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A path integral formalism is used to describe the propagation of photons through a transparent
medium. It is shown that the reduced phase velocity of light can be understood quantitatively by
taking into account the contribution of all the possible classical paths the photon could have taken
in order to reach a detector. These paths include all the multiple scattering processes by the atoms
in the medium. ©1997 American Association of Physics Teachers.
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I. INTRODUCTION

The work presented in this article was triggered by qu
tion No. 21 in the July 1995 issue of this journal, asking h
Snell’s law could be understood from a quantum mechan
point of view. Or, to quote the final sentence of this questi
‘‘ Is there an easy way to see in quantum mechanics that
might be expected to travel at different speeds in differ
media.’’ 1 Once this is understood, Snell’s law is a cons
quence. The qualitative answer to this question was given
Feynman in his masterpiece ‘‘QED: The strange world
atoms and photons.’’2 This book was written for the layma
and although it does not contain a single formula, it expla
all the essentials of physical optics, including the use of co
plex phasor algebra~introduced purely graphically! and a
1156 Am. J. Phys.65 ~12!, December 1997
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quantum interpretation of these phenomena. Reading
book gives physicists the feeling that they somehow h
missed some basic literature on the quantum mechanica
terpretation of common optical phenomena, but after a lite
ture search we must conclude that this is not the case:
ideas described by Feynman are his personal interpreta
of well-known phenomena. The views he presented are c
sistent with his famous path integral formulation, but no
applied to the propagation of photons. In this view the pro
ability of detecting a photon can be found from the analy
of all the possible alternative classical paths the photon co
have taken to reach the detector. Apart from certain place
his Lectures on Physics,3 I have not found a consistent de
scription of this sort in the literature.

Feynman was fascinated by the phenomena of propaga
1156© 1997 American Association of Physics Teachers
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of light in a refractive medium quite early in his scientifi
career. As J. A. Wheeler4 remembered: ...and how could we
understand, in terms of scattering and nothing but scatt
ing, the propagation of a photon through a medium of va
able refraction index... How many wonderful aspects
physics came together (in this enterprise): ...refractive ind
as a cumulative consequence of many individual scatte
processes; spirals—Cornu and other—as a tool to add
scattered waves; and as a motto to inspire us, the phr
‘‘everything as scattering’’. What fun it was... That wo
never got published but both of us went on in postwar ye
to capitalize on the insights we had won from it.

In this article I give a quantitative description of some
the ideas presented by Feynman.2 The main purpose is to
describe the propagation of photons through a transpa
medium in terms of scattering amplitudes. In essence it tu
out to be a reinterpretation of the treatment of this probl
given by M. B. James and D. J. Griffiths,5 who used a per-
turbative approach to analyze the polarization of the med
by an electric field. The reader is advised to consult t
article for a comparison. I will start by stating the basic a
sumptions of the path integral formalism applied to t
propagation of a photon.

II. BASIC ASSUMPTIONS

The approach followed in this paper is based upon
path integral formalism described in detail in the clas
book of Feynman and Hibbs.6 It is necessary, however, t
postulate an expression for the propagation of a single p
ton which cannot be found in the standard literature on p
integrals. We will make the following basic assumptions.

~1! When light is detected it is manifest as a discrete p
ticle with energy\v wherev is the frequency of the photon

~2! A photon always moves with the speed of lightc.
~3! The probability of detecting a photon at timet at po-

sition r is proportional toA(r ,t). A* (r ,t), whereA(r ,t) is a
complex number called the detection amplitude.

~4! If there are different alternative ways~paths! that a
photon could have taken in order to arrive at positionr at
time t and it is impossibleto determine, in principle, which
of these paths the photon has actually taken without dist
ing the outcome of the experiment, we find the amplitu
A(r ,t) by summing up all the amplitudesAp(r ,t) belonging
to possible pathsp. This is the case of ‘‘indistinguishabl
alternatives.’’

