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ABSTRACT The flow properties of an amphiphilic bilayer are studied in molecular dynamics simulations, by exposing a coarse
grained model bilayer to two shear flows directed along the bilayer surface. The first field, with a vorticity perpendicular to the
bilayer, induces a regular shear deformation, allowing a direct calculation of the surface viscosity. In experiments this property is
measured indirectly, by relating it to the diffusion coefficient of a tracer particle through the Saffman-Einstein expression. The
current calculations provide an independent test of this relation. The second flow field, with a vorticity parallel to the bilayer,
causes the two constituent monolayers to slide past one another, yielding the interlayer friction coefficient.

INTRODUCTION

Amphiphilic bilayers and biological membranes are planar

self-assembled aggregates of amphiphilic molecules, such as

surfactants or lipids, in which a hydrophilic headgroup is

covalently bound to a hydrophobic tail. These structures are

locally flat, but smoothly undulating on a length scale well

beyond their thickness (1,2). Because bilayers are held to-

gether by relatively weak nonbonded interaction forces, they

behave in many respects as two-dimensional liquids sus-

pended in a three-dimensional solvent matrix. This makes

bilayers very susceptible to external forces, which give rise

to deformations of the overall shape of the bilayer and to

flow within the bilayer. Examples hereof include the elonga-

tion and rupture of vesicles sucked into a pipette (3,4), the

shear induced transition of a stack of bilayers into an onion-

like structure (5–8), the large changes in shape of red blood

cells as they creep through narrow passageways (9), the

resilience of a cell when prodded by a needle, and the pulling

of tethers from a vesicle by a localized force (10–15). In this

article we will concentrate on deformations that preserve the

overall shape of the bilayer.

A flat or weakly undulating bilayer oriented parallel to the

xy plane (see Fig. 1) can be exposed to two distinct flow

deformations, as illustrated in Fig. 2. The first flow field,

vðxÞ ¼ ð _gg y; 0; 0Þ; describes the linear velocity profile of a

regular shear flow with a shear rate _gg: Following the conven-
tion in the literature on sheared block copolymers (16), this

flow is referred to as a perpendicular shear flow. The resis-

tance of the bilayer against this flow is characterized by a

two-dimensional surface viscosity, hs, which, analogous to

the regular three-dimensional viscosity, relates the shear

force per unit of length of bilayer to the shear rate. Note that

both leaflets of the bilayer move in unison under this field. In

the so-called parallel flow field, vðxÞ ¼ ð _gg z; 0; 0Þ; on the

other hand, the two monolayers of the bilayer are sliding past

one another as two flat rigid objects with velocities 6Dvêx:
A friction coefficient, j, is defined by the ratio between the

sliding force per unit of bilayer area and the velocity differ-

ence between the two leaflets.

The viscosity and friction coefficient are not easily ac-

cessible under experimental conditions. Forced deformations

of a bilayer frequently culminate in the simultaneous occur-

rence of both flow fields, and are often accompanied by

bending and stretching of the bilayer. Nonuniform stress dis-

tributions resulting in diffusion-like stress relaxation processes,

both within and between (‘‘flip-flops’’) the monolayers,

further complicate the interpretation of the experimental

data. For an extensive discussion of these processes, we refer

the reader to Evans and co-workers (10,15).

Viscosity measurements by pulling a tether from a vesicle,

for instance, are hampered by the above effects. It proves

more convenient, therefore, to deduce the viscosity from the

translational and rotational diffusion coefficients of fluores-

cent transmembrane tracer particles in a quiescent bilayer

(see Waugh (14) and references cited therein) using a Stokes-

Einstein type expression derived for this particular system by

Saffman (17). Saffman elegantly solved Stokes’ equations of

the creeping flow around a cylinder (i.e., the tracer) moving

in a thin sheet of viscous liquid (i.e., the bilayer), by em-

phasizing the role played by the liquid, of viscosity hw, on

either side of this sheet. Falling ball viscosimetry (18), in

which a microsphere moving under gravity is constrained to

a bilayer vesicle, is essentially based on the same theory. An

independent validation of the Saffman-Einstein expression

for use with bilayers is therefore welcomed.

