BIOLOGICAL AND MEDICAL PHYSICS,
BIOMEDICAL ENGINEERING

For further volumes:
http://www.springer.com/series/3740
The fields of biological and medical physics and biomedical engineering are broad, multidisciplinary and dynamic. They lie at the crossroads of frontier research in physics, biology, chemistry, and medicine. The Biological and Medical Physics, Biomedical Engineering Series is intended to be comprehensive, covering a broad range of topics important to the study of the physical, chemical and biological sciences. Its goal is to provide scientists and engineers with textbooks, monographs, and reference works to address the growing need for information.

Books in the series emphasize established and emergent areas of science including molecular, membrane, and mathematical biophysics; photosynthetic energy harvesting and conversion; information processing; physical principles of genetics; sensory communications; automata networks, neural networks, and cellular automata. Equally important will be coverage of applied aspects of biological and medical physics and biomedical engineering such as molecular electronic components and devices, biosensors, medicine, imaging, physical principles of renewable energy production, advanced prostheses, and environmental control and engineering.

Editor-in-Chief:
Elias Greenbaum, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

Editorial Board:
Masuo Aizawa, Department of Bioengineering, Tokyo Institute of Technology, Yokohama, Japan
Olaf S. Andersen, Department of Physiology, Biophysics & Molecular Medicine, Cornell University, New York, USA
Robert H. Austin, Department of Physics, Princeton University, Princeton, New Jersey, USA
James Barber, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, England
Howard C. Berg, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
Victor Bloomfield, Department of Biochemistry, University of Minnesota, St. Paul, Minnesota, USA
Robert Callender, Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
Steven Chu, Lawrence Berkeley National Laboratory, Berkeley, California, USA
Louis J. DeFelice, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
Johann Deisenhofer, Howard Hughes Medical Institute, The University of Texas, Dallas, Texas, USA
George Feher, Department of Physics, University of California, San Diego, La Jolla, California, USA
Hans Frauenfelder, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
Ivar Giaever, Rensselaer Polytechnic Institute, Troy, New York, USA
Sol M. Gruner, Cornell University, Ithaca, New York, USA
Judith Herzfeld, Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
Mark S. Humayun, Doheny Eye Institute, Los Angeles, California, USA
Pierre Joliot, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, France
Lajos Keszthelyi, Institute of Biophysics, Hungarian Academy of Sciences, Szeged, Hungary
Robert S. Knox, Department of Physics and Astronomy, University of Rochester, Rochester, New York, USA
Aaron Lewis, Department of Applied Physics, Hebrew University, Jerusalem, Israel
Stuart M. Lindsay, Department of Physics and Astronomy, Arizona State University, Tempe, Arizona, USA
David Mauzerall, Rockefeller University, New York, New York, USA
Eugenie V. Mielczarek, Department of Physics and Astronomy, George Mason University, Fairfax, Virginia, USA
Markolf Niemz, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
V. Adrian Parsegian, Physical Science Laboratory, National Institutes of Health, Bethesda, Maryland, USA
Linda S. Powers, University of Arizona, Tucson, Arizona, USA
Earl W. Prohofsky, Department of Physics, Purdue University, West Lafayette, Indiana, USA
Andrew Rubin, Department of Biophysics, Moscow State University, Moscow, Russia
Michael Seibert, National Renewable Energy Laboratory, Golden, Colorado, USA
David Thomas, Department of Biochemistry, University of Minnesota Medical School, Minneapolis, Minnesota, USA
Preface

Brain–computer interface (BCI) research is advancing rapidly. The last few years have seen a dramatic rise in journal publications, academic workshops and conferences, books, new products aimed at both healthy and disabled users, research funding from different sources, and media attention. This media attention has included both BCI fi (BCI-based science fiction) and stories in mainstream magazines and television news programs.

Despite this progress and attention, most people still do not use BCIs, or even know what they are. While the authors of this book generally have access to the best BCI equipment, and they know how to use it, the chapters are written in the old-fashioned way, with keyboards and mice instead of BCIs. This may be surprising because BCIs are generally presented inaccurately in the popular media, where undeserved hype and sloppy reporting often create a gap between expectations and reality.

This book aims to bridge that gap by educating readers about BCIs, with emphasis on making BCIs practical in real-world settings. Experts in BCI research widely agree that one of the major challenges in the field is moving BCIs from laboratory gadgets that work with some healthy users to tools that are reliable, straightforward, and useful in field settings for whoever needs them. Many of these experts discuss the state of the art and major challenges across four sections. Three of the sections address the three main components of BCIs: sensors, signals, and signal processing; devices and applications; and interfaces and environments. The last section summarizes other challenges that relate to complete BCI systems instead of one component.

