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This article deals with Markovian models defined on a finite-dimensional discrete
state space and possess a stationary state distribution of a product-form+We view
the space of such models as a mathematical object and explore its structure+ We
focus on models on an orthant Z�

n , which are homogeneous within subsets of Z�
n

called walls, and permit only state transitions whose 7 7`-length is 1+ The main
finding is that the space of such models exhibits a decoupling principle: In order to
produce a given product-form distribution, the transition rates on distinct walls of
the same dimension can be selected without mutual interference+ This principle
holds also for state spaces with multiple corners ~e+g+, bounded boxes in Z�

n !+
In addition, we consider models which are homogeneous throughout a finite-

dimensional grid Z n , now without a fixed restriction on the length of the transitions+
We characterize the collection of product-form measures which are invariant for a
model of this kind+ For such models with bounded transitions, we prove, using
Choquet’s theorem, that the only possible invariant measures are product-form mea-
sures and their combinations+

1. INTRODUCTION

1.1. Background and Motivation

Product-form models of networks and systems have been known since the days of
Erlang @5# ~see also Kelly @20, p+ 321# !+However, the startling discovery in 1957, by
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Jackson @15# , of the first product-form queuing network boosted the discovery of
further and ever more general classes of product-form models+ Some notable land-
marks include the following: the generalization made by Jackson himself in 1963
@16# , of which a special case, closed networks, was rediscovered by Gordon and
Newell in 1967 @13#; queuing networks with multiple customer classes and with
various service disciplines ~Kelly @17# , Baskett et al+ @1# !; substantiation of insen-
sitivity results for queueing networks ~Schassberger @26# !; networks with negative
customers ~Gelenbe @12# !; networks with customer batches ~e+g+, Henderson and
Taylor @14# and Boucherie and van Dijk @3# !; and queuing networks with signals
~Chao and Pinedo @9# !+

Along with the discovery of new classes of product-form models, attempts have
been made to understand the basis for the product-form property: It has not been
clear whether the models discovered have been rare contingencies or samples from
a broad space of product-form Markovian models+ It has also not been clear what is
required from a model to possess the product-form property+ Chao and Miyazawa
@6# , following Kelly @19# , point out that two explanations have been given, belong-
ing to two different aspects+The first explanation, introduced by Whittle in 1967 and
1968 @29,30# , was that the product-form models are those exhibiting local balance
or partial balance+ This means that the global balance equation can be decomposed
into sets of partial balance equations in an appropriate way+The second explanation,
apparently introduced by Muntz in 1972 @22# , was that models of product-form
queuing networks are those exhibiting quasireversibility: an input–output relation,
holding separately for each node of the network+Quasireversibility is different from
reversibility; the latter property, which is rather special, indeed leads to product-
form via local balance ~see Kelly @18# or Whittle @31# !+

The discovery of Gelenbe networks shattered the partial balance explanation in
the original sense of Whittle, because these networks do not possess such partial
balance+However, the notion of partial balance was restored, and even assumed new
forms, when Boucherie and van Dijk identified a type of partial balance in Gelenbe
networks in 1994 @4# and when Chao and Miyazawa discovered biased local bal-
ance in 1998 @6# +

In these attempts at explaining the basis for the product-form property, there
were two trends+ One trend, represented by van Dijk’s 1993 monograph @11# ,
has been to gain insight regarding the product-form property from a system point
of view+ The opposing or complementary trend has been to seek an ever more
general setting, to such an extent that a fairly abstract Markovian framework
emerges while some of the tangible system attributes are lost+ A characterization
of product-form networks, in this more abstract approach, was given by Chao,
Miyazawa, Serfozo, and Takada in @8#; this characterization is also available in
@27, Thm+ 8+8, p+ 213# and in @7, Thm+ 11+3, p+ 315# + ~Here, we deal only with a
discrete state space, but a characterization of product-form for stochastic net-
works on a continuous state space is given in Williams @32, Thm+ 3+5#+! It turns
out that in such an abstract framework, neither quasireversibility nor partial bal-
ance, even biased, are a necessary condition for product-form+
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In this article,we pursue the abstract approach further and strip down the model
completely from any system or network concepts such as “arrival” or “departure+”
Instead, we focus on the Markovian transition structure that appears in models+
Here, we study the simplest Markovian transition structures: those with space ho-
mogeneity, as appear in queuing networks with single servers, on a state space which
is a product space+ Furthermore, we allow a certain flexibility for the transition
structure on the boundary of the state space+ In adopting this approach, we are in-
spired by studies which looked at models with transition rates modified at the bound-
ary ~e+g+, Miyazawa and Taylor @21# !+ Under this approach, the behavior of the
Markov chain in the interior of its state space is interpreted as representing the
“generic behavior” of a network or a system+ The modified model ~i+e+, the model
with the modified transition rates on the boundary! can be used for purposes of
approximation and bounding+Work on approximation and bounding of performance
criteria using altered models have been done by van Dijk and others; see, for exam-
ple, Taylor and van Dijk @28# + Characterizing the space of possible modifications
may serve as the starting point for model design, possibly in the form of searching
for the most suitable product-form approximation for a given original model that is
not of a product-form+ Practical stochastic network models not of a product-form do
exist: See the work of Bayer and Kogan @2# on branching0queuing networks;
branching0queuing networks fall outside of the above-mentioned characterization
framework set in @8# +Virtually all non-product-form Markovian models of stochas-
tic networks, or related abstracted models such as random walks, do not yield ex-
plicit and exact analytical results+ Their stationary state distributions are difficult to
see+ This is the motivation for clinging to product-form models for the purpose of
direct modeling or approximation and for searching the space of such models+

Our main objects of study are indeed spaces of models, rather than individual
models+ Hence, the main finding cannot be expressed at the level of a fixed, indi-
vidual model+ In this article, the word model designates some setup of parameters
directly determining the transition rates, or q-matrix, of a continuous-time Markov
chain+Models will be rendered in this article as functions, as function arrays, or as
finite vectors+We restrict ourselves to models possessing the property of space ho-
mogeneity or, simply, homogeneity+ This property prevails when parallel transitions
within the state space S, or within subsets of S referred to as walls, necessarily have
the same rate+ The Markov chain associated with such a model has the random-walk
structure+Accordingly, the product-form distributions considered here are geomet-
ric; that is, of the type

p~ ?a! � c)
i�1

n

qi
ai , ?a � ^a1, + + + ,an & � S, (1)

where c and the qi ’s are constants+
The role of such product-form measures is investigated from two different per-

spectives+ First, it is shown that when the transition rates in the interior of S are
interpreted as representing the generic behavior of the Markov chain, and when this
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behavior is extended to a boundaryless state space, product-form measures emerge
as the fundamental invariant measures+ Second, the design point of view is taken+ It
is shown that for every product-form measure over the nonnegative orthant, a broad
variety of q-matrices can be constructed which have this product-form measure as
their invariant measure+ The space of such q-matrices corresponding to a given
product-form measure is characterized precisely and its structure is described+ This
can be viewed in another way:Given the generic behavior of the chain and given any
product-form measure associated with this behavior ~out of a set which we also
characterize and describe!, boundary rates can be constructed in a broad variety of
ways such that the product-form solution is valid on the boundary too+ In Sec-
tion 1+2, we describe our findings in more detail+