~5! If there are different alternative ways~paths! that a
photon could have taken in order to arrive at positionr at
time t but it is possibleto determine in principle which o
these alternatives the photon has actually taken without
turbing the outcome of the experiment, we find the proba
ity of detecting the photon by summing up all the probab
ties belonging to possible pathsp.

~6! If a particular path can be divided into a number
successive paths or events, the resulting amplitude for
path is equal to the product of the amplitudes of the succ
sive paths or events.

~7! If a photon travels from positionQ to positionR and
the amplitude to be atQ at timet is known to beAQ(t), then
the amplitude associated with a particular path going fromQ
to R is proportional toAQ(t2s/c), wheres is the length of
1157 Am. J. Phys., Vol. 65, No. 12, December 1997
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this path. The proportionality constant has to be chosen s
that the total probability of detecting photons remains co
stant.

It is important to note that although we will talk abou
possible paths that a photon has taken, the essence is th
long as there is no way of telling which path the phot
actually has taken, we can best imagine that the photon
taken all the paths simultaneously. In other words, the p
ton as a well-defined discrete particle is only manifest at
moment it is actually destroyed by measuring it with a d
tector. For the remainder of this article we will consider t
case of a simple monochromatic light source for which,
terms of conventional electromagnetic field theory, the el
tric field in vacuum can be approximated by a plane wa
propagating along thex axis:

E5E0 cos~kx2vt !, ~1!

where k is the wave vector, which is equal tov/c. For
convenience we have chosen the phase to be zero fort50 at
x50.

The intensity of this wave is given by the magnitude of t
Poynting vector:

I 5
e0c

2
E0

2. ~2!

~8! We now postulate that for this situation, where t
light propagates without any disturbances, the amplitude
detecting a photon at positionx, y, z at time t is given by

A0~x,t !5Aei ~kx2vt !. ~3!

The central rule of the path integral formalism states t
the amplitude of a certain path is proportional toe( i /\)Spath

whereSpath is the action given by6

Spath5E
path

~T2V!dt ~4!

and T and V are the kinetic and potential energy, respe
tively. For the propagation of a photon we have in effe
taken T5\v ~postulate 1! and V50 so that withk5v/c
anddt5ds/c for each path@postulate~2!#, the amplitude for
a certain path of lengths is proportional toeiks, in agreement
with postulates~7! and~8!. Thus the action is proportional to
the path length and, because of postulate~2!, also to the
traveling time.

The amplitudes are now normalized so that the probab
that a photon will pass through an areaQ during a timedt is
given by

P5A2Odt. ~5!

Therefore, the light intensity is given by

I 5A2\v. ~6!

By comparison, we find a relation betweenA andE0 :

A5F ce0

2\v G1/2

E0 . ~7!

From this relation betweenA andE0 we see that the essenc
of our postulate~8! @Eq. ~3!# is that the amplitude of detect
ing a photon is proportional to the electric field of Eq.~1!
provided that it is written in complex notation@see Eq.~8!
below#. To avoid complications that might obscure the e
sence of our approach we limit ourselves to situations
1157Bart G. de Grooth
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which the polarization of light can be ignored so that we c
use scalar notation. Generalization of these ideas to inc
polarization is relatively straightforward. For an extensi
qualitative description of how these postulates lead to
understanding of diffraction theory I refer to Ref. 2.

III. PHOTON PROPAGATION IN A TRANSPARENT
MEDIUM OF INFINITE LENGTH

The purpose of this section is to understand how the
parent velocity of light in a transparent medium is reduc
For this we consider the situation such that forx,0 we have
vacuum and forx.0 space is filled with a homogeneou
transparent dielectric medium with refractive indexn ~Fig.
1!. We will show that with our assumptions we can repr
duce the well-known results for transmission and reflect
of plane monochromatic light at normal incidence on a tra
parent medium.