Friction coefficients have been measured by pulling a thin

tether from a vesicle (10–12,15), where the sharp change in

curvature at the vesicle-tether junction induces a velocity

difference between the inner and outer layers. A second

method focuses on the slip occurring when amphiphiles flow

through an hourglass-shaped fusion pore from a bilayer

under low surface tension to a bilayer under a higher tension
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(19). The wide range of the few reported friction coefficients

illustrates the complexity of (the interpretation of) these

ingenious measurements, and the sensitivity to the amphi-

philes used in the experiment.

The objective of this article is to establish methods to

determine both the shear viscosity and the friction coefficient

of a bilayer by means of computer simulations on the

molecular level. Bilayers have been the subject of numerous

modeling studies, which for the most part focused on the

equilibrium properties and on the self-assembly from a dis-

ordered amphiphilic solution (20–25). To the best of our

knowledge, the flow behavior of a bilayer has never been

simulated at this level. Because our aim here is to develop

and validate new techniques, we opted for a relatively simple

and fast coarse-grained amphiphilic model known to repro-

duce realistic thermodynamic properties (26–30). No claims

are made to the applicability of the model to calculate re-

alistic values of dynamical properties. Our aim is to develop

methods and to test the applicability of the Saffman-Einstein

equation. The model and other simulation details are sum-

marized in the ‘‘Setup’’ section. Results are presented in the

‘‘Results’’ section, where we describe the response of the

bilayer, and of the individual amphiphiles, to the applied

flow fields. We end with a discussion of the applied methods,

and a comparison with the available experimental data, in the

‘‘Discussion and Conclusions’’ section.

SETUP

The speed of coarse-grained (CG) simulation models makes

these models very attractive for simulations requiring large

length and timescales, where fully atomistic models are

computationally too demanding, and to put new simulation

techniques to the test, as is the case here. In coarse-grained

models, a number of atoms is grouped together to form a CG

particle. The equation of motion of the CG particle follows,

in principle, by averaging over the dynamics of the consti-

tuent atoms (31). The resulting Langevin equation combines

conservative forces with friction and random forces (32).

The conservative forces are responsible for the thermody-

namic properties of the CG model, and therefore deservedly

lie at the heart of the currently available fitting procedures

(22,24,28). In case one restricts attention to structural and

thermodynamic properties, the precise values of the friction

and random forces are irrelevant. Of course, as soon as one

wants to calculate realistic dynamical properties, the precise

nature of these forces matters a lot. Unfortunately it is still

not fully understood how to calculate friction and random

forces from atomistic simulations (31,33). As was already

mentioned in the Introduction, however, our aim is primarily

to develop and test methods to study the flow properties of a

bilayer. We therefore decided to use a simplified CG model,

in which friction and random forces are neglected altogether.

The simulation model we used was developed by Goetz

and Lipowsky (27,28). They chose an amphiphilic architec-

ture in which the head is represented by a single bead (h) and
the tail is reduced to four beads (t) representing roughly three
CH2 units each. The solvent consists of loose water beads

(w), corresponding with two water molecules. Interactions

between like particles, as well as the hydrophilic head-water

interactions, are modeled by a Lennard-Jones potential,

FLJ(r) ¼ 4e[(r/s)�12 � (r/s)�6], with e ¼ 2 kJ/mol and

s ¼ 1/3 nm. The hydrophobic tail-water and tail-head

interactions are modeled by a purely repulsive potential,

Frep(r) ¼ e[r/(1.05s)]�9. The nonbonded forces are imple-

mented in a shifted-force fashion, ensuring a smooth trun-

cation of the energy and the force at the cut-off distance of

2.5 s. The particles of the amphiphilic molecules are held

together by harmonic bond potentials, Fbond(l) ¼ 5000es�2

(l � s)2. An angle potential between every set of three

consecutively bonded particles, Fangle(f) ¼ 2e[1 � cos(f)],
introduces a bending stiffness. There are no dihedral

potentials. All particles have the same mass m of 36 a.u.,

and the number density is 2 particles per 3 s3. In all our sim-

ulations the temperature T was 325 K, or 1.35 e/kB with kB
Boltzmann’s constant, and was maintained by means of a

Nosé-Hoover thermostat. The time step used in the Verlet

leapfrog scheme was t/500, where t ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ms2=e

p
is the unit

of time. Previous simulations with this CG model showed

that its equilibrium area, elastic modulus, bending rigidity,

and line tension coefficient compare favorably with experi-

mental data (26–30). All simulations were run using the

FIGURE 1 A snapshot of the bilayer-liquid simulation box. The number

of surrounding solvent particles has been reduced for clarity.