1.2. Summary of the Results

The generic behavior of a Markov chain with a random-walk structure, as represented
by its transition rates in the interior of the state space, may lead to various product-
form invariant measures+To study the role of these product-form measures,within the
set of all invariant measures of the chain, the space mn of models corresponding to
space-homogeneous continuous-time Markov chains on the n-dimensional integer grid
Z n is considered first+Although the notion of a stationary state distribution is not rel-
evant for a modelw� mn, because the corresponding chain is not positive recurrent,
there may exist infinite measures which are invariant to the transition operators as-
sociated withw+Such measures are said to be invariant forw+Only product-form mea-
sures that are invariant forw can serve as candidates for the stationary state distribution
of a product-form model on the orthant Z�

n whose interior transition rates coincide
with those ofw+The question arises:Which models in mn ~n � 2! have product-form
invariant measures? The answer is that every w� mn whose drift is finite but non-
zero has quite a set of invariant product-form measures:The corresponding set of vec-
tors ?q�^q1, + + + ,qn& ~playing a role as in ~1!! is a smooth ~n�1!-dimensional manifold
Qw,which is the boundary of a bounded and convex set in ~0,`!n+Whenwhas bounded
transitions,we are able to prove that the product-form measures corresponding to Qw
are w’s fundamental invariant measures, in the following sense:Any other measure
invariant for w cannot be but a mixture

�
Qw

p ?q dz~ ?q!

of these product-form measures p ?q+ The proof applies Choquet’s theorem+
Observing the fundamental role of product-form measures, the issue of model

design arises and may take the following form: Given a model w that represents the
transition structure at the interior of the state space, what are the possibilities and
degrees of freedom, if any, to construct transition rates at the boundary, such that the
invariant measure is some p ?q, with ?q selected from Qw? To answer this question, a
further space IMIn of models on the nonnegative orthant of the n-dimensional grid is

244 N. Bayer and R. J. Boucherie



introduced+ Its definition relies on partitioning the orthant into walls+Most walls are
parts of the boundary, but the interior is also referred to as a “wall” for notational
convenience+The wall to which some state ?a� ^a1, + + + ,an& belongs is determined by
the coordinates i where ai � 0+ The walls are attributed with dimensions, which
range from 0 to n+ The only wall of dimension 0 is the corner, which contains the
single point ^0, + + + ,0&+ The homogeneity property postulated for IMIn is weaker than
for mn:Homogeneity prevails within each wall, but parallel transitions belonging to
different walls may be assigned different rates+Apart from homogeneity, the models
in IMIn are assumed in this article to comply with a further restrictive assumption:A
transition from ?a � ^a1, + + + ,an& to :b � ^b1, + + + ,bn& is possible only if this transition
is “short,” in the sense that 6ai � bi 6� 1, i � 1, + + + , n+

Let IMIn’s subspace of models with a product-form stationary state distribution
be denoted by IPn+ The structure of IPn can be described through a model-selection
procedure+ This procedure may start from the selection of the interior transition
rates, which is tantamount to a selection of an arbitrary model w with short transi-
tions from mn+ The next step may then be the selection of a vector ?q � ^q1, + + + ,qn&
from the ~n � 1!-dimensional manifold Qw+ An alternative way is to start from an
arbitrary ?q with 0 � qi � 1, i � 1, + + + , n+ ~The restriction qi � 1 is needed if the
product-form measure is to be normalizable; actually, we could allow qi �1 to hold
for any proper subset of the coordinates, but this would have incurred a subtlety
which we avoid for simplicity+! For every such ?q, let IPn, ?q denote the models in IPn for
which p ?q is the invariant product-form distribution+ To select a model from IPn, ?q,
perform the following procedure+ First, select the interior transition rates+ This se-
lection is subject to a single linear constraint, so the number of degrees of freedom
is 1 less than the number of variables+ Next, select the transition rates within the
walls of dimension n �1+ These selections are decoupled from each other ~i+e+, they
are not coupled by any joint constraint!+ The same rule regarding the number of
degrees of freedom applies again, for each of these walls+The procedure so proceeds
to walls of ever smaller dimension, until the walls of dimension 1 are reached and the
selection is exhausted+ The same rules hold throughout+ While the selection for a
wall depends on earlier selections for neighboring walls with higher dimensions,
this selection is decoupled from other walls of the same dimension+ Thus, we have
the decoupling principle and, along with it, a broad wealth of product-form models+

What makes this procedure valid is the fact that the selections so taken are
guaranteed not to interfere with each other at the corner+ The corner constraint is
shown to be redundant+ The proof that we bring for this redundancy is one that
allows the generalization of the decoupling principle for state spaces with multiple
corners ~e+g+, n-dimensional bounded boxes!+ Such state spaces arise, for example,
in connection with stochastic networks with finite buffers @11# +

1.3. Organization of This Article

This article proceeds with a section of preliminaries, Section 2, that states some
conventions and introduces model spaces and related objects+ Then, the first section
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of results ~Sect+ 3! is dedicated to mn, the space of models on the grid Z n + The
section that follows ~Sect+ 4! is dedicated to IMIn, the space of models on the orthant
Z�

n + All proofs are concentrated in Section 5+ The article concludes with a basic
example of model design ~Sect+ 6!+

2. PRELIMINARIES

The main concern of this section is the definition of models and model spaces+ This
definition requires a preliminary discussion of state spaces and their walls, which is
given after introducing some general conventions+ Furthermore, the transition struc-
ture needs to be defined+ Finally, invariant measures are introduced, thus providing
the starting point for the analysis in Section 3+

2.1. General Conventions

Let R,R�, Z, Z�, and N denote the real numbers, the nonnegative reals, the inte-
gers, the nonnegative integers, and the positive integers, respectively+ Define B �

�

$0,1% and T �
�
$�1,0,1%; these sets are used in the definition of walls and in the

definition of the transition structure+
The symbols ;1 and ;0 stand for vectors of all 1’s and all 0’s,with their dimension

implied by the context+ Suppose that ?x � ^x1, + + + , xk& and ?y � ^ y1, + + + , yk& are two
vectors and that A is a set of vectors of the same dimension+ Define ?x ?y to be the
vector ^x1 y1, + + + , xk yk&, define ?xA to be the set $ ?x ?y0 ?y � A% , and define ?x ?y to be the
scalar ) i�1

k xi
yi + Interpret 6 ?x 6 as ^6x16, + + + ,6xk6&+ The norms 7{71 and 7{7` are defined

as usual: 7 ?x71 �
�

(i�1
k 6xi 6 and 7 ?x7` �

�
maxi�1, + + + , k6xi 6+ Relations such as ?x � ?y or

?x � ?y are interpreted in the componentwise sense+ Here, a nonnegative vector ?x is
said to be majorized by another nonnegative vector ?y, if ?x � ?y as well as 7 ?x71 � 7 ?y71
hold; we write ?x � ?y+

2.2. State Spaces and Walls

Our state space S will be either an n-dimensional grid Z n , or its nonnegative orthant
Z�

n + For subsets of S, we use the following notion of dimension, applying in this
discrete context only+

Definition 2.1: The dimension of A � Z n is less than or equal to k if there exist
some ?x1, + + + , ?xk � Z n and an ?a � A such that every :b � A admits a representation
:b � ?a �(i�1

k mi ?x i with m1, + + + ,mk � Z.

We now introduce the partitioning of Z�
n into walls+ Define

Wn, ?w �
� ?wN n, ?w � Bn, (2)

applying the “ ?xA” convention from the previous subsection+ The vector ?w � Bn

uniquely determines the wall Wn, ?w+Walls are obviously disjoint, and we have the
following+
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Observation 2.1: Z�
n is the disjoint union � ?w�Bn Wn, ?w +

The reason for referring to the Wn, ?w’s as the walls of Z�
n is that all of them

except Wn, ;1 are parts of its boundary+ The exception Wn, ;1 � N n constitutes the
interior of Z�

n and is referred to as a “wall” for notational convenience+ The dimen-
sion of Wn, ?w is clearly 7 ?w71+ Thus, the walls have various dimensions+ For example,
the walls of Z�

3 include the zero-dimensional wall W3,^0,0,0& ~the corner!, the one-
dimensional walls W3,^1,0,0&, W3,^0,1,0&, and W3,^0,0,1&, the two-dimensional walls
W3,^0,1,1&,W3,^1,0,1&, and W3,^1,1,0&, and the three-dimensional interior “wall” W3,^1,1,1&+
See Figure 1+

2.3. Classes of State Transitions

Our definition of walls leads us to single out some classes of transitions between
state space points+ The class of all possible transitions in Z n is