A. Electromagnetic approach

We begin by recollecting the conventional description
ing electromagnetic field theory.7,8 Let the incoming light be
described by the electric field propagating in thex direction:

E~x,t !5E0ei ~kx2vt !, ~8!

where for convenience we use complex notation, where
understood that from now on the physical electric field
given by the real part ofE. The phase has been chosen to
zero for t50 at x50.

Let this field enter a medium at positionx50. Then the
transmitted field at positionx in the medium is given by7

E~x,t !5
2

n11
E0ei ~nkx2vt !. ~9!

Thus the field propagates with a reduced~phase! velocity
equal tov/nk5c/n. As we shall see later it turns out that
is more practical to work in terms of the electric susceptib
ity x by using

Fig. 1. A plane monochromatic beam of light originating fromx,0 in
vacuum is incident normally on a medium with refractive indexn at x.0.
1158 Am. J. Phys., Vol. 65, No. 12, December 1997
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n5A11x. ~10!

Expanding Eq.~9! in terms ofx we can write

E~x,t !5F11S 2
1

4
1

ikx

2 Dx1S 1

8
2

ikx

4
1

~ ikx!2

8 Dx2

1S 2
5

64
1

5ikx

32
2

3~ ikx!2

32
1

~ ikx!3

48 Dx3

1O~x4!GE0ei ~kx2vt !. ~11!

In this way the electric field is mathematically rewritten as
sum of terms, for which each individual term apparent
propagates with a~phase! velocity of v/k5c! It will now be
shown that the terms in the expansion can be interpre
physically as originating from contributions of all the pos
sible ways the photon could have taken in order to be d
tected at positionx at time t. The first term represents the
amplitude that a photon has followed the direct path betwe
light source and detector without any scattering. The seco
term will be shown to be due to the amplitude of all th
possible paths where the photon has scattered once, the
term belongs to paths that contain double scattering, etc.

B. Path integral formulation

As discussed above, we now reinterpret thecomplexin-
coming electric field as being proportional to the amplitud
for detecting a photon.

Suppose we detect a photon at position (x,0,0) in the me-
dium (x.0) at timet. In order to find the amplitude for this
to occur, we have to sum up the amplitudes of all the po
sible ways the photon could have taken in principle fro
source to detector~see Fig. 2!.

First we have the amplitude that the photon did not scat
at all. This is simply:

A0~x,t !5Aei ~kx2vt !, ~12!

the amplitude for a photon in vacuum@postulate~8!#.
But the photon could also be emitted by the light source

some earlier time and be scattered at different positions
fore it reached the detector. Since under the condition t
the light source is continuous there is no way of tellin
which of all the possible paths the detected photon actua
has taken, we have to sum up all the amplitudes to be able

Fig. 2. In order to calculate the probability of detecting a photon at positi
(x,0,0) at timet, we have to consider all the different paths the photo
could have taken. Generic paths up to second-order scattering are show
1158Bart G. de Grooth
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find the total amplitude to detect the photon@postulate~4!#. It
is our job to find the amplitudes of all these processes an
add them up.

In order to do this, we first have to describe a single sc
tering process of a photon by the atoms of the medium.
this we consider a thin slab of the medium of thicknessdx8
extending in they–z plane positioned atx5x8. As will be
shown in the Appendix, the contribution of all the possib
ways that a photon arrives at the detector located at pos
(x,0,0) via scattering with the atoms in this slab is given

dA~x8;x,t !5A0~x8,t !beik~x2x8!dx8, ~13!

where b is some complex constant that is specific to t
dielectric medium.

We are now ready to analyze the different scattering c
tributions. First we consider single scattering contributions
the forward directionAf , which we will graphically display
by

where the scattering occurs somewhere on the plane ax8
and the detector is located on thex axis at positionx. We
chop the medium into slabs of thicknessdx8 and by using
Eqs.~12! and ~13! and integrating over all the possible va
ues ofx8 we can write for the resulting amplitudeAf

9

Af~x,t !5E
0

x

A0~x8,t !beik~x2x8!dx85bxAei ~kx2vt !. ~14!