FIGURE 2 Side views of the simulated system, highlighting parallel (left)

and perpendicular (right) shear flows.
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DL_POLY_2.0 package (34), tailored to the specifications of

the problem.

Rectangular periodic simulation boxes were used, each

having a square ground plane of sides Lk parallel to the

bilayer and the xy plane, and a height L? perpendicular to

these. Initial bilayer-solvent configurations were created by

constructing two parallel square lattice layers of straight am-

phiphilic molecules, 1152 in total, with their heads pointing

outward. The 10,800 solvent particles were placed at random

in the box, taking care to avoid overlap with the bilayer and

with previously inserted solvent particles. The boxes were

then energy minimized for a limited number of steps, fol-

lowed by equilibration runs at the desired temperature. A

snapshot of the resulting bilayer box is shown in Fig. 1. On

varying Lk it was found that at Lk ¼ 34.9 s the bilayer is in

the tensionless state, in which the average pressures parallel

and perpendicular to the bilayer are identical, to wit,

;1.5es�3 or 1.4 kbar. The structure factors S of the thermal

undulations followed the theoretical prediction for the ten-

sionless state, S(q) } q�4, with q a wave vector commen-

surate with the box dimension Lk (1,2,27). The box height of
20.4 s allows the solvent enough freedom to reach an iso-

tropic pressure in the middle between two periodic images of

the bilayer (28).

Simulations under shear rate _gg were run using Lees-

Edwards boundary conditions (35,36), such that the flow was

directed along the x axis, i.e., such that vðxÞ ¼ vðxÞêx: For
homogeneous solvent boxes the shear direction is of course

irrelevant, but this is no longer the case for boxes with a

bilayer. A perpendicular flow was generated such that

v?ðx1LkêyÞ ¼ v?ðxÞ1 _ggLk and a parallel flow such that

vkðx1L?êzÞ ¼ vkðxÞ1 _ggL?: Analogous flow fields along the

y axis produce identical results. The Nosé-Hoover thermostat

(35) was adapted for these shear conditions, by calculating the

temperature from the velocity distribution relative to the local

flow field and by rescaling only superficial velocities. In these

calculations the flow fields were assumed to be given by ap-

propriate linear expressions, although some runs yielded

a distinctly nonlinear profile. Using the actual flow field in the

thermostating routine did not significantly change the results.

The structure factors S(q) of the thermal undulations of the

bilayer still scaled asq�4 under shear, suggesting that the flow

does not induce any significant tension on the bilayer. After

turning on the shear flow, the simulationswere continued until

all transient effects had died out and a steady laminar flow

field had formed, before starting the production runs.

Three techniques were used to determine the overall shear

viscosities of the simulated systems (35). In the nonsheared

runs, the viscosity htot was calculated using the Green-Kubo

relation

htot ¼
V

kBT

Z N

0

ÆPabðtÞPabð0Þæ dt; (1)

where Pab is an off-diagonal (a 6¼ b) element of the pressure

tensor, V is the volume of the box, and the angular brackets

denote a canonical average. For a sheared system the vis-

cosity is defined as the ratio between the total shear force per

unit area and the shear rate,

htot [
Fshear=A

_gg
¼ ÆPabæ

_gg
: (2)

For systems containing a bilayer we use a¼ x and b¼ y or z
for the perpendicular and parallel shear flows, respectively.

The third method is based on the realization that the rate of

energy production, htot _gg
2V; by the shearing boundaries is

easily calculated as the time derivative, _EE; of the extended

Hamiltonian of the system plus thermostat, to arrive at

htot ¼
_EE

_gg2V
: (3)

Notice that in the stationary state the energy of the system is

constant and therefore _EE is equal to the rate of energy

extraction from the system by the thermostat. A similar ap-

proach was recently proposed by Holian (37). The con-

version from total shear viscosities into the viscosity and

friction coefficient of the bilayer will be discussed at the

appropriate places in the next section.