BCI research is inherently interdisciplinary, requiring contributions from neuroscience, psychology, medicine, human–computer interaction (HCI), many facets of engineering, and other disciplines. Similarly, many sectors are involved in BCI research, including academia, small and large businesses, government, medicine, and different types of nonprofit institutions. The authors who contributed to this book represent an eclectic mix of these disciplines and sectors. This breadth of contributors provides different perspectives and should make this book relevant to a wide variety of readers.
However, while this book could be useful for different specialists in the BCI community, we also made a strong effort to keep the chapters practical and readable for people who do not have a background in BCI research or any related discipline. Chapters are written in plain English, without unnecessary technical detail, and acronyms and special terms are defined within chapters and in our glossary. Ample references are provided in case readers want more information. Hence, many readers outside of the conventional BCI community may enjoy this book for different reasons. Nurses, doctors, therapists, caretakers, and assistive technology practitioners may want to learn more about what real-world BCIs can (and cannot) do, which may help them decide whether a BCI is viable as an assistive technology. Other readers may instead be curious about BCIs for other user groups, including healthy users. Students might use this book to learn about BCIs, and teachers might assign chapters in relevant classes. Business experts and policy makers may want to learn more about whether BCIs are promising enough to merit additional funding through commercial investment or grants. Journalists, writers, or other people interested in developing articles, documentaries, or other shows might find helpful background information or inspiration here. Finally, we hope our book appeals to people who are just curious about a technology that has long captured the human imagination and could revolutionize how people interact with each other and their environments.

Acknowledgements: The editors gratefully acknowledge the help of the following chapter reviewers: Tom Carlson, Günter Edlinger, Jan van Erp, Shangkai Gao, Gary Garcia Molina, Gangadhar Garipelli, Cuntai Guan, David Ibañez, Andrea Kübler, Bram Van de Laar, Fabien Lotte, Massimiliano Malavasi, Behnam Molaee, Roderick Murray-Smith, Tim Mullen, Femke Nijboer, Dani Perez Marcos, Mannes Poel, Aureli Soria-Frisch, Olga Sourina, Michael Tangermann, Aleksander Valjamäe, Yijun Wang, Tomas Ward, and Thorsten Zander. Their often extensive and always careful comments certainly helped the authors in improving the chapters. The editors also want to express their gratitude to their “technical editor,” Hendri Hondorp from the HMI group of the University of Twente, for improving uniformity, consistency, and completeness of the book. Finally, preparation of many chapters in this book has benefited from funding from the European Union Seventh Framework Programme (FP7/2007-2013). In particular the editors gratefully acknowledge the support of the Future BNCI project (Project number ICT-248320).
Contents

1 **Recent and Upcoming BCI Progress: Overview, Analysis, and Recommendations** ... 1
 Brendan Z. Allison, Stephen Dunne, Robert Leeb, José del R. Millán, and Anton Nijholt
 1.1 Introduction .. 1
 1.2 Overview of This Book ... 2
 1.2.1 Overview of Section One 3
 1.2.2 Overview of Section Two 4
 1.2.3 Overview of Section Three 6
 1.2.4 Overview of Section Four 7
 1.3 Predictions and Recommendations 8
 1.4 Summary .. 11
 References .. 12

Part I Sensors, Signals and Signal Processing

2 **Hybrid Optical–Electrical Brain Computer Interfaces, Practices and Possibilities** .. 17
 Tomas E. Ward
 2.1 Introduction .. 17
 2.2 The Underlying Physiological Origins of EEG and fNIRS 17
 2.2.1 Origin of the EEG ... 18
 2.2.2 Origin of fNIRS Responses 19
 2.3 Signal Models .. 28
 2.3.1 Modelling the Vascular Response 28
 2.3.2 Spectrophotometric Translation 30
 2.3.3 Synthetic Signal Generation 31
2.4 Combined EEG-fNIRS Measurements in Overt and Imagined Movement Tasks .. 33
2.4.1 fNIRS/EEG Sensor .. 33
2.4.2 Experimental Description 33
2.4.3 Signal Processing ... 34
2.4.4 Results ... 35
2.5 Conclusion .. 37
References .. 38

3 A Critical Review on the Usage of Ensembles for BCI 41
Aureli Soria-Frisch
3.1 Introduction ... 41
3.2 Theoretical Background .. 43
3.2.1 Pattern Recognition Ensemble Definition and Context .. 43
3.2.2 Pattern Recognition Perspective on Fusion .. 44
3.2.3 Grounding the Superiority of Ensembles .. 46
3.3 Integration and Fusion Level 47
3.3.1 Feature Concatenation 47
3.3.2 Classification Concatenation 48
3.3.3 Classification Fusion 49
3.3.4 Decision Fusion ... 50
3.4 Ensemble Type .. 51
3.4.1 Classifier Ensembles 51
3.4.2 Stacked Ensemble ... 52
3.4.3 Multi-Channel Ensemble 52
3.4.4 Multimodal Ensemble 52
3.5 Resampling Strategies .. 52
3.5.1 Data Set Partitioning 53
3.5.2 Feature Space Partitioning 56
3.5.3 Signal Partitioning .. 57
3.6 Fusion Operators .. 57
3.6.1 Sample Based Fusion 58
3.6.2 Time Domain Fusion Operators 59
3.7 Summary of Ensembles Obtained Results 59
3.8 Final Remarks ... 60
References .. 62

