Why is the propagation velocity of a photon in a transparent medium
reduced?
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A path integral formalism is used to describe the propagation of photons through a transparent
medium. It is shown that the reduced phase velocity of light can be understood quantitatively by
taking into account the contribution of all the possible classical paths the photon could have taken
in order to reach a detector. These paths include all the multiple scattering processes by the atoms
in the medium. ©1997 American Association of Physics Teachers.

I. INTRODUCTION quantum interpretation of these phenomena. Reading this
book gives physicists the feeling that they somehow have
The work presented in this article was triggered by quesmissed some basic literature on the quantum mechanical in-
tion No. 21 in the July 1995 issue of this journal, asking howterpretation of common optical phenomena, but after a litera-
Snell's law could be understood from a quantum mechanicaiure search we must conclude that this is not the case: The
point of view. Or, to quote the final sentence of this questionideas described by Feynman are his personal interpretation
“Is there an easy way to see in quantum mechanics that lighaf well-known phenomena. The views he presented are con-
might be expected to travel at different speeds in differensistent with his famous path integral formulation, but now
media” ! Once this is understood, Snell's law is a conse-applied to the propagation of photons. In this view the prob-
guence. The qualitative answer to this question was given bgbility of detecting a photon can be found from the analysis
Feynman in his masterpiece “QED: The strange world ofof all the possible alternative classical paths the photon could
atoms and photons?This book was written for the layman have taken to reach the detector. Apart from certain places in
and although it does not contain a single formula, it explainsis Lectures on Physics| have not found a consistent de-
all the essentials of physical optics, including the use of comscription of this sort in the literature.
plex phasor algebraintroduced purely graphicallyand a Feynman was fascinated by the phenomena of propagation
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of light in a refractive medium quite early in his scientific this path. The proportionality constant has to be chosen such

career. As J. A. Wheeléremembered: and how could we that the total probability of detecting photons remains con-

understand, in terms of scattering and nothing but scatterstant.

ing, the propagation of a photon through a medium of vari- It is important to note that although we will talk about

able refraction index... How many wonderful aspects ofpossible paths that a photon has taken, the essence is that as

physics came together (in this enterprise): ...refractive indexong as there is no way of telling which path the photon

as a cumulative consequence of many individual scatteringctually has taken, we can best imagine that the photon has

processes; spirals—Cornu and other—as a tool to add upaken all the paths simultaneously. In other words, the pho-

scattered waves; and as a motto to inspire us, the phraston as a well-defined discrete particle is only manifest at the

“everything as scattering”. What fun it was... That work moment it is actually destroyed by measuring it with a de-

never got published but both of us went on in postwar yearsector. For the remainder of this article we will consider the

to capitalize on the insights we had won from it case of a simple monochromatic light source for which, in
In this article | give a quantitative description of some of terms of conventional electromagnetic field theory, the elec-

the ideas presented by Feynnfafihe main purpose is to tric field in vacuum can be approximated by a plane wave

describe the propagation of photons through a transparepropagating along the axis:

medium in terms of scattering amplitudes. In essence it turns  E=E; cogkx— wt), (1)

out to be a reinterpretation of the treatment of this problem . o

given by M. B. James and D. J. GriffitAsyho used a per- where k is the wave vector, which is equal @/c. For

turbative approach to analyze the polarization of the mediungonvenience we have chosen the phase to be zete-forat

by an electric field. The reader is advised to consult thisx=0.

article for a comparison. | will start by stating the basic as- The intensity of this wave is given by the magnitude of the

sumptions of the path integral formalism applied to thePoynting vector:

propagation of a photon.

600
I=—- E3. 2)
(8) We now postulate that for this situation, where the
II. BASIC ASSUMPTIONS light propagates without any disturbances, the amplitude for
detecting a photon at position y, z at timet is given by
The approach followed in this paper is based upon the Ao(x,t)er“kX“”‘). 3)

path integral formalism described in detail in the classic
book of Feynman and HibWslt is necessary, however, to  The central rule of the path integral formalism states that
postulate an expression for the propagation of a single phahe amplitude of a certain path is proportional g&y/")Seain

ton which cannot be found in the standard literature on patk)vherespath is the action given iy

integrals. We will make the following basic assumptions.