Dn �
�
$ :b � ?a0 ?a, :b � Z n, ?a � :b% � Z n �$ ;0%+

The classes of short transitions within the walls of Z�
n are

Dn, ?w �
�
$ :b � ?a0 ?a, :b � Wn, ?w , 7 :b � ?a7` � 1%, ?w � Bn+ (3)

An illustration of the transition classes D2, ?w is presented in Figure 2+ The transition
classes defined in ~3! are required for the definition of models+We also would like to
count the number of short transitions+We have the following:

Observation 2.2: Dn, ?w � ?wT n �$ ;0% holds, so the element count 6Dn, ?w6 is 37 ?w71 � 1+
The overall count ( ?w�Bn 6Dn, ?w 6 is 4n � 2n +

Figure 1. The boundary walls of Z�
3 + The corner, the one-dimensional walls, and

the two-dimensional walls are represented by the dark ball, the gray balls, and the
white balls, respectively+
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2.4. Models and Model Spaces

We will first introduce models on Z n , required for studying the role of product-form
invariant measures, and then proceed to models on Z�

n +Models will be viewed both
as functions on the set of pairs of states and as functions ~or function arrays! on the
classes of transitions introduced in Section 2+3+ Let S 2 denote the set of pairs of
different state space points, namely S 2 �

� S 2 �$~ ?a, ?a!0 ?a � S % +A model, in our con-
text, is a function w* : S 2 � R� satisfying the following:

1+ “Communicativity”: For every ~ ?a, :b! � S 2, there exists a finite sequence
?a � ?a1, + + + , ?ak � :b of states such that ) i�1

k�1 w *~ ?ai, ?ai�1! � 0+
2+ “Noninstantaneity”: For every ?a � S, the sum ( :b�S\$ ?a% w

*~ ?a, :b! is finite+

A value w*~ ?a, :b! represents the transition rate from ?a to :b of a communicative and

noninstantaneous continuous-time Markov chain+ Let mn
* be the space of all models

on S � Z n which possess the following homogeneity property:

:b1 � ?a1 � :b2 � ?a2n w
*~ ?a1, :b1!� w

*~ ?a2 , :b2 !, ?a1, :b1, ?a2 , :b2 � Z n+ (4)

Given some w* � mn
* , the homogeneity property allows us to define the function

w :Dn � R�, that corresponds to w* in the obvious way:

w~ :d! � w *~ ;0, :d!, :d � Dn ;

that is, w~ :d! represents the transition rate in the direction :d+ The inverse mapping
sets w*~ ?a, :b! to w~ :b � ?a!+ Let mn be the space of all such w’s which correspond to

members of mn
*+ Let the subclass R Rmn contain those w� mn whose support in Dn is

finite, namely the models in mn with bounded transitions+

Figure 2. The transition classes D2,^1,1&, D2,^0,1&, and D2,^1,0& ~D2,^0,0& is empty!+
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Let IMIn
* be the space of all models on S � Z�

n possessing the following two

properties+ The first property is homogeneity, although weaker than for mn
*: The

implication in ~4! applies here only when both ?a1 and ?a2, or both :b1 and :b2, belong
to the same wall+ Thus, homogeneity is not required for parallel transitions within
different walls+ For two parallel transitions within the same wall, or at least with two
endpoints within the same wall, homogeneity remains a requirement+ The second
property is permitting short transitions only:

7 :b � ?a7`� 1n w *~ ?a, :b!� 0, ?a, :b � Z�
n +

Given some w* � IMIn
* , define the function array

w � $w ?w :Dn, ?w � R� % ?w�Bn \$ ;0% , (5)

where w ?w gives the transition rates within the wall Wn, ?w, in the following way: For
an arbitrary ?w � Bn �$ ;0% and an arbitrary :d � Dn, ?w, set w ?w~ :d! to be the value of any
w*~ ?a, :b! with ?a and :b in Wn, ?w and satisfying :b � ?a � :d+ Having stated the mapping
w* � w, we shall also state the inverse mapping w� w* ; it will not be difficult to
see, with the aid of two examples, that the two mappings are proper and that one is
indeed the inverse of the other+ For arbitrary ?a, :b � Z�

n satisfying 7 :b � ?a7`�1,with
?a belonging, say, to Wn, ?w and :b belonging, say, to Wn, ?v, set

w *~ ?a, :b! � wmax$ ?w, ?v%~ :b � ?a!;

the maximum is taken componentwise+ Let IMIn be the space of all function arrays of
the type ~5!, which so correspond to members of IMIn

*+

Example 2.1: Let us demonstrate the construction by computing w *~ ?a, :b!, with
w* � IMI2

* , ?a � ^1,0&, and :b � ^0,1&, from the corresponding w � IMI2+ The indices
of the walls W2, ?w and W2, ?v to which the points ?a and :b belong happen to be ?w � ?a
and ?v � :b+ That is because ?a and :b have been chosen adjacent to the corner+We have
max$ ?w, ?v%� ^1,1& and :b � ?a � ^�1,1&, so

w *~ ?a, :b! � w^1,1&~^�1,1&!+ (6)

Thus, in spite of the fact that both ?a and :b belong to the boundary of the state space,
w*~ ?a, :b! is computed from w^1,1&, which expresses the transition rates in the interior+
The reason is that ?a and :b belong to distinct walls, and the transition between them
can be regarded as passing through the interior+ This transition is parallel, for in-
stance, to the transition from ^2,0& to ^1,1&, and the latter is parallel, say, to the
transition from ^2,1& to ^1,2&, whose both ends are interior points+ Equation ~6! is
thus mandated by the ~weak! homogeneity assumption+

Example 2.2: Let us remain in IMI2
* and in its counterpart IMI2+ The transition from

?a� ^5,0& to :b� ^6,0& is parallel to the transition from ?a'� ^5,3& to :b'� ^6,3&+How-
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ever, since the former lies within the wall W2,^1,0& and the latter lies within the wall
W2,^1,1&, homogeneity does not apply+The valuesw*~ ?a, :b! andw*~ ?a', :b'! are not forced
to be equal+ These values are given by w^1,0&~^1,0&! and w^1,1&~^1,0&!, respectively+

In view of Observation 2+2, IMIn is essentially R�
4n�2n

, excluding those singular
elements of R�

4n�2n
which do not correspond to communicative chains+The members

of mn and IMIn too, like those of mn
* and IMIn

* , will be called models+

2.5. State Space Measures

When speaking of a measure, saym,we always mean, unless explicitly stating other-
wise, thatm is a measure ~unsigned! on ~S,2S!,with µ~S !� 0+The state space S can
be either Z n or Z�

n + Such a measure is specified through singletons+We write µ~ ?a!
as a shorthand for µ~$ ?a%!+A measure m is said to be of a geometric product-form if
there exists a vector ?q � ~0,`!n satisfying

µ~ ?a! � µ~ ;0!{ ?q ?a, ?a � S;

recall the “ ?x ?y” convention from Section 2+1+ For every ?q � ~0,`!n , letp ?q denote the
corresponding geometric product-form measure withp ?q~ ;0!�1+A measurem is said
to be invariant for a model w from mn or from IMIn if it satisfies

µ~ ?a! (
:b�S \$ ?a%

w *~ ?a, :b! � (
:b�S \$ ?a%

µ~ :b!w *~ :b, ?a!, ?a � S, (7)

where w* is the mn
* or IMIn

* counterpart of w+ Under the Markov chain semantics of
w*, ~7! is the steady state version of Kolmogorov’s forward equation, but allowing
solutions with µ~S !�`+ This equation is also known as the global balance equa-
tion+ The communicativity postulate implies the following:

Observation 2.3: If m is invariant for some model, then µ~ ?a! is positive for every
?a � S+