4 Improving Brain–Computer Interfaces Using Independent Component Analysis .. 67
Yijun Wang and Tzyy-Ping Jung
4.1 Introduction .. 67
4.2 ICA in EEG Signal Processing 68
4.3 ICA in BCI Systems ... 69
4.3.1 Artifact Removal ... 71
4.3.2 SNR Enhancement of Task-Related EEG Signals 72
4.3.3 Electrode Selection ... 73
5 Towards Electrocorticographic Electrodes for Chronic Use in BCI Applications ... 85
Christian Henle, Martin Schuettler, Jörn Rickert, and Thomas Stieglitz
5.1 Introduction: From Presurgical Diagnostics to Movement Decoding .. 85
5.2 Approaches and Technologies for ECoG-Electrodes 88
5.3 ECoG Recordings in BCI Studies .. 91
5.4 High Channel ECoG Arrays for BCI 92
5.4.1 Manufacturing of Laser Structured Electrodes 93
5.4.2 Biological Evaluation/Results from First Studies 95
5.5 Towards Chronic Wireless Systems 97
References .. 100

Part II Devices, Applications and Users

6 Introduction to Devices, Applications and Users: Towards Practical BCIs Based on Shared Control Techniques 107
Robert Leeb and José d.R. Millán
6.1 Introduction .. 107
6.2 Current and Emerging User Groups 109
6.3 BCI Devices and Application Scenarios 109
6.3.1 Communication and Control 110
6.3.2 Motor Substitution: Grasp Restoration 111
6.3.3 Entertainment and Gaming 113
6.3.4 Motor Rehabilitation and Motor Recovery 113
6.3.5 Mental State Monitoring 114
6.3.6 Hybrid BCI .. 114
6.4 Practical BCIs Based on Shared Control Techniques: Towards Control of Mobility 115
6.4.1 Tele-Presence Robot Controlled by Motor-Disabled People .. 116
6.4.2 BCI Controlled Wheelchair 118
6.5 Adaptation of Gesture Recognition Systems Using EEG Error Potentials ... 120
6.6 Conclusion .. 122
References .. 123
7 Brain Computer Interface for Hand Motor Function Restoration and Rehabilitation ... 131
Donatella Mattia, Floriana Pichiorri, Marco Molinari, and Rüdiger Rupp
7.1 Introduction ... 131
7.2 Restoration of Hand Motor Functions in SCI: Brain-Controlled Neuroprostheses 132
 7.2.1 Functional Electrical Stimulation of the Upper Extremity ... 133
 7.2.2 Combining BCI and FES Technology ... 136
7.3 Rehabilitation of Hand Motor Functions After Stroke: BCI-Based Add-On Intervention 139
 7.3.1 BCI in Stroke Rehabilitation: A State-of-the-Art 140
 7.3.2 FES in Stroke Rehabilitation of Upper Limb 142
 7.3.3 Combining BCI and FES Technology in Rehabilitation Clinical Setting: An Integrated Approach 143
7.4 Conclusion and Expectations for the Future 146
References .. 148

8 User Centred Design in BCI Development 155
Elisa Mira Holz, Tobias Kaufmann, Lorenzo Desideri, Massimiliano Malavasi, Evert-Jan Hoogerwerf, and Andrea Kübler
8.1 Technology Based Assistive Solutions for People with Disabilities ... 156
 8.1.1 Understanding and Defining Disability ... 156
 8.1.2 Assistive Technologies and BCI ... 156
8.2 User Centred BCI Development ... 158
 8.2.1 User Centred Design Principles ... 158
 8.2.2 Working with End-Users in BCI Research ... 160
8.3 BCI for Supporting or Replacing Existing AT Solutions 166
 8.3.1 Benefit in Different Fields ... 167
8.4 Conclusion .. 168
References .. 169

