Not every 2-tough graph is Hamiltonian

D. Bauera, H.J. Broersmab, *, H.J. Veldmanb

aDepartment of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
bFaculty of Mathematical Sciences, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Received 19 June 1997; received in revised form 27 January 1998; accepted 9 March 1999

The first two authors dedicate this paper to the memory of their dear friend and coauthor Henk Tau Veldman, who died October 12, 1998.

Abstract

We present \((\frac{2}{4} - \epsilon)\)-tough graphs without a Hamilton path for arbitrary \(\epsilon > 0\), thereby refuting a well-known conjecture due to Chvátal. We also present \((\frac{3}{4} - \epsilon)\)-tough chordal graphs without a Hamilton path for any \(\epsilon > 0\). © 2000 Elsevier Science B.V. All rights reserved.

MSC: 05C45; 05C38; 05C35

Keywords: Hamiltonian graph; Traceable graph; Toughness; 2-tough graph; Chordal graph

1. Introduction

We use Bondy and Murty’s book [5] for terminology and notation not defined here, and consider finite simple graphs only.

A graph \(G\) is Hamiltonian if it contains a Hamilton cycle (a cycle containing every vertex of \(G\)); \(G\) is traceable if \(G\) contains a Hamilton path (a path containing every vertex of \(G\)); \(G\) is Hamiltonian-connected if for every pair of distinct vertices \(x\) and \(y\) of \(G\) there is a Hamilton path with endvertices \(x\) and \(y\).

The number of components of a graph \(G\) is denoted by \(\omega(G)\). The graph \(G\) is \(t\)-tough \((t \in \mathbb{R}, t \geq 0)\) if \(|S| \geq t \cdot \omega(G - S)\) for every subset \(S\) of \(V(G)\) with \(\omega(G - S) > 1\). The toughness of \(G\), denoted by \(\tau(G)\), is the maximum value of \(t\) for which \(G\) is \(t\)-tough.

The concept of toughness of a graph was introduced by Chvátal [7]. Clearly, 1-toughness is a necessary condition for hamiltonicity, but it is not sufficient. In [7] the following conjecture is stated.

\[\text{Supported in part by NATO Collaborative Research Grant CRG 921251.} \]
\[\text{* Corresponding author.} \]
\[\text{E-mail address: broersma@math.utwente.nl (H.J. Broersma)} \]

0166-218X/00/$-see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S0166-218X(99)00141-9
Conjecture 1 (Chvátal [7]). There exists t_0 such that every t_0-tough graph is Hamiltonian.

The stronger conjecture that every t-tough graph with $t > \frac{1}{2}$ is Hamiltonian, also occurring in [7], was first disproved by Thomassen (see [4]). Enomoto et al. [8] showed that every 2-tough graph contains a 2-factor (a 2-regular spanning subgraph), while for arbitrary $\epsilon > 0$ there exist $(2 - \epsilon)$-tough graphs without a 2-factor, and hence without a Hamilton cycle. Therefore the following conjecture, usually attributed to Chvátal, appeared to be both reasonable and best possible.

Conjecture 2. Every 2-tough graph is Hamiltonian.

In [1] a construction of a nontraceable graph from non-Hamiltonian-connected building blocks was used to show that Conjecture 2 is equivalent to several other statements, some (seemingly) weaker, some (seemingly) stronger than Conjecture 2. This construction was inspired by examples of graphs of high toughness without 2-factors occurring in [3]. In the next section, we use the same construction to obtain $(\frac{2}{3} - \epsilon)$-tough nontraceable graphs for arbitrary $\epsilon > 0$, thereby refuting Conjecture 2. Conjecture 1 remains open.

2. Counterexamples to Conjecture 2

For a given graph H and two vertices x and y of H we define the graph $G(H, x, y, \ell, m)$ ($\ell, m \in \mathbb{N}$) as follows. Take m disjoint copies H_1, \ldots, H_m of H, with x_i, y_i the vertices in H_i corresponding to the vertices x and y in H ($i = 1, \ldots, m$). Let F_m be the graph obtained from $H_1 \cup \cdots \cup H_m$ by adding all possible edges between pairs of vertices in $\{x_1, \ldots, x_m, y_1, \ldots, y_m\}$. Let $T = K_{\ell}$ and let $G(H, x, y, \ell, m)$ be the join $T \cup F_m$ of T and F_m.

The proof of the following theorem occurs almost literally in [1]. For convenience we repeat it here.

Theorem 3. Let H be a graph and x, y two vertices of H which are not connected by a Hamilton path of H. If $m \geq 2\ell + 3$, then $G(H, x, y, \ell, m)$ is nontraceable.

Proof. Suppose $G(H, x, y, \ell, m)$ contains a Hamilton path P. The intersection of P and F_m consists of a collection \mathcal{P} of at most $\ell + 1$ disjoint paths, together containing all vertices in F_m. Since $m \geq 2(\ell + 1) + 1$, there is a subgraph H_{t_0} in F_m such that no endvertex of a path of \mathcal{P} lies in H_{t_0}. Hence the intersection of P and H_{t_0} is a path with endvertices x_0 and y_0 that contains all vertices of H_{t_0}. This contradicts the fact that H_{t_0} is a copy of the graph H without a Hamilton path between x and y. \qed

Consider the graph L of Fig. 1.
Theorem 4. For $\ell \geq 2$ and $m \geq 1$,
\[\tau(G(L, u, v, \ell, m)) = \frac{\ell + 4m}{2m + 1} \]