3. MEASURES INVARIANT FOR MODELS IN mn

This section considers the measures that are invariant for a model w� mn, namely
for a homogeneous continuous-time Markov chain over S � Z n + Such measures
cannot be finite+We will show that the only possible invariant measures are product-
form measures and their combinations+ This fact expresses the fundamental role of
product-form measures for space-homogeneous Markov chains+ The proof of this
result is lengthy, and is deferred to Section 5,where all of the proofs are concentrated+

First, we will characterize the set of vectors ?q such that p ?q is invariant for a
given model+ In addition, we are interested in the subset of such ?q’s that satisfy
?q � ;1, since their p ?q may be used as the stationary state distribution of a model
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on the orthant Z�
n with the same interior behavior+ Given a model w � mn, define

the generating function Jw : ~0,`!n � R� � $`% through

Jw~ ?s! �� (
:d�Dn

w~� :d! ?s :d, ?s � ~0,`!n+

Let Qw denote the set of vectors ?q � ~0,`!n such that p ?q is invariant for w+ By
rewriting ~7! in terms of w itself, we reach the following:

Observation 3.1 ~Qw’s Identification): Qw is the set of ?q’s solving the equation

Jw~ ?q! � Jw~ ;1!+

With Jw already introduced, we are ready for the following+

Definition 3.1: The quantity ( :d�Dn
w~ :d! :d, which when convergent is equal to

�¹ Jw~ ;1! , is called the drift of w.

In order to study Qw, let us list a few properties of Jw+ Its domain of convergence,
dom Jw, includes the point ?s � ;1 due to the noninstantaneity property+ Being a sum of
convex functions, Jw is convex+Moreover, it is strictly convex: By the communica-
tivity property, for every i�1, + + + , n, there exists at least one :d � Dn with di � 0 such
that w~ :d! � 0+ The factor si

di of ?s :d is strictly convex on ~0,`!+ Therefore, Jw
is strictly convex on ~0,`!n , being a sum of convex functions, of which at least one
comprises such a strictly convex factor, for every i + Communicativity implies also
that for every i � 1, + + + , n, there exists at least one :d � Dn with di � 0 such that
w~ :d! � 0+ Thus, Jw has a unique minimum+When letting ?s follow any straight line
away from this minimum, including in a direction toward the boundary of ~0,`!n ,
the value of Jw~ ?s! goes to infinity+ If dom Jw has a nonempty interior, which happens
when the drift is convergent, then the gradient ¹ Jw is defined and is finite throughout
this interior+When letting ?s approach a boundary point of dom Jw, along any path in
the interior of dom Jw, the value of 7¹ Jw~ ?s!71 goes to infinity+All these facts lead to the
following+

Observation 3.2 ~Qw’s Properties): Qw is the boundary of a bounded and convex
level set of Jw+ The point ;1 is always in Qw+ It is the sole point iff every component of
the drift of w is either zero or nonconvergent+When n � 2 and the drift is convergent,
Qw is an ~n �1!-dimensional smooth manifold in ~0,`!n , and every point of Qw is an
extreme point+

In models on S � Z�
n , for the measure p ?q to be finite, the vector ?q must belong

to the unit cube C �
�
~0,1# n �$ ;1% + The relation between Qw and C has to do with the

drift of w+

Proposition 3.1 ~The Relation between Qw and C!: The following three cases may
hold when n � 2 and the drift of w is convergent (see Fig. 3):
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Case (a): The drift is nonnegative (componentwise). In this case, Qw � C is
empty.

Case (b): The drift is neither nonnegative nor negative. In this case, Qw� C is
nonempty and has a zero Euclidean distance from ;1.

Case (c): The drift is negative. In this case, Qw � C is nonempty and has a
positive distance from ;1.

Mixtures of product-form measures from $p ?q % ?q�Qw also satisfy ~7!, of course,
and are thus invariant for w as well+ The converse statement would have said that
every measure invariant for w is either itself a member of $p ?q % ?q�Qw or can be rep-
resented as such a mixture+ The following theorem, whose proof is fairly lengthy,
states this claim for models in R Rmn; this is the subclass of models with bounded
transitions introduced in Section 2+4+

Theorem 3.1 ~Representation of Measures Invariant for Models in R Rmn!: Let
w � R Rmn and let µ be a measure invariant for w. Then, there exists a unique Borel
probability measure z on ~0,`!n such that

@µ~ ;0!�1 #µ ��
Qw

p ?q dz~ ?q!+

4. CHARACTERIZATION OF IPn

Recall from Section 1 that IPn, ?q,with ?q � ~0,1!n , is the subspace of models from IMIn

for whichp ?q is invariant+ ~Note that for every such model,p ?q is the unique invariant
probability measure+!The ?q’s in C�~0,1!n , namely those with at least one component
equal to 1, are avoided here+As will turn out later, their IPn, ?q are singular+ Recall also
that IMIn and thus IPn, ?q, can be viewed as subsets of R�

4n�2n
+We will characterize IPn, ?q

Figure 3. A schematic illustration for Proposition 3+1+ The oval represents Qw, the
box represents C, and the arrow represents the drift+
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as the intersection between IMIn and the solution space of a homogeneous linear
system

A ?x � ;0, (8)

with A having 4n � 2n columns+ The sequel gives this characterization while con-
centrating on the special features of A which lead to the decoupling principle+ The
existence of nonnegative solutions, necessary for the intersection with IMIn to be
nonempty, is addressed immediately after the characterization+ First we need the
following+

Definition 4.1 ~“Hierarchically Partitioned Matrix”!: An m � k real matrix A �
~ai, j ! , with m � k, will be referred to as a “hierarchically partitioned matrix” if
there exists a partial order “,,” on $1, + + + ,m% and a partitioning of $1, + + + , k% into m
nonempty sets P1, + + + ,Pm, such that

1. A component ai, j, with j � P�, say, can be nonzero only if i � � or if i �� �.
2. For every i � 1, + + + ,m, there exists at least one j � Pi such that ai, j � 0.

The structure suggested by this definition is block triangular, up to a permuta-
tion of the columns, yet possibly with greater sparsity resulting from the order re-
lation being partial+ Observe that if the A of ~8! is hierarchically partitioned, then
the solution space of ~8! admits the following recursive characterization: For every
i � 1, + + + ,m, the portion ^xj &j�Pi

of the vectors ?x in the solution space is the
hyperplane

(
j�Pi

ai, j xj � � (
j��$�0i���% P�

ai, j xj ; (9)

here, the entire right-hand side is regarded as a constant, adopting a point of view
which defines the lower portions of ?x in terms of the higher ones+ Thus, the dimen-
sion of a portion ^xj &j�Pi

, conditional on all higher portions, is 6Pi 6�1+ Suppose that
i1 and i2 are such that neither i1 �� i2 nor i2 �� i1 holds+ Then, conditional on all
portions higher than any of them, the portions Pi1 and Pi2 of ?x are decoupled from
each other+ In the context of the characterization of IPn, ?q, the last property will be
referred to as the decoupling principle+We are now ready to give the characterization+

Theorem 4.1 ~Characterization of IPn, ?q!: IPn, ?q is the intersection between IMIn and
the solution space of a homogeneous linear system of the type (8), with A being
hierarchically partitioned. The m � 2n � 1 rows of the matrix A are indexed by ?w,
?w � Bn �$ ;0%, and correspond to the walls Wn, ?w of Z�

n , excluding the corner Wn, ;0.
The k � 4n � 2n columns are indexed by ~ ?v, :d! , ?v � Bn �$ ;0%, :d � Dn, ?v. The columns
of A and the variables [i.e., the model elements w ?v~ :d!] are partitioned according to
the subscript ?v. The partial order among partitions is the majorization � (recall
Sect. 2.1). The matrix element a ?w, ~ ?v, :d!, serving as the coefficient of w ?v~ :d! in the
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row contributed by Wn, ?w, with ?w being equal to or majorized by ?v, is expressed as
follows using indicators of conditions:

a ?w, ~ ?v, :d! � 1$� :d� ;1�2~ ?v� ?w!%� ?q� :d1$ :d� ;1�2~ ?v� ?w!% + (10)