(1) When light is detected it is manifest as a discrete par- :f T-V)dt @)
ticle with energyiw wherew is the frequency of the photon. Spath path(

(2) A photon always moves with the speed of light o )

(3) The probability of detecting a photon at tineat po- qnd T and V are the kln_etlc and potential energy, respec-
sitionr is proportional toA(r,t). A*(r,t), whereA(r,t) is a tively. For the propagation of a photon we h_ave in effect
complex number called the detection amplitude. takenT=fiw (postulate 1 and V=0 so that withk=w/c

(4) If there are different alternative way®athg that a  anddt=ds/c for each patfipostulate(2)], the amplitude for
photon could have taken in order to arrive at positioat @ certain path of lengthis proportional tee'**, in agreement
time t and it isimpossibleto determine, in principle, which With postulateg7) and(8). Thus the action is proportional to
of these paths the photon has actually taken without disturithe path length and, because of postuléZg also to the
ing the outcome of the experiment, we find the amplitudetraveling time. _ 3
A(r,t) by summing up all the amplitudes,(r,t) belonging The amplitudes are now normalized so that the probability
to possible pathg. This is the case of “indistinguishable thata photon will pass through an aQaduring a timedt is
alternatives.” given by

(5) If there are different alternative waypaths that a P=A20dt. (5)
photon could have taken in order to arrive at positioat o o
time t but it is possibleto determine in principle which of Therefore, the light intensity is given by
these alternatives the photon has actually taken without dis- | = a2 ,. (6)
turbing the outcome of the experiment, we find the probabil-
ity of detecting the photon by summing up all the probabili- By comparison, we find a relation betweédnandE:

ties belonging to possible patips cen 112
(6) If a particular path can be divided into a number of A= 0 Eo. 7
successive paths or events, the resulting amplitude for this 2hw

path is equal to the product of the amplitudes of the succes=rom this relation betweea andE, we see that the essence

sive paths or events. . - of our postulatg8) [Eq. (3)] is that the amplitude of detect-
(7) If a photon travels from positioR to positionR and  jng 4 photon is proportional to the electric field of Ha)

the amplitude to be & at timet is known to beAq(t), then  provided that it is written in complex notatidisee Eq.(8)

the amplitude associated with a particular path going f@m below]. To avoid complications that might obscure the es-

to R is proportional toAq(t—s/c), wheres is the length of sence of our approach we limit ourselves to situations in
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Fig. 2. In order to calculate the probability of detecting a photon at position
(x,0,0) at timet, we have to consider all the different paths the photon
could have taken. Generic paths up to second-order scattering are shown.

I‘ _Ia n= 1+X. (10)
Expanding Eq(9) in terms of y we can write

Fig. 1. A plane monochromatic beam of light originating from:0 in 1 ikx 1 ikx (ikx)? )
vacuum is incident normally on a medium with refractive indeat x> 0. E(x,t)={1+]| — 2 + - X+ 8 4 g | X

_ o _ _ 5 5ikx 3(ikx)? (ikx)® 3
which the polarization of light can be ignored so that we can T — = - + X

, .o ] . 64 32 32 48

use scalar notation. Generalization of these ideas to include
polarization is relatively straightforward. For an extensive 4 oot
qualitative description of how these postulates lead to an +0O(x*) |Epe' Y. (13)

understanding of diffraction theory | refer to Ref. 2.

In this way the electric field is mathematically rewritten as a
1. PHOTON PROPAGATION IN A TRANSPARENT sum of terms, for which each individual term apparently
MEDIUM OF INFINITE LENGTH propagates with ghase velocity of w/k=c! It will now be

shown that the terms in the expansion can be interpreted

The purpose of this section is to understand how the apphysically as originating from contributions of all the pos-

parent velocity of light in a transparent medium is reducedsible ways the photon could have taken in order to be de-
For this we consider the situation such thatxXerO we have tected at positiorx at timet. The first term represents the
vacuum and forx>0 space is filled with a homogeneous amplitude that a photon has followed the direct path between
transparent dielectric medium with refractive indexFig.  light source and detector without any scattering. The second
1). We will show that with our assumptions we can repro-term will be shown to be due to the amplitude of all the
duce the well-known results for transmission and reflectiorpossible paths where the photon has scattered once, the third
of plane monochromatic light at normal incidence on a transterm belongs to paths that contain double scattering, etc.
parent medium.

A. Electromagnetic approach B. Path integral formulation

We begin by recollecting the conventional description us- AS discussed above, we now reinterpret tuenplexin-
ing electromagnetic field theof? Let the incoming light be  €OMing electric field as being proportional to the amplitude
described by the electric field propagating in shdirection: ~ for detecting a photon. . _
o o) Suppose we detect a photon at positiatD(0) in the me-
E(x,t)=Eqe , (8 dium (x>0) at timet. In order to find the amplitude for this

where for convenience we use complex notation, where it i$§0 occur, we have to sum up the amplitudes of all the pos-
understood that from now on the physical electric field isSible ways the photon could have taken in principle from
given by the real part dE. The phase has been chosen to beSOurce to detectdisee Fig. 2

7ero fort=0 atx=0. First we have the amplitude that the photon did not scatter
Let this field enter a medium at positior=0. Then the atall. This is 3|mply:
transmitted field at positior in the medium is given by Ag(x,t)=Ag (kx—ob) (12)