9 Designing Future BCIs: Beyond the Bit Rate 173
Melissa Quek, Johannes Höhne, Roderick Murray-Smith, and Michael Tangermann
9.1 Introduction .. 173
9.2 Control Characteristics of BCI ... 174
 9.2.1 Issues Specific to BCI Paradigms ... 175
 9.2.2 Approaches to Overcoming the Limitations of BCI ... 176
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>BCI: From Usability Research to Neuroergonomic Optimization</td>
<td>177</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Existing Literature on Determinants for ERP</td>
<td>177</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Aesthetics, Interaction Metaphors, Usability and Performance</td>
<td>181</td>
</tr>
<tr>
<td>9.4</td>
<td>Shared Control</td>
<td>183</td>
</tr>
<tr>
<td>9.5</td>
<td>Creating an Effective Application Structure: A 3-Level Task</td>
<td>185</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Low Level: BCI Control Signal</td>
<td>185</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Mid Level: Application</td>
<td>186</td>
</tr>
<tr>
<td>9.5.3</td>
<td>High Level: User</td>
<td>186</td>
</tr>
<tr>
<td>9.6</td>
<td>Engaging End Users and the Role of Expectation</td>
<td>187</td>
</tr>
<tr>
<td>9.7</td>
<td>Investigating Interaction: Prototyping and Simulation</td>
<td>188</td>
</tr>
<tr>
<td>9.7.1</td>
<td>Low Fidelity Prototyping to Expose User Requirements</td>
<td>188</td>
</tr>
<tr>
<td>9.7.2</td>
<td>High Fidelity Simulations for Design and Development</td>
<td>190</td>
</tr>
<tr>
<td>9.8</td>
<td>Conclusion</td>
<td>192</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>193</td>
</tr>
<tr>
<td>10</td>
<td>Combining BCI with Virtual Reality: Towards New Applications and Improved BCI</td>
<td>197</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>197</td>
</tr>
<tr>
<td>10.2</td>
<td>Basic Principles Behind VR and BCI Control</td>
<td>199</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Definition of Virtual Reality</td>
<td>199</td>
</tr>
<tr>
<td>10.2.2</td>
<td>General Architecture of BCI-Based VR Applications</td>
<td>200</td>
</tr>
<tr>
<td>10.3</td>
<td>Review of BCI-Controlled VR Applications</td>
<td>202</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Motor Imagery Controlled VR Environments</td>
<td>202</td>
</tr>
<tr>
<td>10.3.2</td>
<td>SSVEP Based VR/AR Environments</td>
<td>207</td>
</tr>
<tr>
<td>10.3.3</td>
<td>P300 Based VR Control</td>
<td>211</td>
</tr>
<tr>
<td>10.4</td>
<td>Impact of Virtual Reality on BCI</td>
<td>213</td>
</tr>
<tr>
<td>10.5</td>
<td>Conclusion</td>
<td>215</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>216</td>
</tr>
</tbody>
</table>

Part III Application Interfaces and Environments

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Brain–Computer Interfaces and User Experience Evaluation</td>
<td>223</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>223</td>
</tr>
<tr>
<td>11.2</td>
<td>Current State of User Experience Evaluation of BCI</td>
<td>224</td>
</tr>
<tr>
<td>11.2.1</td>
<td>User Experience Affects BCI</td>
<td>224</td>
</tr>
<tr>
<td>11.2.2</td>
<td>BCI Affects User Experience</td>
<td>225</td>
</tr>
</tbody>
</table>
11.3 Applying HCI User Experience Evaluation to BCIs 226
 11.3.1 Observational Analysis .. 227
 11.3.2 Neurophysiological Measurement 228
 11.3.3 Interviewing and Questionnaires 228
 11.3.4 Other Methods .. 229
11.4 Case Studies .. 230
 11.4.1 Case Study: Mind the Sheep! 230
 11.4.2 Case Study: Hamster Lab 232
11.5 Discussion and Conclusion ... 234
References... 235

12 Framework for BCIs in Multimodal Interaction and Multitask Environments ... 239
Jan B.F. van Erp, Anne-Marie Brouwer, Marieke E. Thurlings, and Peter J. Werkhoven
12.1 Introduction ... 239
12.2 Challenges for the Use of BCIs in a Dual Task Environment 241
 12.2.1 Psychological Models for Dual Task Situations and Coping with Conflicts 242
12.3 Combining BCIs ... 245
12.4 Integrating BCIs in a Multimodal User Interface:
 Relevant Issues ... 246
12.5 Discussion and Conclusion .. 247
References... 249

13 EEG-Enabled Human–Computer Interaction and Applications 251
Olga Sourina, Qiang Wang, Yisi Liu, and Minh Khoa Nguyen
13.1 Introduction ... 251
13.2 Brain State Recognition Algorithms and Systems 252
 13.2.1 Neurofeedback Systems for Medical Application 252
 13.2.2 Signal Processing Algorithms for Neurofeedback Systems ... 253
 13.2.3 Neurofeedback Systems for Performance Enhancement .. 254
 13.2.4 Emotion Recognition Algorithms 255
13.3 Spatio-Temporal Fractal Approach 256
 13.3.1 3D Mapping of EEG for Visual Analytics 256
 13.3.2 Fractal-Based Approach .. 258
 13.3.3 Real-Time Brain State Recognition 259
 13.3.4 Features Extraction ... 260
13.4 Real-Time EEG-Enabled Applications 261
 13.4.1 Neurofeedback Training Systems 262
 13.4.2 Real-Time EEG-Based Emotion Recognition and Monitoring .. 263
13.5 Conclusion ... 263
References... 265
14 Phase Detection of Visual Evoked Potentials Applied to Brain Computer Interfacing .. 269
Gary Garcia-Molina and Danhua Zhu
14.1 Introduction .. 269
14.2 Signal Processing and Pattern Recognition Methods 271
14.2.1 Spatial Filtering ... 272
14.2.2 Phase Synchrony Analysis 273
14.3 Experimental Evidence ... 273
14.3.1 Optimal Stimulation Frequency 274
14.3.2 Calibration of the BCI Operation 276
14.3.3 BCI Operation and Information Transfer Rate 276
14.4 Discussion and Conclusion .. 278
References .. 279

