap �Pa�

ethylene glycol 1660 1100 19� 10�6 45� 10�3 0
water 1485 1000 1� 10�6 72� 10�3 2:3� 103
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(i) Both Reynolds numbers, the translationally based one, Ret � RjUj=�, as well as the radially based one, Rer �
Rj _Rj=�, are small. In this case the total force acting on the bubble is found to be� 3 �
F �t� � 4���R�t�U�t� �
4

3
��R�t�3

dv
dt
�

4

3
��R�t�3g�

2

3
��

d�R�t� U�t��
dt

� 2R�t�3
dU�t�
dt

� 8���
Z t

0
exp

�
9�

Z t

�
R�t0��2dt0

�
erfc

� ����������������������������������
9�

Z t

�
R�t0��2dt0

s �
d�R���U����

d�
d�: (6)
(ii) At least one of the two Reynolds numbers is large. In
this case the total force reads

F�t� � 12���R�t�U�t� �
4

3
��R�t�3

dv
dt
�

4

3
��R�t�3g

�
2

3
��

�
d�R�t�3U�t��

dt
� 2R�t�3

dU�t�
dt

�
: (7)

Equations of motions are obtained by equating Eqs. (6) and
(7) to zero. One obtains (i)

R3 _v � �6�R� 3R2 _R��u� v� � 3R3 _u� 2R3g

� 12�
Z t

0
exp

�
9�

Z t

�
R�t0��2dt0

�

� erfc
� ����������������������������������

9�
Z t

�
R�t0��2dt0

s �
d�R���U����

d�
d� (8)

or (ii)

R3 _v � �18�R� 3R2 _R��u� v� � 3R3 _u� 2R3g ; (9)

with the dot denoting the material derivative.
We now take a closer look at Eq. (8): We approximate

the complicated history kernel in Eq. (8) by a much simpler
function; i.e., we replace it by an exponential with a
suitable decay constant �: exp�H�erfc�

�����
H
p
�’ exp���H�,

for a justification see below. Best agreement is achieved for
� 
 1=3.

This substitution has the advantage that the approximate
kernel can be written as a product of factors which depend
on one variable only, i.e., either on t or on �. Introducing
the dimensionless time H�t� :� 9�

R
t
�1 R�t

0��2dt0, Eq. (8)
gets the form:

R3 _v��6�R�3R2 _R��u�v��3R3 _u�2R3g

�12�
Z t

0
exp���H�t��exp��H����

d�R���U����
d�

d�:

(10)

We now perform a series of manipulations; namely, we
multiply Eq. (10) with the factor exp��H�t��, differentiate
the resulting equation with respect to t, and finally rear-
range it for R3 �v. The result is

R3 �v�
d
dt
��18�R�3R2 _R��u�v��3R3 _u�2R3g�

�3R2 _R _v�� _HR3 _v�� _H��6�R�3R2 _R��u�v�

�3R3 _u�2R3g� : (11)
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By the above procedure we obtain an ordinary differential
equation which—though approximate—accounts for the
full history of the bubble and yet easily can be solved with
a standard Runge-Kutta algorithm.

Similarly, differentiation of Eq. (9) gives

R3 �v�
d
dt

�
�18�R�3R2 _R��u�v��3R3 _u�2R3g

�
�3R2 _R _v : (12)

Comparison of Eqs. (11) and (12) reveals that history
effects are covered in the last two terms of Eq. (11) only.
From Ref. [14] we furthermore know that the crossover
between the two limiting equations of motion occurs at a
critical Reynolds number Rer;crit ’ 7 and Ret;crit ’ 0:5. We
thus introduce switches �t, �r which turn on history
effects for sufficiently small Reynolds numbers and vice
versa turn them off for high Reynolds numbers:

�r �
1

1�
�

Rer�t�
Rer;crit

�
4
; �t �

1

1�
�

Ret�t�
Ret;crit

�
4
: (13)