Having given the characterization, we now address the existence of nonnega-
tive solutions+ In a recursive representation of IPn, ?q, of the type discussed in con-
nection with ~9!, the coefficients on the left-hand side are derived from ~10! with
?w � ?v holding+ These coefficients appear in pairs ~1 � ?q� :d,1 � ?q :d!, due to the

symmetry of the transition classes Dn, ?w @see ~3!# + The restriction qi � 1, i �1, + + + , n,
is essential to ensure the existence of at least one such pair whose members are
nonzero, for each hyperplane+ ~When qi � 1, no such pair exists at least for the
one-dimensional wall Wn,^0, + + + ,0,1,0, + + + ,0& with the 1 at the ith place, so there is no
corresponding hyperplane+ This is a singularity that would violate the characteriza-
tion+! The opposite signs of the members within these pairs imply that each hyper-
plane, representing a portion of ?x, has an unbounded intersection with the nonnegative
orthant of the Euclidean subspace to which it ~the hyperplane! belongs; the expla-
nation for this is rooted in the following elementary principle,which can be checked
readily+

Lemma 4.1 ~Elementary; Serves the Explanation on Nonnegative Solutions!: Let

(i�1
2j ci xi � d be a hyperplane in R2j (note that this statement implies that not all of

the coefficients ci are zero). Suppose that for every i �1, + + + , j, the coefficients ci and
ci�j are either both zero or both nonzero and have opposite signs. Then, the hy-
perplane has a nonempty intersection with R�

2j . Moreover, this intersection is not
confined to any box of the type J1 �{{{� J2j, where the J1, + + + , J2j are intervals in R�

of which at least one is finite.

The linear system taking part in Theorem 4+1 is essentially an adaptation of the
global balance equation ~7! for the IMIn framework, with the transition rates, rather
than the measure, playing the role of the unknown+ However, a key feature of
the special structure that emerges is that although each of the walls Wn, ?w with
?w � Bn �$ ;0% contributes one equation ~i+e+, one row to the matrix A!, no equation is

contributed by the corner Wn, ;0+ The absence of such an equation is what enables the
matrix to comply with the requirements of Definition 4+1+ That is because the row
contributed by Wn, ;0 could not have been associated with any nonempty partition of
variables, since Dn, ;0 is empty+Yet, the corner does induce a valid equation, which is
eliminated due to redundancy+ It is this redundancy which is responsible for the
richness of IPn via the decoupling principle+ The redundancy of the corner equation
could have been deduced from the following elementary fact: The global balance
equation, regardless of any special structure, always has a single redundancy when
the chain is uniformizable; that is, when

sup
?a�S
(
:b�S \$ ?a%

w *~ ?a, :b! � `,
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and when the invariant measure is known to be finite+ However, this kind of deduc-
tion would not have captured the deeper essence of the redundancy here+ In Sec-
tion 5, we bring a fairly intricate proof for Theorem 4+1, which does rely on the
special structure of IMIn and on the product-form property and, on the other hand,
does not rely on the finiteness of the measure+As discussed at the end of the proof,
this intricacy is essential for inferring

Remark 4.1 (State Spaces with Multiple Corners): The decoupling principle can be
generalized for state spaces of the form S � Z1 � Z2 �{{{� Zn, where every Zi is a
finite or an infinite succession of integers+ Such state spaces arise, for example, in
connection with stochastic networks with finite buffers @11# + The basis for this gen-
eralization is discussed at the end of the proof of Theorem 4+1 in Section 5+

Another type of generalization is provided by the following+

Remark 4.2 (Two-Dimensional State Spaces with Slanted Walls): State spaces with
slanted walls are easy to describe in the two-dimensional case+ See Figure 4+ The
decoupling principle can be generalized for the two non-right-corner types shown in
the figure+ The proof is at the same time a generalization and a specialization of the
proof of Theorem 4+1 and is omitted+

In view of the last two remarks, what is exposed by the proof of Theorem 4+1
brought in Section 5 is the following: The decoupling principle is an inherent prop-
erty of product-form model spaces with homogeneity+

5. PROOFS

5.1. Proof of Proposition 3.1

Exclude the case �¹ Jw~ ;1!� ;0, which has been covered earlier in Observation 3+2+
The essence of the proposition is expressed in Lemma 5+1+ The lemma is elementary
and is given without a proof+The association between the proposition and the lemma

Figure 4. A two-dimensional state space with a slanted wall, creating a blunt cor-
ner and a sharp corner+
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is drawn after stating the lemma+ The definitions of a cone and of a supporting
half-space are available, for example, in Rockafellar @23, pp+ 13 and 99# +

Lemma 5.1: Let A � Rk be nonempty, bounded in 7{71, convex, containing the point
;0 in its boundary ]A, and having a unique supporting half-space H with ;0 � ]H.

Also, let K � Rk be a nonempty and convex cone not containing ;0. The following
three cases may hold (see a suggestive illustration in Fig. 5):

Case (a): H � K is empty. In this case, ]A � K is empty.

Case (b): H � K is nonempty, but K is not contained in the interior of H. In this
case, K � ]A is nonempty and has a zero Euclidean distance from ;0.

Case (c): K is contained in the interior of H. In this case, K � ]A is nonempty
and has a positive distance from ;0.

Proposition 3+1 reduces into Lemma 5+1 via the following association+ The role
of ]A is played by Qw� ;1 ~defined as $ ?q � ;10 ?q � Qw%!+ The role of K is played by
the nonpositive orthant, excluding ;0+ This cone can be viewed as an extension of
C � ;1+ In fact, the extension does not have any influence, since Qw is confined
to ~0,`!n + The set Qw has a unique supporting half-space H ' with ;1 � ]H ' , due to
Observation 3+2+ The role of H is played by H '� ;1+ It is known that

H ' � $ ?x � Rn0~ ?x � ;1!{¹ Jw~ ;1!� 0%+

Hence the translation of the conditions on the drift into conditions on H � K+

Figure 5. A suggestive illustration for Lemma 5+1+

256 N. Bayer and R. J. Boucherie



5.2. Proof of Theorem 3.1

The uniqueness of z is evident from the nature of the p ?q: Different combinations of
product-form measures cannot give identical aggregated measures+ The proof of its
existence calls for applying Choquet’s theorem+ This is proved to be possible, with
the theorem applied for a normed space of measures on ~Z n,2Z n

!+ The norm is �1,
augmented by geometrical weights+ The course of the proof is as follows+ First, a
suitable version of Choquet’s theorem is formulated+ Then, the major part of the
proof is dedicated to establishing the setting for applying the theorem+ Finally,
Choquet’s theorem is invoked and the conclusion is adjusted to fit the original set-
ting of Theorem 3+1+

Theorem 5.1 ~Choquet’s Theorem, Adapted for a Separable Normed Space!: Let
~Y,7 7! be a separable normed vector space. Let K � Y be compact and convex. Then,
for every x � K, there exists a Borel probability measure g, concentrated on the set
of extreme points E �

�
ext K, such that x � *E y dg~ y!+

In a more general formulation of the theorem, Y is an abstract topological vector
space in which the dual space Y * separates points, and g is supported on the closure
of E+ See, for example,Rudin @25, p+ 85, Exercise 25# +However,when Y is separable
and metric, such g exists on E itself @25, p+ 376, Solution of Exercise 25# +Also,when
Y is a normed space, then it is locally convex+ In such a case, it is guaranteed that Y *

separates points @25, p+ 59, Corollary# +
We now set out to establish the setting for the application of Theorem 5+1+ Let Y

denote the vector space of signed measures on ~Z n,2Z n
!+ For every p � 0, let the

function hp :Y� R� � $`% be defined through

hp~n! �
� (
?a�Z n

p�7 ?a71 6n~ ?a!6, n � Y,

and let

Yp �
�
$n � Y0hp~n! � `%+

We shall employ normed vector spaces of the type ~Yp,hp!+ Observe that they are
separable+ We shall now introduce a further type of subsets of Y, with members
that are normalized in some sense, and have “bounded growth+” For every r � 1,
let Dr � Y contain those n which satisfy the following two conditions:

1+ n~ ;0!� 1+
2+ 7 ?a � :b71 � 1n r�1 � n~ ?a!0n~ :b!� r+

Lemma 5.2: If p � r, then Dr is compact in ~Yp,hp! .