15 Can Dry EEG Sensors Improve the Usability of SMR, P300 and SSVEP Based BCIs? .. 281
Günter Edlinger and Christoph Guger
15.1 Motivation of BCI Research 281
15.2 Methods .. 284
15.2.1 g.SAHARA Dry Electrode Sensor Concept 284
15.3 Experimental Setup ... 286
15.4 P300 BCI ... 287
15.5 Motor Imagery ... 287
15.6 SSVEP BCI ... 288
15.7 Results .. 289
15.8 P300 Paradigm ... 290
15.9 Motor Imagery ... 292
15.10 SSVEP Training .. 297
15.11 Discussion .. 297
References .. 299

Part IV A Practical BCI Infrastructure: Emerging Issues

16 BCI Software Platforms ... 304
Clemens Brunner, Giuseppe Andreoni, Lugi Bianchi,
Benjamin Blankertz, Christian Breitwieser,
Shin’ichiro Kanoh, Christian A. Kothe, Anatole Lécuyer,
Scott Makeig, Jürgen Mellinger, Paolo Perego, Yann Renard,
Gerwin Schalk, I Putu Susila, Bastian Venthur, and
Gernot R. Müller-Putz
16.1 Introduction .. 304
16.2 BCI2000 ... 305
16.3 OpenViBE .. 308
16.4 TOBI ... 311
16.5 BCILAB ... 314
17 Is It Significant? Guidelines for Reporting BCI Performance 333
Martin Billinger, Ian Daly, Vera Kaiser, Jing Jin, Brendan Z. Allison, Gernot R. Müller-Putz, and Clemens Brunner
17.1 Introduction ... 333
17.2 Performance Measures... 334
 17.2.1 Confusion Matrix .. 334
 17.2.2 Accuracy and Error Rate 336
 17.2.3 Cohen’s Kappa ... 336
 17.2.4 Sensitivity and Specificity 337
 17.2.5 F-Measure ... 338
 17.2.6 Correlation Coefficient 338
17.3 Significance of Classification 339
 17.3.1 Theoretical Level of Random Classification 339
 17.3.2 Confidence Intervals 340
 17.3.3 Summary .. 342
17.4 Performance Metrics Incorporating Time 342
17.5 Estimating Performance Measures on Offline Data 344
 17.5.1 Dataset Manipulations 345
 17.5.2 Considerations ... 346
17.6 Hypothesis Testing .. 346
 17.6.1 Student’s t-Test vs. ANOVA 347
 17.6.2 Repeated Measures 347
 17.6.3 Multiple Comparisons 348
 17.6.4 Reporting Results 350
17.7 Conclusion .. 350
References .. 351

18 Principles of Hybrid Brain–Computer Interfaces 355
Gernot R. Müller-Putz, Robert Leeb, José d.R. Millán, Petar Horki, Alex Kreilinger, Günther Bauernfeind, Brendan Z. Allison, Clemens Brunner, and Reinhold Scherer
18.1 Introduction ... 355
18.2 hBCI Based on Two Different EEG-Based BCIs 356
 18.2.1 BCIs Based on ERD and Evoked Potentials 356
 18.2.2 Combined Motor Imagery and SSVEP Based BCI Control of a 2 DoF Artificial Upper Limb 358
18.3 hBCI Based on EEG-Based BCI and a Non-EEG Based BCI 359
18.4 hBCI Based on EEG-Based BCI and Another Biosignal 362
 18.4.1 Heart Rate Changes to Power On/Off an SSVEP-BCI 362
 18.4.2 Fusion of Brain and Muscular Activities 363
18.5 hBCI Based on EEG-Based BCI and EEG-Based Monitoring 365
 18.5.1 Simultaneous Usage of Motor Imagery and Error Potential 365
18.6 hBCI Based on EEG-Based BCI and Other Signals 366
 18.6.1 Combination of an EEG-Based BCI and a Joystick 366
18.7 Outlook: hBCI Based on EEG-Based BCI and EEG-Based Monitoring and Other Biosignals 369
18.8 Conclusion and Future Work ... 370
References .. 371