With these settings the joint equation of motion finally
reads

R3 �v �
d
dt

�
�18�R� 3R2 _R��u� v� � 3R3 _u� 2R3g

�
� 3R2 _R _v��r�t� _H��6�R� 3R2 _R��u� v�

� 3R3 _u� 2R3g� R3 _v� : (14)

Discussion.—Equations (4) and (14) together with the
pressure and velocity field [Eqs. (2) and (3)] and the gas
pressure in the bubble [Eq. (5)] form a closed set of ODE’s
which easily can be integrated with a standard Rung-Kutta
algorithm. We find that, just as in experiment, in glycol
there is an extended parameter regime in the Pa-R0 phase
space where bubbles move on an ellipsoidal, quasiperiodic
trajectory. Moreover, the amplitude and time scale of the
motion in our simulation match those in experiment (cf.
Figure 1 lower right panels). Once we turn off the history
force in the force balance equation, the bubbles are trapped
in the center. So it is the history force which destabilizes
the position of the bubbles in the center of the flask.

We finally want to compare the model results for the
(linear) stability of the center position and the shape stabil-
ity of a bubble to our experimental data. The shape stability
is treated in the same way as in Refs. [4,10,18,19].
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FIG. 2. y position and 3D trajectory of a m-SBSL bubble in
N-methylformamide [3] from our numerical simulations. The
employed parameters are � � 0:038 N m�1, � � 1:65 m2 s�1,
� � 1000 kg m�3, c � 1660 m s�1, f � 30 kHz, R0 � 9 �m,
Pa � 1:65 bar and we took thermal damping into account along
the model of Ref. [21]. Just as in experiment, we observe
translational motion. The bubble velocity, in order of magnitude,
matches the value of v � 3 mm s�1 reported in the experimental
work [3].
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In order to analyze the stability of the center position of
the bubble, we linearize Eq. (14) with respect to x [note
that v � _x and u� x, cf. Equation (3)] and neglect the
small inhomogeneities due to gravity. The result is a third
order Hill equation, i.e., a parametrically driven oscillator,

R3 �v �
d
dt
��18�R� 3R2 _R��u� v� � 3R3 _u�

� 3R2 _R _v��r� _H��6�R� 3R2 _R��u� v�

� 3R3 _u� R3 _v� ; (15)

which rigorously can be analyzed for stability by means of
a (numerical) Floquet analysis. Figure 1 (left panels) shows
the result of such an analysis in the Pa-R0 phase space for
water (upper graph) and glycol (lower graph). In the light
areas (yellow online) the bubbles are both shape and path
unstable, in the medium-gray areas (green online) they are
shape unstable only. The bottom left areas (blue online) in
addition indicate shape and path-stable bubbles. In the
glycol case there is a new and additional phase (dark
gray, red online) of shape stable, but path unstable bubble
which we identify with the observed m-SBSL. Here the
bubbles spiral out of the center of the flask, as demon-
strated through the three-dimensional bubble trace in the
physical (x; y; z) space (lower right) and its projection y�t�:
blue curves correspond to our experimental observations,
red curves to the result of our model. The circular and
square markers in the phase diagram for glycol in addition
show our experimental data points. We find very good
agreement with the model prediction; i.e., with one ex-
ception all spiralling bubbles are located inside or close to
the dark gray (red online) portion of phase space where
11430
spiralling should be observed. Also the numerical simula-
tions of the situation of Refs. [1,3]—a strongly driven gas
bubble in N-methylformamide—results in a m-SBSL bub-
ble; see Fig. 2. The corresponding curves for the water case
show very different behavior, namely, only a bubble mov-
ing to the center of the cell (upper right) [20].

For future research on SBSL the results of the present
work suggest that those (viscous) liquids which may be
best suited from a bubble shape stability point of view, may
be ruled out for stable SBSL due to this new parametric
trajectory instability.

The work is part of the research program of FOM, which
is financially supported by NWO.
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