Proof: First, observe that p � r n Dr � Yp+ The compactness claim can be
reduced into a sequential compactness claim, due to the Borel–Lebesgue theorem
~see, e+g+, Royden @24, p+ 155# !+ Moreover, the sequential compactness claim can
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be further reduced to the following: Every sequence in Dr contains a subsequence
which converges in the pointwise sense ~i+e+, at every point of Z n!+ The pointwise
convergence would imply convergence in the norm hp, as can be inferred using
the inequality

hp~n1 � n2 ! � (
$ ?a�Z n07 ?a71�y%

p�7 ?a71 6n1~ ?a!� n2~ ?a!6

� 2 (
$ ?a�Z n07 ?a71�y%

� r

p
�7 ?a71, n1,n2 � Dr , y � R� ,

plus standard “«-arguments+” Indeed, the requested subsequence that converges in
the pointwise sense can be extracted by diagonalization; see, for example, Chung
@10, p+ 84# + �

We now turn our attention to measures which are invariant for w+ Let ℑw denote
the set of state space measures n ~of the type of Sect+ 2+5, not signed measures!which
are invariant for w and satisfy n~ ;0!�1+ It can be seen directly that ℑw is convex+We
would like to express the invariance for w in terms of operators on Y+ For every
:d � Dn, define the shift operator SS :d :Y� Y through

~SS :dn!~ ?a! � n~ ?a � :d!, n � Y, ?a � Z n+

By considering the global balance equation ~7!, as rewritten in terms of w itself and
divided by ( :d�Dn

w~ :d!, we arrive at the following+

Observation 5.1:

~a! The invariance of the elements of ℑw for w is tantamount to an invariance for
an operator of the form( :d�Dn

c :dSS :d ,with the coefficients c :d taking values in
@0,1!; the sum of these coefficients is 1, and since w � R Rmn, only finitely
many of them are nonzero+

~b! Moreover, the elements of ℑw are invariant to all powers of the operator

( :d�Dn
c :dSS :d mentioned in part a+ These powers have the same form as the

original operator, and the communicativity implies that for every :d � Dn,
there exists a power with a positive c :d+

This leads to the following key fact+

Lemma 5.3: ℑw is contained in some Dr.

Proof: For every :d � Dn, single out an operator of the type indicated in part b of
Observation 5+1, one for which the coefficient c :d is positive+ Note that for every
n � ℑw, there holds the inequality n � c :dSS :dn+ Now, it is not difficult to see that
the claim holds true for every

r � max
$ :d�Dn 07 :d71�1%

c :d
�1 + �
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Lemma 5.4: ℑw is compact in some ~Yp,hp!+

Proof: Choose some r such that ℑw� Dr ~see Lemma 5+3! and some p � r+ In view
of Lemma 5+2, the compactness of ℑw in ~Yp,hp!will be established if we verify that
ℑw is closed in ~Yp,hp!+ The following is to be verified: Let all the elements of a
sequence $ni %i�1

` � Yp satisfy ni~ ;0!� 1 and be invariant to an operator ( :d�Dn
c :dSS :d

of the type of Observation 5+1+ Suppose that the sequence converges in hp to some
n� Yp @i+e+, hp~n� ni !r 0# + Then, nmust also satisfy n~ ;0!�1 and be invariant to
the same operator—so far the target+ The fulfillment of the requirement n~ ;0! � 1
follows from the fact that convergence in hp obviously implies pointwise conver-
gence+ To verify the invariance, we check that hp~n � ( :d�Dn

c :dSS :dn! � 0+ That is
accomplished by applying hp, and then lim supir` , on

n� (
:d�Dn

c :dSS :dn � ~n� ni !� (
:d�Dn

c :dSS :d~n� ni !, i � 1,2 + + + ,

while using

hp~SS :d~n� ni !! � ~ p ;1! 6 :d6hp~n� ni !+ �

Consider now the extreme points of ℑw+

Lemma 5.5: ext ℑw � $p ?q % ?q�Qw holds+

Proof: Pick some n � ext ℑw+ The claim that n has a geometric product-form will
follow by verifying that SS :dn and n are equal, up to a multiplicative factor, for every
:d � Dn+ Observation 5+1 implies that there exists a coefficient c :d � 0 and a non-

negative n ' � Y such that

n � c :dSS :dn� n '+ (11)

However, SS :dn too is invariant for w:Apply on it the operator to which n is invariant
and use the commutativity of the shifts+ Therefore, n ' , by being a difference, is
invariant for w as well+ This implies that the right-hand side of ~11! can be rendered,
through appropriate renormalization, as a convex combination of two elements of
ℑw+ However, both of them, including the one proportional to SS :dn, in which we are
interested, must be equal to n by the hypothesis that n � ext ℑw+ �

For every p, letsp denote the Borels-algebra onYp induced by hp+We are ready
to invoke Theorem 5+1+ From the theorem,we draw the following conclusion: There
exists a probability measure z ' on some ~Yp,sp!, such that

@µ~ ;0!�1 #µ ��
$p ?q % ?q�Qw

p ?q dz '~p ?q !;

first take the integral over ext ℑw, but then observe that ext ℑw cannot be smaller than
$p ?q % ?q�Qw + This conclusion needs a slight adjustment to the original setting of Theo-
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rem 3+1, where the integration is performed on Qw itself+ The validity of this adjust-
ment would follow by the measurability from the Borel s-algebra on ~0,`!n to the
restriction of sp to $p ?q % ?q�Qw of the mapping ?q � p ?q+ From the definition of hp, it is
clear that this measurability holds+

5.3. Proof of Theorem 4.1

This proof should comprise two ingredients:

1+ Verification that the matrix whose elements are defined in the theorem in-
deed satisfies the requirements of Definition 4+1+

2+ Verification that IPn, ?q is, indeed, the intersection between IMIn and the solu-
tion space of ~8!, with the matrix defined in the theorem+

The first ingredient is addressed in the very formulation of the theorem and in the en-
suing discussion about nonnegative solutions+The second ingredient will be fulfilled
by first showing the validity for a modified matrix, consisting of the declared A plus
an additional row, and then verifying that the additional row is, in fact, redundant+

The global balance equation ~7!,with a fixed µ, becomes an equation in w*+The
space IPn, ?q is the set of all w� IMIn whose corresponding w* satisfy ~7!with µ �p ?q+
This equation system ~we now consider each contribution by some ?a � S as one
equation! should be rewritten in terms of w itself+Due to the space homogeneity, the
collection of distinct equations corresponds to the collection of walls+ In order to
write down these equations in w, some further state transition classes should be
introduced+ Let

Dn, ?w6 ?v �
�
$ :b � ?a0 ?a � Wn, ?v , :b � Wn, ?w , 7 :b � ?a7` � 1%, ?w, ?v � Bn

@compare with ~3!# + See an illustration of the classes D2, ?w6 ;1 in Figure 6+Observe that
the overall set of short transitions into any state of Wn, ?w is

�
$ ?v�Bn0 ?v� ?w%

Dn, ?w6 ?v +

Moreover, the above union is disjoint+ Observe also that the following characteriza-
tion holds:

?v � ?wn Dn, ?w6 ?v � $ :d � Dn, ?v 0 :d � ;1 � 2~ ?v � ?w!%; (12)

this characterization succinctly says that when ?v � ?w and :d � Dn, ?w6 ?v, then for every
i �1, + + + , n where vi � wi �1, the value of di can be any value in T, for every i where
vi �1 and wi � 0, the value of di must be �1, and for every i where vi � wi � 0, the
value of di must be 0 ~by the very fact that :d is also an element of Dn, ?v!+ The
rewriting of ~7! in terms of the function array ~5! is based on the correspondence
between w* and w, as defined in Section 2+4+ In the process, both sides of ~7! are
divided by ?q ?a , and terms from both sides are collected according to state transitions+
The following equation system results:
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(
?v � ?w
(
:d�Dn, ?w6 ?v