19 Non-visual and Multisensory BCI Systems: Present and Future 375
 Isabella C. Wagner, Ian Daly, and Aleksander Valjamäe
19.1 Introduction .. 375
19.2 P300 Based BCI Systems ... 376
 19.2.1 The “P300” Matrix Speller 376
 19.2.2 Moving Beyond the “Matrix”: Other Oddball Paradigms 377
 19.2.3 Tactile P300 Based BCIs 379
19.3 BCIs Based on Steady-State Evoked Responses 379
 19.3.1 Auditory Steady-State Responses 379
 19.3.2 Tactile Steady-State Responses 380
19.4 Controlling BCIs with Slow Cortical Potentials 381
19.5 Sensorimotor Rhythms and Different Mental Tasks 382
 19.5.1 Sonification of Motor Imagery 382
 19.5.2 Somatosensory Feedback for Motor Imagery 382
 19.5.3 BCIs Based Upon Imagination of Music and Rhythmization 383
 19.5.4 BCIs Based Upon Speech 384
 19.5.5 Conceptual BCIs ... 385
19.6 New Directions for Multisensory BCI Research 385
 19.6.1 Combining Visual P300 BCIs with Other Modalities 386
 19.6.2 Combining Visual SSVEP BCIs with Other Modalities 387
 19.6.3 Combining Visual Feedback with Other Modalities 387
 19.6.4 Mental Tasks and Multisensory Feedback 387
19.7 Conclusion .. 388
References .. 389
20 Characterizing Control of Brain–Computer Interfaces with BioGauges ... 395
Adriane B. Randolph, Melody M. Moore Jackson, and Steven G. Mason

20.1 Introduction ... 395
20.2 Key Factors for BCI Use ... 396
20.3 Characterizing BCI Systems .. 398
 20.3.1 BioGauges and Controllability ... 399
 20.3.2 Transducer Categories .. 399
 20.3.3 The BioGauges Experimental System ... 401
 20.3.4 Analysis Methods ... 403
 20.3.5 Validation .. 404
20.4 Summary and Future Work ... 405
References ... 406

Index ... 409
List of Contributors

Brendan Z. Allison Institute for Knowledge Discovery, Laboratory of Brain–Computer Interfaces, Graz University of Technology, Graz, Austria

Giuseppe Andreoni INDACO, Politecnico di Milano, Milan, Italy

Günther Bauernfeind Institute for Knowledge Discovery, Laboratory of Brain–Computer Interfaces, Graz University of Technology, Graz, Austria

Lugi Bianchi Neuroscience Department, Tor Vergata University of Rome, Rome, Italy

Martin Billinger Institute for Knowledge Discovery, Laboratory of Brain–Computer Interfaces, Graz University of Technology, Graz, Austria

Benjamin Blankertz Machine Learning Laboratory, Berlin Institute of Technology, Berlin, Germany

Christian Breitwieser Institute for Knowledge Discovery, Laboratory of Brain–Computer Interfaces, Graz University of Technology, Graz, Austria

Anne-Marie Brouwer TNO, Soesterberg, The Netherlands

Clemens Brunner Institute for Knowledge Discovery, Laboratory of Brain–Computer Interfaces, Graz University of Technology, Graz, Austria Swartz Center for Computational Neuroscience, UC San Diego, La Jolla, CA, USA

Ian Daly Institute for Knowledge Discovery, Laboratory for Brain–Computer Interfaces, Graz University of Technology, Graz, Austria

Lorenzo Desideri AIAS Bologna onlus, Ausilioteca AT Centre, Corte Roncati, Bologna, Italy

Stephen Dunne StarLab Teodor Roviralta, Barcelona, Spain

Günter Edlinger g.tec Medical Engineering GmbH, Schiedlberg, Austria Guger Technologies OG, Graz, Austria
Jan B.F. van Erp TNO, Soesterberg, The Netherlands

Josef Faller Institute for Knowledge Discovery, Laboratory of Brain–Computer Interfaces, Graz University of Technology, Graz, Austria

Gary Garcia-Molina Philips Research Europe, Eindhoven, The Netherlands

Christoph Guger g.tec Medical Engineering GmbH, Schiedlberg, Austria Guger Technologies OG, Graz, Austria

Hayrettin Gürkök Human Media Interaction, University of Twente, Enschede, The Netherlands

Christian Henle Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering – IMTEK, University of Freiburg, Freiburg, Germany Cortec GmbH, Freiburg, Germany

Johannes Höhne Berlin Institute of Technology, Department of Machine Learning, Berlin Brain–Computer Interface (BBCI) group, Berlin, Germany

Elisa Holz Department of Psychology I, University of Würzburg, Würzburg, Germany

Evert-Jan Hoogerwerf AIAS Bologna onlus, Ausilioteca AT Centre, Corte Roncati, Bologna, Italy

Petar Horki Graz University of Technology, Institute for Knowledge Discovery, BCI-Lab, Graz, Austria

Jing Jin Key Laboratory of Advanced Control and Optimization for Chemical Processes, East China University of Science and Technology, Shanghai, China

Tzyy-Ping Jung Swartz Center for Computational Neuroscience, Institute for Neural Computation Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA

Vera Kaiser Institute for Knowledge Discovery, Laboratory of Brain–Computer Interfaces, Graz University of Technology, Graz, Austria

Shin’ichiro Kanoh Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Taihaku-ku, Sendai, Japan

Tobias Kaufmann Department of Psychology I, University of Würzburg, Würzburg, Germany

Christian A. Kothe Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA

Alex Kreilinger Graz University of Technology, Institute for Knowledge Discovery, BCI-Lab, Graz, Austria

Andrea Kübler Department of Psychology I, University of Würzburg, Würzburg, Germany
Bram van de Laar Human Media Interaction, University of Twente, AE Enschede, The Netherlands

Anatole Lécuyer INRIA Rennes Bretagne-Atlantique, Campus Universitaire de Beaulieu, Rennes Cedex, France

Robert Leeb Chair in Non-Invasive Brain-Machine Interface, École Polytechnique, Fédérale de Lausanne, Lausanne, Switzerland

Yisi Liu Nanyang Technological University, Nanyang Ave, Singapore

Fabien Lotte INRIA Bordeaux Sud-Ouest, Talence, France

Scott Makeig Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA

Massimiliano Malavasi AIAS Bologna onlus, Ausilioteca AT Centre, Corte Roncati, Bologna, Italy

Steven G. Mason Left Coast Biometrics Ltd., Vancouver, BC, Canada

Donatella Mattia Clinical Neurophysiology, Neuroelectrical Imaging and BCI Lab, Fondazione Santa Lucia, IRCCS, Rome, Italy

Jürgen Mellinger Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany

José d. R. Millán Chair in Non-Invasive Brain-Machine Interface, École Polytechnique, Fédérale de Lausanne, Lausanne, Switzerland

Marco Molinari Spinal Cord Injury Unit, Fondazione Santa Lucia, IRCCS, Rome, Italy

Melody M. Moore Jackson Georgia Institute of Technology, College of Computing, NW Atlanta, GA, USA

Gernot R. Müller-Putz Institute for Knowledge Discovery, Laboratory of Brain–Computer Interfaces, Graz University of Technology, Graz, Austria

Roderick Murray-Smith School of Computing Science, University of Glasgow, Glasgow, Scotland

Minh Khoa Nguyen Nanyang Technological University, Nanyang Ave, Singapore

Femke Nijboer Human Media Interaction, University of Twente, AE Enschede, The Netherlands

Anton Nijholt Human Media Interaction, University of Twente, AE Enschede, The Netherlands

Paolo Perego INDACO, Politecnico di Milano, Milan, Italy

Gert Pfurtscheller Institute for Knowledge Discovery, Laboratory of Brain–Computer Interfaces, Graz University of Technology, Graz, Austria
Floriana Pichiorri Neuroelectrical Imaging and BCI Lab, Fondazione Santa Lucia, IRCCS, Rome, Italy

Danny Plass-Oude Bos Human Media Interaction, University of Twente, AE Enschede, The Netherlands

Melissa Quek School of Computing Science, University of Glasgow, Glasgow, Scotland

Adriane B. Randolph Kennesaw State University, Information Systems, Kennesaw, GA, USA

Yann Renard Independent Brain–Computer Interfaces & OpenViBE Consultant, Rennes, France

Jörn Rickert Bernstein Center Freiburg, University Freiburg, Freiburg, Germany Cortec GmbH, Freiburg, Germany

Rüdiger Rupp Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany

Gerwin Schalk Laboratory of Nervous System Disorders, Division of Genetic Disorders, Wadsworth Center, New York State Department of Health, Albany, NY, USA

Reinhold Scherer Graz University of Technology, Institute for Knowledge Discovery, BCI-Lab, Graz, Austria

Martin Schuettler Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering – IMTEK, University of Freiburg, Freiburg, Germany Cortec GmbH, Freiburg, Germany

Aureli Soria-Frisch Starlab Barcelona SL, Barcelona, Spain

Olga Sourina Nanyang Technological University, Nanyang Ave, Singapore

Thomas Stieglitz Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering - IMTEK, University of Freiburg, Freiburg, Germany Bernstein Center Freiburg, University Freiburg, Freiburg, Germany Cortec GmbH, Freiburg, Germany

I. Putu Susila Nuclear Equipment Engineering Center, National Atomic Energy Agency of Indonesia (BATAN), Tangerang Selatan, Indonesia

Michael Tangermann Berlin Institute of Technology, Department of Machine Learning, Berlin Brain–Computer Interface (BBCI) Group, Berlin, Germany

Marieke E. Thurlings TNO, Soesterberg, The Netherlands

Aleksander Väljamäe Institute for Knowledge Discovery, Laboratory for Brain–Computer Interfaces, Graz University of Technology, Graz, Austria
Bastian Venthur Machine Learning Laboratory, Berlin Institute of Technology, Berlin, Germany