RESULTS

We start with the viscosity of the solvent. Two boxes were

filled randomly with 2250 and 66,667 solvent particles, re-

spectively. For both boxes and for all three calculation

methods mentioned in the previous section, we found a

viscosity hw of just over 1.0e1/2m1/2s�2, virtually indepen-

dent of the applied shear rate _gg ranging from zero to 0.2 t�1.

This value translates into 1.33 10�4 Pa s, which amounts to

about one-quarter of the experimental viscosity of 5 3 10�4

Pa s for water at this temperature. The diffusion coefficient of

the solvent particles was found to be 0.1s2/t, or 1 3 10�8

m2/s, which is about four times larger than the experimental

self-diffusion coefficient, 2.5 3 10�9 m2/s, of a water mole-

cule at this temperature.

Using the same approaches, the viscosity of a homoge-

neous liquid of chains of five particles, t5, was found to be

hb � 2.1e1/2m1/2s�2, twice the value obtained for the

solvent, again independent of the shear rate. For comparison,

the experimental viscosity of a comparable liquid of hydro-

carbon chains, n-hexadecane, is about eight times higher

(38). These results indicate that the model is not well suited

to aim for dynamical properties in quantitative agreement

with experiments. Marrink et al. (24), following Groot and

Rabone (21), addressed the spurious speedup of their coarse-

grained model by introducing an ad hoc scaling factor of four

to relate the elapsed simulation time to the real time. An

alternative physically sound route to solve the dynamical

discrepancy is to maintain the friction and random forces in

the equations of motion of the coarse-grained particles. In
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case these forces grow large relative to the inertial forces, one

is of course better off running Brownian dynamics.

Perpendicular shear

Of the two interesting shear directions of a box containing a

bilayer, the perpendicularly sheared system will be discussed

first. The total viscosity of the system has been calculated for

the quiescent box, as well as for those with shear rates

ranging from 0.001 to 0.1 t�1, to be ;1.6 e1/2m1/2s�2 in

each case. In the steady state, the velocity distribution of the

amphiphilic particles closely follows a linear flow field. This

suggests that the bilayer behaves like a regular sheared liquid

(be it one in which the molecules are bound to a plane),

which is a prerequisite for a well-defined bilayer surface vis-

cosity. Analogous to Eq. 2, the surface viscosity is defined as

the total shear force on the bilayer per unit of length, divided

by the shear rate,

hs [
Fbilayer=Lk

_gg
; (4)

Fbilayer ¼ ÆPxyæLkL? � hw _ggLk L? � hsð Þ: (5)

The last equation defines the shear force on the bilayer,

Fbilayer, as the total shear force across the xz plane minus the

contribution acting on the solvent, where hs � 6.8 s is the

thickness of the bilayer. The shear viscosity of the bilayer

was found to be ;20 e1/2m1/2s�1, or 8.5 3 10�13 Pa m s.

Fig. 3 reveals a weak dependence of this value on the shear

rate, with a reduction by;10% over the entire range covered.

Parallel shear

Under a parallel shear field the total viscosity of the box was

;1.4 e1/2m1/2s�2, for shear rates ranging from 0.002 to 0.05

t�1. A similar value was obtained by applying the Green-

Kubo relation to the quiescent box. As in the previous sec-

tion, we now have to convert this number into a property of

the bilayer.

Because of the orientation of the bilayer relative to the

sheared boundaries, we expect a velocity profile like the one

drawn in Fig. 4. The profile in the solvent will be linear, with

a slope _ggw different from the imposed shear rate _gg: In the

middle of the box the two leaflets of the monolayer are slid-

ing past one another, like two flat solid objects, with velo-

cities 6Dvêx; giving rise to a friction force between the two

leaflets. The friction coefficient of this motion follows from

the shearing force F exerted on the top (bottom) monolayer,

by the solvent above (below) the bilayer, according to

j[
2F=L

2

k
2Dv

: (6)

All that remains is to determine the two unknowns featuring

on the right-hand side of the above expression.

The actually calculated velocity profile (see Fig. 5) shows

that the velocity gradient within the bilayer region is con-

siderably smaller than in the solvent, but not zero. This is

caused by a convolution of the idealized profile with the

thermal undulations of the bilayer. Unfortunately, this renders

direct estimates of Dv from the velocity profiles highly in-

accurate. The shear rate of the solvent at some distance from

the bilayer, however, is not affected by these undulations.