Next we evaluate the contributions due to a single ba
ward scattering. For this we have to sum the contributions
all the possible ways that a photon can be scattered at s
positionx8 in order to arrive at the detector at positionx at
time t, wherex8.x. We get

Ab~x,t !5E
x

`

A0~x8,t !beik~x82x!dx8

5bAei ~2kx2vt !E
x

`

e2ikx8dx8

52
b

2ik
Aei ~kx2vt !. ~15!

As usual, the upper limit of this integral is taken to be eq
to 0 for realistic physical situations.10

We now continue with second-order scattering proces
We have the following four contributions~see Fig. 2!.

Two forward scattering processes.
Let the first scattering process occur at a positionx9 be-

tween x950 and x95x and the second atx8 with x9,x8
,x. Using our result for the amplitude of a single forwa
1159 Am. J. Phys., Vol. 65, No. 12, December 1997
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scattering we have

Af f~x,t !5E
0

x

Af~x8,t !beik~x2x8!dx85
b2x2

2
Aei ~kx2vt !.

~16!

Forward scattering followed by backward scatterin
yields

Af b~x,t !5E
x

`

Af~x8,t !beik~x82x!dx8

5b2Aei ~2kx2vt !E
x

`

x8e2ikx8dx8

5S 1

~2ik !22
x

2ik Db2Aei ~kx2vt !, ~17!

where the integral is easily evaluated by integration
parts.11

Next, we have the alternative process,backward scatter-
ing followed by forward scattering:

This gives

Ab f~x,t !5E
x

`

Ab~x8,t !beik~x82x!dx8

5
1

~2ik !2 b2Aei ~kx2vt !. ~18!

Finally, we have to evaluate the contributions oftwo back-
scattering events:
1159Bart G. de Grooth
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This process can be viewed as a scattering atx8(0,x9,x)
of a backscattered amplitude. Thus we may write

Abb~x,t !5E
0

x

Ab~x8,t !beik~x2x8!dx8

52
b2x

2ik
Aei ~kx2vt !. ~19!

This completes all second-order scattering processes.
For the total amplitude we have up to now:

A~x,t !5A0~x,t !1Af~x,t !1Ab~x,t !1Af f~x,t !1Abb~x,t !

1Af b~x,t !1Ab f~x,t !5F11S 21

2ik
1xD

3bS 1

2~ ik !22
x

ik
1

x2

2 Db2GAei ~kx2vt !. ~20!

Now let us compare this result with the conventional desc
tion given in Eq.~11!. Evidently, if we put

b5
ikx

2
, ~21!

the expansions of Eqs.~11! and ~20! are identical:

A~x,t !5F11S 2
1

4
1

ikx

2 Dx1S 1

8
2

ikx

4
1

~ ikx!2

8 Dx2

1O~x3!GAei ~kx2vt !. ~22!

Thus we see that~up to second-order scattering process!
we obtain identical results from both points of view. No
that the scattering process, described by the parameterb, is
proportional to the susceptibility of the mediumx, and thatb
is purely imaginary.

We can now continue with higher-order scattering p
cesses. If we define the coefficients for thep-order scattering
process as

A~x,t !5F (
p50

`

apbpGAei ~kx2vt !, ~23!

we can obtain a general recursion relation between the
plitude due top11 scattering processes in terms of the a
plitude of p scattering processes. This can be done by fi
dividing the amplitudes forp scattering processes into pat
that arrive from positive and negativex directions, respec-
tively. Then we add one extra forward and one extra ba
ward scattering process to these paths, yielding four in
grals. Summation leads to the result:

ap11~x!5bE
0

x

ap~x8!dx81be22ikxE
x

`

ap~x8!e2ikx8dx8.

~24!