Proof. Let $G = G(L, u, v, \ell, m)$ for some $\ell \geq 2$ and $m \geq 1$, and choose $S \subseteq V(G)$ such that $\omega(G - S) > 1$ and $\tau(G) = |S|/\omega(G - S)$. Obviously, $V(T) \subseteq S$. Define $S_i = S \cap V(L_i)$, $s_i = |S_i|$, and let ω_i be the number of components of $L_i - S_i$ that contain neither u_i nor v_i ($i = 1, \ldots, m$). Then

\[\tau(G) = \frac{\ell + \sum_{i=1}^{m} s_i}{c + \sum_{i=1}^{m} \omega_i} \geq \frac{\ell + \sum_{i=1}^{m} s_i}{1 + \sum_{i=1}^{m} \omega_i}, \]

where

\[c = \begin{cases} 0 & \text{if } u_i, v_i \in S_i \text{ for all } i \in \{1, \ldots, m\}, \\ 1 & \text{otherwise}. \end{cases} \]

We now show that

\[s_i \geq 2\omega_i \quad (i = 1, \ldots, m). \]

First note that $\omega_i \leq 2$, since $L - \{u, v\}$ has independence number 2. Clearly $s_i \geq 2\omega_i$ if $\omega_i = 0$ or $\omega_i = 1$. By exhaustion it is readily checked that if $s_i \leq 3$, then $\omega_i \leq 1$. In other words, $s_i \geq 2\omega_i$ if $\omega_i = 2$.

It follows that

\[\tau(G) \geq \frac{\ell + 2 \sum_{i=1}^{m} \omega_i}{1 + \sum_{i=1}^{m} \omega_i}. \]

Since $\ell \geq 2$, this lower bound for $\tau(G)$ is a nonincreasing function of $\sum_{i=1}^{m} \omega_i$, and is hence minimized if $\omega_i = 2$ for all $i \in \{1, \ldots, m\}$. Thus

\[\tau(G) \geq \frac{\ell + 4m}{2m + 1}. \]

Set $U = V(T) \cup U_1 \cup \cdots \cup U_m$, where U_i is the set of vertices of L_i having degree 4 in L_i ($i = 1, \ldots, m$). The proof is completed by observing that

\[\tau(G) \leq \frac{|U|}{\omega(G - U)} = \frac{\ell + 4m}{2m + 1}. \quad \square \]

Corollary 5. For every $\varepsilon > 0$ there exists a $(\frac{\ell}{4} - \varepsilon)$-tough nontraceable graph.
Proof. Clearly the graph L has no Hamilton path with endvertices u and v. Hence by Theorem 3 the graph $G(L, u, v, \ell, 2\ell + 3)$ is nontraceable for every ℓ. By Theorem 4 it has toughness $(9\ell + 12)/(4\ell + 7)$ for $\ell \geq 2$. The result follows.

Remark 1. It is easily seen that Theorem 3 remains valid if “$m \geq 2\ell + 3$” and “nontraceable” are replaced by “$m \geq 2\ell + 1$” and “non-Hamiltonian”, respectively. Thus the graph $G(L, u, v, 2, 5)$ is a non-Hamiltonian graph, which by Theorem 4 has toughness 2. This graph is sketched in Fig. 2. It follows that a smallest counterexample to Conjecture 2 has at most 42 vertices. Similarly, a smallest nontraceable 2-tough graph has at most 58 $(|V(G(L, u, v, 2, 7))|)$ vertices.

Remark 2. A graph G is neighborhood-connected if the neighborhood of each vertex of G induces a connected subgraph of G. In [7] Chvátal also states the following weaker version of Conjecture 2: every 2-tough neighborhood-connected graph is Hamiltonian. Since all counterexamples to Conjecture 2 described above are neighborhood-connected, this weaker conjecture is also false.

Remark 3. Most of the ingredients used in the above counterexamples to Conjecture 2 were already present in [1]. It only remained to observe that using the specific graph L as our “building block” produced a graph with toughness at least 2.

3. Chordal graphs

A graph G is chordal if it contains no induced cycles of length at least 4. Chvátal [7] obtained $(\frac{3}{2} - \varepsilon)$-tough graphs without a 2-factor for arbitrary $\varepsilon > 0$. These examples are all chordal. Recently it was shown in [2] that every $\frac{3}{2}$-tough chordal graph has a 2-factor. Based on this, Kratsch [9] raised the question whether every $\frac{3}{2}$-tough chordal graph is Hamiltonian. Using Theorem 3 we now show that this conjecture, too, is false. A key observation in this context is that the graphs $G(H, x, y, \ell, m)$ are chordal whenever H is chordal, as is easily shown.
Consider the graph M of Fig. 3. The graph M is chordal and has no Hamilton path with endvertices p and q. Hence by Theorem 3 the chordal graph $G(M, p, q, \ell, m)$ is nontraceable whenever $m \geq 2\ell + 3$. By arguments as used in the proof of Theorem 4 its toughness is $(\ell + 3m)/(2m + 1)$ if $\ell \geq 2$. Hence for $\ell \geq 2$ the graph $G(M, p, q, \ell, 2\ell + 3)$ is a chordal nontraceable graph with toughness $(7\ell + 9)/(4\ell + 7)$. We have thus obtained the following result.

Theorem 6. For every $\varepsilon > 0$ there exists a $(7/4-\varepsilon)$-tough chordal nontraceable graph.

On the other hand Chen et al. [6] recently proved that every 18-tough chordal graph is Hamiltonian, which means that Conjecture 1 is true when restricted to chordal graphs.

References