Under the assumption of stick boundary conditions at the

bilayer-solvent interface, we can calculate the slip velocity

from

2Dv ¼ _ggL? � _ggwðL? � hsÞ: (7)

This velocity turns out to be proportional to the overall shear

rate.

FIGURE 3 The surface viscosity of the bilayer, derived from simulations

with a perpendicular shear flow, plotted against the applied shear rate. The

data points were obtained by calculating the total shear force on the system,

i.e., the first term on the right hand of Eq. 5, from the pressure (d) or from

the thermostat (n).

FIGURE 4 Sketch of the velocity profile (line) and of the forces (arrows)

for a bilayer system under parallel shear.
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Alternatively, one could look at the distances traveled by

the amphiphilic particles, along the flow direction, over the

course of a simulation. This distribution is shown in Fig. 6

for the head particles of the two monolayers, excluding a few

that flipped from one monolayer to the other. Because of the

covalent bonding, the distributions for the tail particles are

virtually identical. From the location of the peak, divided

by the length of the simulation, we again obtain Dv. The
numerical values obtained by both methods agree very well,

implying stick boundary conditions at the two bilayer-

solvent interfaces. Consequently, the force exerted on the top

monolayer by the solvent above the bilayer can be calculated

from the shear rate in the solvent, F ¼ _ggwhwL
2
k: Inserting

these results in Eq. 6, we find a friction coefficient j ¼ 3.7

e1/2m1/2s�3, or 1.4 3 106 N s m�3. As shown in Fig. 7, this

value is effectively independent of the slip velocity.

We end this section with a discussion of structural pro-

perties of a bilayer under a parallel shear deformation. Fig. 8

shows the distribution of longitudinal angles f of the end-to-

end vectors r15 of the amphiphiles, i.e., the orientation of the

molecule in the plane of the bilayer. In the quiescent box this

distribution is homogeneous, as expected for a bilayer in the

liquid-crystalline or fluid La phase. The sheared system, on

the other hand, reveals maxima at f ¼ 0 and p rad, indi-

cative of a propensity to tilt along the shear direction. A

distribution of the tilt angles, defined as the angle u between

the z axis and the projection of r15 on the xz plane, is

presented in Fig. 9. The two peaks of the distribution, cor-

responding to the upper and lower monolayer, lie at 0 and p
rad in the quiescent box, and shift by Du under shear. This

average tilt is proportional to the slip velocity and the overall

shear rate. The length distribution of the end-to-end vectors

is not affected by the shear flow.

It is interesting to note that for overall parallel shear rates

beyond 0.05 t�1, which corresponds to a slip velocity of

;113 10�3s/t, the bilayer becomes unstable. We observed

FIGURE 5 Velocity profile of a bilayer system at a parallel shear rate of

0.03 t�1.

FIGURE 6 Probability distributions of displacements, along the flow

direction, of head particles in the top (right peak) and bottom (left peak)

monolayers. At a shear rate of 0.03 t�1, the amphiphiles cover a distance of

nearly three box lengths over a period of ;18,000 t. The solid lines are

Gaussian fits.

FIGURE 7 The friction coefficient of sliding monolayers, as a function of

the slip velocity. Slip velocities were calculated from Eq. 7 (n) and from the

average displacements in Fig. 6 (d). The arrow denotes the effective friction

coefficient j9 of a slab of t5 molecules with the same thickness as the bilayer

(see text for details).

FIGURE 8 Histogram of the orientation of amphiphilic molecules in the

plane of the bilayer. The solid line refers to a quiescent system, the dotted

line to a parallel shear rate of 0.05t�1.
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pronounced undulations of the bilayer, amphiphiles piling up

to form buds, and the creation of transmembrane pores.

Eventually the bilayer is torn apart. A further discussion of

these phenomena will be presented elsewhere.

DISCUSSION AND CONCLUSIONS

The results of the preceding section show that nonequilib-

rium coarse-grained simulations can be used to study the

flow characteristics of an amphiphilic bilayer, to wit, the

bilayer viscosity hs for coplanar shear deformations and

the friction coefficient j between sliding monolayers. Both

are obtained by placing the simulation box under a shear

flow, with vorticity oriented perpendicular and parallel to the

bilayer, respectively. The shear force acting on the bilayer is

then easily obtained by subtracting the shear force on the

solvent from the total shear force.