Application of this recursion relation yields for the ne
term (p53) in the expansion:

S 2
5

64
1

5ikx

32
2

3~ ikx!2

32
1

~ ikx!3

48 Dx3, ~25!

in agreement with Eq.~11!. Using the method described i
Ref. 5 a general proof can be given that the recursion rela
is in agreement with Eq.~11!.
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IV. REFLECTION

We could obtain the results for the amplitude of reflecti
using the approach of the previous section, but we can
the results more easily as follows. The treatment given ab
included forward scattering as well as backscattering of p
tons. Therefore, we should obtain the equations for reflec
from the previous section if we simply evaluate the scatte
amplitudes forx50 and omit the amplitude of the unsca
tered photon. Since all the contributions obtained in this w
are due to paths that arrive atx50 from positivex values,
the resulting amplitudes all propagate further in the nega
x direction without any scattering afterwards. We thus g
from the result of the previous section:

Ar~x,t !5@2 1
4 x1 1

8 x22 5
64x31O~x4!#Aei ~2kx2vt !.

~26!

The conventional EM treatment gives for the reflect
light:7

Er~x,t !5
12n

n11
E0ei ~2kx2vt !. ~27!

Expanding this in terms ofx using Eq.~10! we obtain

Er~x,t !5@2 1
4 x1 1

8 x22 5
64x31O~x4!#E0ei ~2kx2vt !.

~28!

Thus for reflection, too, the results of both treatments
exactly the same, as they should be. An important differe
between the treatments is, however, that in the usual elec
magnetic approach the reflection is taken to be caused
by the surfaces of the dielectric, whereas in the scatte
approach we clearly see that all the atoms in the med
contribute to the reflection.

It is interesting to note that the arguments used in
beginning of this section are equivalent to the statemen
the electromagnetic theory that at the boundary the elec
field must be continuous.

V. PHOTON PROPAGATION IN A TRANSPARENT
MEDIUM OF FINITE LENGTH

We now apply the formalism to transmission and refle
tion at a transparent plate with a refractive indexn for light
incident normal to the plate. Let the plate be positioned
tweenx50 andx5L, and oriented normal to thex axis ~see
Fig. 3!. The only difference from the preceding sections
that now the upper limit of the integrals involving bac
scattering are restricted tox5L.

For the analysis it is helpful to evaluate first the amplitu
somewhere in the medium due to a single forward scatter
Af(x), and due to a single backwards scattering,Ab(x).
Leaving out the exponential time factor that, as we have s
above, is common to all terms when we use monochrom
light, we find:

Af~x!5Aeikx
ikx

2 E
0

x

dx85Aeikx
ikxx

2
, ~29!

Ab~x!5
ikx

2 E
x

L

Aeikx8eik~x82x!dx8

5Aeikx
x

4
~e2ik~L2x!21!. ~30!
1160Bart G. de Grooth



ew
w

n

the

l

on-
re
are

om-
., a

vior

in

in

e of
um

-
of
to

that
en

ret
of

q.
ed
d.

n-
nd
the

the
ne
de
x-
the
ite
an
With these amplitudes we can now evaluate the first f
terms for transmission and reflection. For transmission
have:

A0~L !5AeikL, ~31!

Af~L !5AeikL
ikL

2
x, ~32!

Af f~L !5
ikx

2 E
0

L

Af~x8!eik~L2x8!dx8

52AeikL
k2L2

8
x2, ~33!

Abb~L !5
ikx

2 E
0

L

Ab~x8!eik~L2x8!dx8

5AeikLS 2
1

16
2

ikL

8
1

1

16
e2ikLDx2. ~34!

This yields for the total transmission amplitude up to seco
order inx:

At~L !5AeikLF11
ikL

2
x1S 2

1

16
2

ikL

8
2

k2L2

8

1
1

16Dx21O~x3!G . ~35!