Isabella C. Wagner Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands

Qiang Wang Nanyang Technological University, Nanyang Ave, Singapore

Yijun Wang Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA

Tomas E. Ward Department of Electronic Engineering, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland

Peter J. Werkhoven TNO, Soesterberg, The Netherlands

Danhua Zhu College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Assistive device</td>
</tr>
<tr>
<td>ANFIS</td>
<td>Adaptive neuro-fuzzy inference systems</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis Of Variance</td>
</tr>
<tr>
<td>AR</td>
<td>Augmented reality</td>
</tr>
<tr>
<td>ASSR</td>
<td>Auditory steady-state responses</td>
</tr>
<tr>
<td>AT</td>
<td>Assistive technology</td>
</tr>
<tr>
<td>BCI</td>
<td>Brain computer interface</td>
</tr>
<tr>
<td>BMI</td>
<td>Brain-machine interface</td>
</tr>
<tr>
<td>BNCI</td>
<td>Brain/neuronal computer interface</td>
</tr>
<tr>
<td>BSS</td>
<td>Blind source separation</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer aided design</td>
</tr>
<tr>
<td>CLIS</td>
<td>Complete locked-in syndrome</td>
</tr>
<tr>
<td>CSP</td>
<td>Common spatial patterns</td>
</tr>
<tr>
<td>ECG</td>
<td>ElectroCardiogram</td>
</tr>
<tr>
<td>ECoG</td>
<td>ElectroCorticoGram</td>
</tr>
<tr>
<td>EDA</td>
<td>ElectroDermal Activity</td>
</tr>
<tr>
<td>EEG</td>
<td>ElectroEncephaloGraphy</td>
</tr>
<tr>
<td>EM</td>
<td>Expectation maximization</td>
</tr>
<tr>
<td>EMG</td>
<td>ElectroMyoGram</td>
</tr>
<tr>
<td>EOG</td>
<td>ElectroOculoGraphy</td>
</tr>
<tr>
<td>ERD</td>
<td>Event related de-/synchronisation</td>
</tr>
<tr>
<td>ERP</td>
<td>Event-related potential</td>
</tr>
<tr>
<td>ERS</td>
<td>Event related de-/synchronisation</td>
</tr>
<tr>
<td>FES</td>
<td>Functional electrical stimulation</td>
</tr>
<tr>
<td>fNIRS</td>
<td>functional Near infrared spectroscopy</td>
</tr>
<tr>
<td>GMM</td>
<td>Gaussian mixture models</td>
</tr>
<tr>
<td>GSR</td>
<td>Galvanic skin response</td>
</tr>
<tr>
<td>hBCI</td>
<td>hybrid BCI</td>
</tr>
<tr>
<td>HMM</td>
<td>Hidden Markov models</td>
</tr>
<tr>
<td>HR</td>
<td>Heart rate</td>
</tr>
<tr>
<td>ICA</td>
<td>Independent component analysis</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>ITR</td>
<td>Information transfer rate</td>
</tr>
<tr>
<td>KNN</td>
<td>K-nearest neighbors</td>
</tr>
<tr>
<td>LDA</td>
<td>Linear discriminant analysis</td>
</tr>
<tr>
<td>LED</td>
<td>Light emitting diode</td>
</tr>
<tr>
<td>LiS</td>
<td>Locked-in syndrome</td>
</tr>
<tr>
<td>LVQ</td>
<td>Linear vector quantization</td>
</tr>
<tr>
<td>MEG</td>
<td>MagnetoEncephaloGram</td>
</tr>
<tr>
<td>ME</td>
<td>Motor execution</td>
</tr>
<tr>
<td>MI</td>
<td>Motor imagery</td>
</tr>
<tr>
<td>MLP</td>
<td>Multi-layer perceptron</td>
</tr>
<tr>
<td>NIRS</td>
<td>Near InfraRed Spectroscopy</td>
</tr>
<tr>
<td>NN</td>
<td>Neural network</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal component analysis</td>
</tr>
<tr>
<td>RESE</td>
<td>Random electrode selection ensemble</td>
</tr>
<tr>
<td>RLDA</td>
<td>Regularized linear discriminant analysis</td>
</tr>
<tr>
<td>SCI</td>
<td>Spinal cord injury</td>
</tr>
<tr>
<td>SFFS</td>
<td>Sequential floating forward search</td>
</tr>
<tr>
<td>SSSEP</td>
<td>Steady-state somatosensory evoked potential</td>
</tr>
<tr>
<td>SSVEP</td>
<td>Steady-state visual evoked potential</td>
</tr>
<tr>
<td>SVM</td>
<td>Support vector machine</td>
</tr>
<tr>
<td>UCD</td>
<td>User-centred design</td>
</tr>
<tr>
<td>VE</td>
<td>Virtual environment</td>
</tr>
<tr>
<td>VR</td>
<td>Virtual reality</td>
</tr>
</tbody>
</table>