@w ?v~� :d! � ?q� :dw ?v~ :d!#� 0, ?w � Bn+ (13)

In view of ~12!, the equation system ~13! almost matches the description in the
theorem+ The only remaining discrepancy is in the presence of an equation for
?w � ;0 in ~13!+ ~Note that the equation with ?w � ;0 is proper: The undefined w ;0 does

not actually appear, since Dn, ;0 6 ;0 is empty+! The redundancy of this equation is to be
verified+ To this end, we explicitly give real numbers $g ?w % ?w�Bn , with g ;0 � 1, such
that the weighted sum of the equations in ~13!, with these numbers serving as the
weights, is zero+ The numbers we use are g ?w � ?r� ?w , with ?r � ^r1, + + + , rn& given
through

ri � qi
�1 � 1, i � 1, + + + , n+ (14)

Let h ?w, ?v, :d denote the coefficient belonging to the variable w ?v~ :d! in the equation
contributed by ?w+ From ~12! and ~13!, we have

h ?w, ?v, :d � �1$� :d� ;1�2~ ?v� ?w!%� ?q� :d1$ :d� ;1�2~ ?v� ?w!% if ?w � ?v,

0 otherwise,
?w � Bn, ?v � Bn �$ ;0%, :d � ?vT n �$ ;0%+

Our target is to verify that for each w ?v~ :d!, the weighted sum of coefficients is zero;
namely we have to verify that

(
?w�Bn

g ?w h ?w, ?v, :d � 0, ?v � Bn �$ ;0%, :d � ?vT n �$ ;0%+

The above target equation is converted, by substitution of the values and a slight
manipulation, into

?q� :d (
$ ?w�Bn0 ?v�~102!~ ;1� :d!� ?w� ?v%

?r� ?w � (
$ ?w�Bn0 ?v�~102!~ ;1� :d!� ?w� ?v%

?r� ?w,

?v � Bn �$ ;0%, :d � ?vT n �$ ;0%+

Figure 6. The transition classes D2,^1,1&6^1,1& ~� D2,^1,1&!, D2,^1,0&6^1,1&, D2,^0,1&6^1,1&,
and D2,^0,0&6^1,1& ~compare with Fig+ 2!+
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Fix some ?v � ^v1, + + + , vn&� Bn �$ ;0% , and some :d � ^d1, + + + ,dn &� ?vT n �$ ;0% + Suppose
that vi � 0 holds for some i � $1, + + + , n% + Then, di must also be zero+ Likewise, wi

must be zero for every ?w � ^w1, + + + ,wn & participating in any of the two summations+
A coordinate i with vi �0 can thus be ignored+Hence, no generality will be lost if we
focus on ?v � ;1+ The target now reduces into verifying that

?q� :d (
$ ?w�Bn0 ?w�~102!~ ;1� :d!%

?r� ?w � (
$ ?w�Bn0 ?w�~102!~ ;1� :d!%

?r� ?w, :d � T n �$ ;0%+ (15)

Fix again an arbitrary :d � ^d1, + + + ,dn &, this time from T n �$ ;0% + Designate the index
sets

It �
�
$i � 1, + + + , n0di � t %, t � T+

Adopt the following convention: Given a vector ?x � ^x1, + + + , xk& and a partial index
set I � $1, + + + , k% , let ?xI be the vector of dimension 6I 6 obtained by restriction+ A
member ?w of the summation set at the left-hand side of ~15! admits the following
form: ?wI�1

can take any value in B 6I�16 , and ?wI0�I1
must be ;1+ Similarly, the form of

a member ?w of the summation set at the right-hand side is as follows: ?wI�1�I0
must

be ;1, and ?wI1
can take any value in B 6I16 + By decomposing all the vectors involved in

~15! into their I�1, I0, and I1 parts and performing a slight rearrangement, ~15!
further reduces to

?qI�1

;1 (
?w�B 6I�16

?rI�1

;1� ?w � ?qI1

;1 (
?w�B 6I16

?rI1

;1� ?w+

The last target equation indeed holds true, as both sides are equal to 1+ Recall ~14!,
and apply the following identity,whose verification by induction on k is immediate:

(
?w�Bk

?y ?w � ~ ?y � ;1! ;1, ?y � Rk+

The case where I�1 or I1 are empty requires some attention, but does not require
separate treatment if the following convention is adhered to: Let B0 contain a single
element—the “zero-dimension vector+” When raised to the power of itself, this “vec-
tor” gives 1—the conventional value of an empty product+ The proof is complete+

The above proof stays valid if qi � 1 for some or all of the coordinates i ~al-
though cases with qi � 1 are singularities!; that is, the proof does not rely on the
finiteness of the product-form measure+ This provides the basis for Remark 4+1:
When there are multiple corners, the model with its product-form measure, as viewed
from different corners, is isomorphic to a model with a product-form measure on the
orthant, but with a measure that is not necessarily finite; the masses seem to grow in
some coordinates when looking from corners other than the original one+ The need
not to rely on the finiteness of the measure means that the proof could not have been
inferred from the elementary fact concerning the single redundancy of the global
balance equation of a general Markov chain; rather, the proof must have relied on the
special properties of the models studied+
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6. A BASIC EXAMPLE OF MODEL DESIGN

The purpose of this section is to give a taste of model design, using Theorem 4+1
and the decoupling principle+ For simplicity, we give an example of dimension
n � 2, although these tools are handy for any n+ Consider the service system in
Figure 7+ The system is defined by the following parameters ~the index i takes the
values 1 and 2!:

li : Rate of external arrival to station i

ui : Service rate at station i

ri
depart , ri

transfer , ri
branch : Probabilities of the three types of events that may occur

upon completing a service at station i ~see description in the caption!+

All of the service durations are assumed to be exponentially distributed and inde-
pendent from each other and from previous eventualities+ Whether the customer
departs, is transferred to the other station, or branches also does not depend on any
previous observable eventuality+ The design problem is as follows: Minimize the

Figure 7. A sample service system+ Upon completing a service in one of the two
service stations, the customer can depart from the system, be transferred to the other
station, or branch into three descendants+ In the latter case, two of the descendants
return to the queue of the same station and the third goes to the other station+ The
branching phenomenon is symbolized by the circles at the outputs+ Note that when
branching occurs, the number of customers at each of the two stations is incremented
by 1+
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total service effort u1 � u2 while complying with a performance requirement of the
type

�the average number of
customers at station i � � � given

threshold�, i � 1,2,

or of the type

�the probability that the number of customers
at station i exceeds a given threshold � � � given

probability�, i � 1,2+

If the stationary state distribution were of a geometric product-form p ?q, then it
would have been easy to translate such requirements into a required value of
?q � ^q1,q2&+ However, although the model clearly belongs to IMI2, it does not nec-

essarily belong to IP2, namely to IMI2’s subspace of product-form models+This model
does not fall in any of the familiar classes of models that are known to be contained
in IP2, or more generally in IPn, such as Jackson networks or Gelenbe networks+
Nevertheless, for the purpose of designing this model,we will stay in IP2,^q1,q2 &

,with
the ^q1,q2& calculated from the performance requirements+ This space of models
transcends way beyond the instances of the familiar classes of product-form models:
The theory tells us that IP2,^q1,q2 &

is a broad and well-characterized space, spread out
within IMI2+Moreover, the theory suggests that the geometric product-form station-
ary state distributions are fundamental for models with space homogeneity; station-
ary state distributions of non-IP2 models in IMI2 embody some intractable deformation
due to the boundary+ IP2, or more generally IPn, is a safe haven where the stationary
state distribution is clear and explicit and where the treatment boils down to linear
algebra and to linear programming+