For reflection we find contributions:

Ab~0!5
x

4
A~e2ikL21!, ~36!

Af b~0!5Ab f~0!5
ikx

2 E
0

L

Af~x8!eikx8dx8

5S 1

16
2

1

16
e2ikL1

ikL

8
e2ikLDAx2. ~37!

So that up to second order inx we have for reflection:

Ar5S 1

4
e2ikL2

1

4DAx1S 1

8
2

1

8
e2ikL

1
ikL

4
e2ikLDAx21O~x3!. ~38!

Fig. 3. Light is normally incident on a slab of thicknessL.
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Classical electromagnetic analysis of this problem yields
result.12

Et5E0einkL
12r 2

12r 2e2inkL ~39!

and

Er5E0

r 2re2inkL

12r 2e2inkL , ~40!

where

r 5
12n

n11
. ~41!

Expanding these results in terms ofx gives results identica
to the treatment given above.

Once more we see that all the molecules in the slab c
tribute, in principle, to the reflection, but the results a
equivalent to the treatment where only the boundaries
thought to contribute to reflection.

Although the analysis given here assumes a plane inc
ing wave, the results will hold also for realistic beams, e.g
Gaussian laser beam of diameterD, provided that the diver-
gence of the beam over a distanceL is neglectible which
requires thatLl/D2!1. In practice, this meansD@l, so
that the Gaussian profile also provides the required beha
for f (u) in Eq. ~A2!.

VI. DISCUSSION

Let us begin the discussion with a citation of Feynman
his original paper on the path integral formalism:13 ‘‘ al-
though it does not yield new results there is pleasure
recognizing old things from a new point of view.’’ This is, of
course, true for the present approach. The main advantag
the description given here is that it deals with the quant
nature of photons: it combines the wave-like properties~re-
sulting in the phase delay! and the particle properties~propa-
gation of single photons! in a simple theory. The path inte
gral formalism very clearly illustrates the essential wonder
quantum mechanics in an appealing way: We only have
consider familiar classical paths, but the strange thing is
if there is no way of telling which path has actually be
taken, the particle in a way has taken all the paths.

The essential result of our analysis is that we can interp
the propagation of a photon through a medium as a sum
alternative paths. In examining the exponential term in E
~9! one would expect at first sight that it should be expand
in terms of (n21). Indeed, this is what Feynman suggeste2

However, this works only for values ofn close to 1. The fact
that we have to expand the exponent in terms ofx is, from a
physical point of view, not really surprising since the esse
tial process involved in the interaction between light a
matter, dipole scattering, depends on the polarizability of
medium.

A remarkable outcome of an analysis of this sort is that
resulting amplitude is finite. By adding all possible paths o
might fear that the resulting expression for the amplitu
would be divergent. Indeed, the individual terms in our e
pression can be gigantic. As an example, let us consider
situation where the light source is embedded in an infin
medium with refractive index close to 1, so that we c
1161Bart G. de Grooth
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approximaten21 by x/2. In that case, using the electroma
netic description the oscillating part of the electric field c
be expanded in terms ofx as:

eik~n21!x5 (
p50

`
~ ikx~n21!!p

p!

5 (
p50

`
~ ikx~x/2!!p

p!
5 (

p50

`
~bx!p

p!
, ~42!

which according to our new interpretation indicates that
process can be described by forward scattering proce
only, since it is easy to show that the amplitude ofp forward
scattering processes is given by the terms in the summa
~On the average, the amplitudes of backward scattering
cesses cancel for continuous media.! For values ofx@1/k
the largest term in this expansion is obtained forp52 ibx.
Even for relatively small values ofx, say 1 mm andn
51.01, this yields a number equal to 125.6125.6/125.6!,
which is about 1.2531053 for visible light with a wavelength
of 500 nm. We are saved only by the fact that these te
oscillate so rapidly that the net result is less than 1. Howe
this makes it difficult or impossible to treat the expansion
a perturbative approach where we could limit the analysis
those terms that contribute significantly to the total amp
tude.