The common experimental method to obtain a surface

viscosity is to measure the diffusion coefficient D of a tracer

particle, a cylinder of radius a with a length equal to the

bilayer thickness hs. Assuming the bulk viscosity hw of the

surrounding solvent is much smaller (but not zero) than that

of the bilayer, Saffman (17) derived that

D ¼ kBT

4phs

ln
hs

ahw

� �
� g

� �
; (8)

where kB is Boltzmann’s constant and g � 0.577 is Euler’s

constant. In case hs=hs � hw; this equation also holds when
the tracer particle sticks out of the bilayer. Assuming that Eq.

8 may be used even at the molecular level, we set a equal to

s and find D ¼ 1.3 3 10�2s2/t. Both from a direct cal-

culation of the mean square displacements of the amphi-

philes in a quiescent bilayer, as well as from the spreading of

the distributions in Fig. 6, we find D ¼ 1.8 3 10�2s2/t.
Using half the surface viscosity in Eq. 8, because the dif-

fusing amphiphiles span only half the bilayer (14), we get the

same result. This agreement must be considered to be a bit

fortuitous, of course. First, we have assumed that the radius

of the flexible amphiphile is equal to s, and thus includes the
first ‘‘solvation shell’’. Second, the diffusion coefficient cal-

culated from the Saffman equation is relatively insensitive to

the surface viscosity, as illustrated by the two calculated

values of D.
It is tempting to relate the viscosity hs of the bilayer to

the viscosity hb of a bulk liquid of like molecules, in this

case chains of five tail particles, t5. This connection appears

frequently in the literature (10,19), and is given by hs9 ¼
hbhs. Inserting numerical values yields hs9 ¼ 14e1/2m1/2s�1,

which amounts to just over two-thirds of the actual value of

hs. This difference is due to the lower degree of ordering in

the liquid relative to the bilayer, where the amphiphiles are

stretched, aligned, and positioned in a near-planar configu-

ration, and to the higher packing density in the bilayer made

possible by this ordering.

The effective friction coefficient of a slab of t5 with the

same thickness as the bilayer is readily shown to be given by

j9 ¼ hb/hs (10,19). The resulting value of j9 ¼ 0.3e1/2

m1/2s�3, indicated in Fig. 7 by an arrow, amounts to less

than one-tenth of the actual bilayer friction coefficient. Here

again, the increased ordering in the bilayer relative to the

liquid must have caused the difference, which is much more

pronounced for j than for hs. Interestingly, on the basis of

experimental data for the friction coefficient, Evans and

Yeung and co-workers (10,11) also arrived at a mismatch by

one order of magnitude.

We end with a brief comparison of our numerical results

with experimental data. Whereas the model amphiphile

possesses only one relatively short tail, experiments have

concentrated on phosphatidylcholine PC lipids with two

longer tails of typically 18 carbons. It is to be expected,

therefore, that the latter yield considerably higher surface

viscosities and friction coefficients than the model amphi-

philes, even if friction and random forces had properly been

included in the model. Reported surface viscosities for lipid

bilayers (10,14,18) are of the order of 10�7–10�6 surface

poise (1 sp is equivalent to 10�3 Pa m s), as compared to the

8.5 3 10�10 sp found by the perpendicular shear sim-

ulations. Experimental friction coefficients are rare, with 13
108 N s m�3 reported by Evans and Yeung (10) and 4.5 3
108 N s m�3 by Raphael andWaugh (12). Chizmadzhev et al.

(19) assumed in their analysis that hb ¼ j9hs ¼ hw9/hs; from
their value of hb we arrive at 23 109 N s m�3 for hs ¼ 4 nm.

The parallel shear simulations yield 1.4 3 106 N s m�3 . In

both cases, the simulation results are two to three orders of

magnitude lower than the experimental values. As already

alluded to, this is a consequence of using a simplified coarse-

grained model, which does not discredit the proposed

simulation method in any way.

This work is part of the SoftLink research program of the Stichting voor

Fundamenteel Onderzoek der Materie (FOM), which is financially

FIGURE 9 Probability distribution of the tilt of the amphiphiles in the

flow direction. The solid line refers to a quiescent system, the dotted line to

a parallel shear rate of 0.05t�1.
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