Hence, we perform the minimization with regard to models in IP2,^q1,q2 &
in

which, instead of l1 and l2, there are fictitious values Zl1 and Zl2 in the interior
and other fictitious values Dl1 and Dl2 on the boundary, satisfying the constraints

Zl1, Dl1 � l1, Zl2 , Dl2 � l2 ;

see Figure 8+ For the selected performance requirements, the performance of the true
model will be at least as good as the performance of a model with such fictitious
arrival rates and with the same service rates, so the minimization will yield an upper
bound on the needed service rates+Moreover, in order to achieve greater flexibility
and to approach IP2,^q1,q2 &

at a spot as close as possible to the true model, we could
play with fictitious values for any nonnegative transition ~ :d � ;0! as well as for any
nonpositive transition ~ :d � ;0!+ For the former transitions, the fictitious values should
be constrained to be higher than the true values, and vice versa for the latter transi-
tions+ However, limiting ourselves to playing with the arrival rates only has the
following merit: One does not have to rely on the monotonicity of the performance
with respect to the transition rates, which may need a difficult rigorous proof; it is
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possible to physically mimic the fictitious arrival rates in the real system, by artifi-
cially generating extra arrivals+

Theorem 4+1 states that IP2,^q1,q2 &
is the intersection between IMI2 and the solu-

tion space of the following homogeneous linear system ~the partitioning due to walls
is emphasized!:

�
1 � q1 q2 1 � q2 1 �

q2

q1

1 � q1 1 �
1

q1

1 �
q1

q2

1 �
1

q2

1 �
1

q1 q2

0 0 0 0

�q1 q2 �q2 �
q2

q1

0 0 1 1 1 1 � q1 1 �
1

q1

0 0

�q1 q2 0 1 �q1 1 �
q1

q2

0 1 0 0 1 � q2 1 �
1

q2

�

�





w^1,1&~^�1,�1&!

w^1,1&~^0,�1&!

w^1,1&~^1,�1&!

w^1,1&~^�1,0&!

w^1,1&~^1,0&!

w^1,1&~^�1,1&!

w^1,1&~^0,1&!

w^1,1&~^1,1&!

w^1,0&~^�1,0&!

w^1,0&~^1,0&!

w^0,1&~^0,�1&!

w^0,1&~^0,1&!





� �
0

0

0
� + (16)

Figure 8. Replacing the true arrival rates li with fictitious values: Zli in the interior
and Dli on the boundary+
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In our particular kind of models within IP2,^q1,q2 &
, on which the minimization is per-

formed, we have





w^1,1&~^�1,�1&!

w^1,1&~^0,�1&!

w^1,1&~^1,�1&!

w^1,1&~^�1,0&!

w^1,1&~^1,0&!

w^1,1&~^�1,1&!

w^1,1&~^0,1&!

w^1,1&~^1,1&!

w^1,0&~^�1,0&!

w^1,0&~^1,0&!

w^0,1&~^0,�1&!

w^0,1&~^0,1&!





�





0

u2 r2
depart

u2 r2
transfer

u1r1
depart

Zl1

u1r1
transfer

Zl2

u1r1
branch � u2 r2

branch

u1r1
depart

Dl1

u2 r2
depart

Dl2





+ (17)

By substituting the right-hand side of ~17! into ~16!, we obtain three equality con-
straints on our six variables u1, u2, Zl1, Zl2, Dl1, and Dl2+ These equality constraints can
be written in the form

a1u1 � a2u2 � � 1

q1

� 1� Zl1 � � 1

q2

� 1� Zl2 ,

b1u1 � c2u2 � � 1

q1

� 1� Dl1 � Zl2 ,

c1u1 � b2u2 � � 1

q2

� 1� Dl2 � Zl1,

where the coefficients a1, b1, and c1 are given through

�
a1

b1

c1
� �

� �
1 � q1 1 �

q1

q2

1 �
1

q1 q2

1 � q1 1 1

�q1 �
q1

q2

1
� � r1

depart

r1
transfer

r1
branch

� ; (18)

the coefficients a2, b2, and c2 are given by a dual expression, obtained by replacing
every subscript 1 in ~18! with 2, and vice versa+ Due to the decoupling principle,
once u1, u2, Zl1, and Zl2 are fixed, the remaining two variables, namely Dl1 and Dl2,
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which are associated with two different one-dimensional walls, are decoupled from
each other+ This facilitates their elimination and the simplification of the equations+
There remains the following linear program:

min
~u1,u2 , Zl1, Zl2 !�R�

4
u1 � u2

subject to

a1u1 � a2u2 � � 1

q1

� 1� Zl1 � � 1

q2

� 1� Zl2 ,

Zl1 � l1, Zl2 � l2 ,

b1u1 � c2u2 � Zl2 � � 1

q1

� 1�l1,

c1u1 � b2u2 � Zl1 � � 1

q2

� 1�l2 + (19)

To take a numerical case, suppose for simplicity that the given parameters are equal
for the two stations ~so the station subscript is omitted!; we also add artificial sym-
metry constraints for the variables ~i+e+, u1 � u2 �

�
u, Zl1 � Zl2 �

� Zl, and Dl1 � Dl2 �
� Dl!+

Suppose that l� 1, rdepart � 0+6, r transfer � 0+3, rbranch � 0+1, and q � 4
5
_ + Then, the

optimal solution, under these artificial symmetry constraints, can be calculated readily
and found to be u� 3 47

51
_ , Zl�1, and Dl�1 25

51
_ + Note that, in principle, we could extend

the optimization so as to scan values of ^q1,q2& that are smaller than the specific
values that we calculated; the question of whether this may affect the optimal solu-
tion is open+

The design problem that has been considered so far could also have been han-
dled using the following simple heuristics: Calculate the traffic through the stations
and solve the problem as if each station were an M0M01 queue+Applying this for the
above numerical case, we find, from the mean traffic flow equation,

f � l� fr transfer � 3frbranch,

that the traffic f through each of the stations is 2+5; that is, the traffic has an intensity
2+5 times larger than that of the external arrival stream+ To produce a geometric
factor of 4

5
_ in an M0M01 queue with this traffic, there is a need for a service rate of

u� 3 1
8
_ + This is a heuristic approximation for the solution, whereas the former value

of u�3 47
51
_ is a rigorous upper bound; better bounds are potentially available by using

more flexible constraint schemes+
Because of the possibility of handling the original problem through a heuristics

which essentially reduces it into a one-dimensional problem,we would like to present
a variant of this problem for which there is no substitute for product-form models of
full dimension: Suppose that the two stations share a common buffer space,which is
limited; a customer that finds the buffer full is lost+We now require that the proba-
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bility that the buffer be full not exceed a given threshold, and this leads, again, to a
^q1,q2& or to an admissible range of ^q1,q2&’s+ In this new variant, the state space
appears as in Figure 9+ The added slanted wall and two sharp corners would comply
with Remark 4+2 unless the transitions in direction ^1,1& were present+ See Fig-
ure 10+Although the space homogeneity, in its original sense, is disrupted, the tran-
sition structure is still space homogeneous in the following sense:The global balance
equation is identical for all the states in any given wall ~including the interior!+ The
conclusion of Remark 4+2 remains valid+ Thus, due to the decoupling principle, all
that happens to the linear program ~19! in this variant of the problem is that a single

Figure 9. The state space in another variant of the original problem,where there is
a common and limited buffer space ~compare with Fig+ 8!+

Figure 10. The transition rates of the system with the limited buffer ~shown near
a sharp corner! are a superposition of ~a! and ~b!: ~a! gives the “legal” transitions of
Figure 4 and ~b! gives the transition rates in direction ^1,1&, that change their be-
havior at the diagonal adjacent to the wall+ There, at the diagonal, the latter transi-
tions are diverted into the two directions ^1,0& and ^0,1& while preserving their total
value+
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linear equality constraint in u1, u2, Zl1, and Zl2 is added, contributed by the slanted
wall+
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