In deriving our results for the amplitude to detect a pho
propagating through a refractive medium, we paid no att
tion to the normalization. As it turns out, our equations
the amplitude are the same as those for the complex ele
field. Therefore, normalization of the amplitudes to conse
the total probability for detecting a photon is equivalent
the normalization of intensity in the electromagnetic case
we insist that the probability of detecting a photon in tim
intervaldt in an areaO should be given by the square of th
modulus of the amplitude, we obtain the correct results
generalizing Eq.~7! and replacinge0 by e.

It should be noted that in the above treatment we de
mined the phase velocity of light. To determine the veloc
with which a light pulse propagates through the medium
could follow the usual treatment.14 In short, the pulse is de
composed into its Fourier components. Without dispers
each component travels with the reduced speedc/n, so that
the pulse also travels with this speed. In a dispersive
dium, the pulse will propagate with the group velocity. A
though simple and elegant, a treatment similar to the tr
ment given above, where the time delay of the different pa
is taken into account, would be desirable from a didac
point of view. Moreover, the simple Fourier approach yie
wrong results for regions with anomalous dispersion15 and
no distinction is made between signal and group veloc
~see also Ref. 16 and references therein for a discussio
the meaning of different velocities of light!. A treatment
along the lines outlined above should enlighten this more
an example, the so-called front velocity mentioned by B
louin is evidently caused by the unscattered photons.

Finally, we come back to the original question abo
Snell’s law.1 Our result suggests that we can describe
propagation of photons through a transparent medium w
an effective action proportional to the time of transit fro
source to detector along a straight line path, but with ‘‘effe
tive’’ speedc/n in the transparent medium. Now in order
find the amplitude to go from one point in medium A
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another point in a different medium B, we have to sum t
amplitudes of all the possible ways. Following the usual
gument in discussing path integrals,6 we now conclude that
only those paths for which the exponents are stationary g
contributions that are not canceled by neighboring path17

The condition for this to occur is just equivalent to Ferma
principle, from which Snell’s law is obtained directly.
should be noted, however, that in this reasoning we assu
that the effective action formula also holds for the case t
the boundary of the medium is not perpendicular to
propagation direction of the light. This remains to be prov
For this case, too, it would be nice to evaluate the probl
by summing up the scattering amplitudes directly, eventua
leading to Ewald–Oseen’s extinction theorem.18 For another
approach to a quantum mechanical description of Snell’s
and the Ewald–Oseen theorem the reader is referred to C
and Milonni.19
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APPENDIX

The treatment given below serves as a heuristic deriva
of the amplitude for scattering by an infinitesimal slab
dielectric material. The situation described macroscopica
with Eq. ~9! will be treated microscopically with the linea
electric dipole approximation for the interaction betwe
light and atoms. The validity of this approximation is di
cussed in Ref. 20. Furthermore, it is assumed that the
quency of the light is much smaller than the atomic exci
tion frequencies, which is the condition of Rayleigh lig
scattering. In this approximation the interaction between
oms and the electromagnetic field only occurs at the posi
of the atoms, and the interaction consists of annihilation o
photon from the field followed instantaneously by the c
ation of a photon of the same frequency with a dipole an
lar distribution.20,21 Finally, we will assume that the medium
is isotropic.

Consider a thin slab of material positioned atx8 with
thicknessdx8 extending parallel to they–z plane ~Fig. 4!.
The amplitude for an undisturbed photon to arrive at posit
x8 is given by Eq.~3!. We will now derive a relation for the
amplitude that a photon is scattered by the atoms in the
toward the detector placed at (x,0,0). The scattering proces
is modeled as follows: There is an amplitude that a pho
will be absorbed~annihilated! by an atom and that subse
quently a new photon is emitted in a new direction. For t
present purpose we can limit ourselves to linear elastic
pole scattering. Then the amplitude of the emitted~scattered!
photon is proportional to the amplitude of the incoming ph
ton ~linear! and it has the same energy as the incoming p
ton ~elastic!. We also restrict ourselves to nonresonant int
actions, which means that the interaction is instantane
The amplitude to scatter in a direction making an angleu
with the x axis will be dependent on that angle. Let th
dependency be described by the functionf (u) with f (0)
51. Integrated over a closed spherical surface cente
around the scattering atom, theprobability to detect the scat-
tered photon must be constant, independent of the radiu
1162Bart G. de Grooth
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the sphere. Therefore, theamplitudeto detect the photon at
position (x,0,0) should be proportional to the inverse ofr ,
the distance between the scattering atom and the detecto

We first evaluate the contribution for an infinitesimal vo
ume elementdV. Within this volume the possible indistin
guishable alternatives are proportional to the number of
oms in this volume, and thus the amplitude will b
proportional todV @using postulate~3!#. Since we assumed
the amplitudes to be scalar, the contribution of the molecu
in the ring with radiusr ~see Fig. 4! is obtained by integrat-
ing overf :

dA52pr
f ~u!

r
aA0~x8,t2r /c!dr dx8

52pr
f ~u!

r
aAei ~k~x81r !2vt !dr dx8, ~A1!

wherea is a constant for the material considered, that defin
the scattering amplitude of a unit volume of the material f
u50. We have used postulate~6! and~7!. Using the fact that
rdr5rdr we obtain

dA~x8;x,t !52paAei ~kx82vt !E
x2x8

`

eikr f ~u!dr dx8

522paAei ~kx82vt !
eik~x2x8!

ik
dx8. ~A2!

The integral can be evaluated in this way provided th
f (u) gradually decreases whenu increases from 0 to 90
deg22 and thatx2x8@l. If we collect the constants in the
above equation into a new constantb52p ia/k, we obtain
the relation used in the text:

dA~x8;x,t !5Aei ~kx82vt !beik~x2x8!dx8

5A0~x8,t !beik~x2x8!dx8. ~A3!

The formula was derived for forward scattering. For bac
scattering the argument in the exponential isik(x82x).

Thus the difference in phase between the amplitude for
direct ~unscattered! path and the total amplitude for all path

Fig. 4. Calculating the amplitude due to scattering off an infinitesimal th
sheet of dielectric material.
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that have scattered once is only given by the phase of
constantb. As will become clear from Eq.~21!, b is purely
imaginary, which yields a phase delay of 90 deg for t
scattered contribution. Ultimately, this phase delay accou
for the reduced phase velocity. This analysis clearly illu
trates the relation between path integral formalism and H
gens principle.13 The fact thatb is purely imaginary is in
agreement with the required phase difference between
nonscattered and scattered contributions ofp/2 ~see Ref. 7,
p. 438!. The functionf (u) plays the same role as the obliq
uity factor ~see Ref. 7, p. 434!.

The evaluation of Eq.~A2! given here is only valid in the
limit x2x8@l so that the integrand has made a sufficie
number of oscillations before it attenuates. For smaller v
ues of x2x8 the exact formula off (u) should be used,
which would require one to take into account the polarizat
of the light. An alternative approach is to calculate the el
tric field due to the scattering of the molecules in the s
using the electromagnetic approach outlined by James
Griffiths.5 Their result—Eq.~20!—can be rewritten as

dE5
ikx

2
eik~x2x8!E~x,t !dx8. ~A4!

If we now interpret this complex field to be proportional
the amplitude, as we did in Sec. II, this result is in agreem
with ~A3!. Moreover, we have thus obtained the identific
tion betweenb and x @Eq. ~21!# immediately. It should be
noted that with this approach the polarization of the light
treated correctly. The essential restriction in the model
James and Griffiths is that the polarization is linear to
electric field and has no phase delay with respect to the
cillating field. This is equivalent to the condition of linea
elastic dipole scattering for which the fully quantum m
chanical treatment gives identical results as the class
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