2 4 the amplitude for a photon in vacuufpostulate(8)].
E(x)=—"7 Eqe' (Mt ©) But the photon could also be emitted by the light source at
some earlier time and be scattered at different positions be-
Thus the field propagates with a reducgahasg velocity  fore it reached the detector. Since under the condition that
equal tow/nk=c/n. As we shall see later it turns out that it the light source is continuous there is no way of telling
is more practical to work in terms of the electric susceptibil-which of all the possible paths the detected photon actually
ity x by using has taken, we have to sum up all the amplitudes to be able to
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find the total amplitude to detect the phofgostulate4)]. It  scattering we have
is our job to find the amplitudes of all these processes and to

add them up. >X'
In order to do this, we first have to describe a single scat-
tering process of a photon by the atoms of the medium. For —_— sy

this we consider a thin slab of the medium of thicknds$
extending in they—z plane positioned at=x'. As will be

shown in the Appendix, the contribution of all the possible >X
ways that a photon arrives at the detector located at position
(x,0,0) via scattering with the atoms in this slab is given by -
X ) , bx !
o Aff(x,t)zf Ar(x", )b e Ndx’ = —— Aglioret,
dAX";%,t)=Ag(x",t)bek*XDdx’, (13 0
(16)
where b is some complex constant that is specific to the Forward scattering followed by backward scattering
dielectric medium. yields
We are now ready to analyze the different scattering con- .,
tributions. First we consider single scattering contributions in — X
the forward directiomd;, which we will graphically display
by S
%X'
X<
HX ,
where the scattering occurs somewhere on the plan€ at o , KO —X) gt
and the detector is located on tReaxis at positionx. We Arp(x,1)= fx Ar(x",t)be dx
chop the medium into slabs of thicknedg’ and by using
Egs.(12) and(13) and integrating over all the possible val- _ p2Ad(—kx-ot) wx’ez“‘x'dx’
ues ofx’ we can write for the resulting amplitudi® «
X ) , . — 1 _ L bZAei(kxfwt) (17)
Af(x,t)=f Ao(x", )bk Xdx’ =px Ad*—eb (14 (2ik)? 2ik ’
0

Next we evaluate the contributions due to a single backWhere the integral is easily evaluated by integration in

11
ward scattering. For this we have to sum the contributions oPa,r\}Z'Xt we have the alternative procebackward scatter-
all the possible ways that a photon can be scattered at some ’ b

positionx’ in order to arrive at the detector at positigrat ing followed by forward scattering
time t, wherex’ >x. We get X"

'

X

X<—
Xxe——— .

Ab(x,t)zf AO(X’,t)beik(X"X>dx’ This gives
X

_ . Abf(x,t)=J Ap(X', t)bekX =gy’
:bAé(kafwt)f eZ|kx dx’ X

X

1 .
b = S h?Ad kXl (18)
- i (kx— wt) (2Ik)
>k A€ . (15
Finally, we have to evaluate the contributionstef back-
As usual, the upper limit of this integral is taken to be equalscattering events
to O for realistic physical situation§.
We now continue with second-order scattering processes. X
We have the following four contributionsee Fig. 2
Two forward scattering processes. ,

Let the first scattering process occur at a positiérbe- X
tweenx”=0 andx”"=x and the second at’ with x"<x’
<X. Using our result for the amplitude of a single forward — =X
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. . . IV. REFLECTION
This process can be viewed as a scattering’ @ <<x"<x)

of a backscattered amplitude. Thus we may write We could obtain the results for the amplitude of reflection
. using the approach of the previous section, but we can get
App(X,t)= f Ab(x’,t)beik(X*Xde’ the results more easily as follows. The treatment given above
0 included forward scattering as well as backscattering of pho-

tons. Therefore, we should obtain the equations for reflection

2
= E Ag (kx—ot) (190  from the previous section if we simply evaluate the scattered
2ik amplitudes forx=0 and omit the amplitude of the unscat-
This completes all second-order scattering processes. tered photon. Since all the contributions obtained in this way
For the total amplitude we have up to now: are due to paths that arrive &0 from positivex values,
_ the resulting amplitudes all propagate further in the negative
AX D) =Ag(X, 1)+ Ar(X, 1)+ Ap(X, )+ Are(X,1) + App(X, 1) x direction without any scattering afterwards. We thus get
— from the result of the previous section:
+Afb(X,t)+Abf(X,t)= l+ — +X o
21k A=~ Gx+ ix*— &ax®+O(xH A ob,
1 x X 2| A @i (kx—ot) 26
xb 22 k2 b% A€ : (20 The conventional EM treatment gives for the reflected
i
Now let us compare this result with the conventional descrip- .
\ . . . . “n .
tion given in Eq.(11). Evidently, if we put E.(x.t)= . Eqei(~kxot), 27
ikx
b= o (21 Expanding this in terms of using Eq.(10) we obtain
the expansions of Eq$11) and(20) are identical: E () =[— 2x+ 3x°— &x3+O(x*")]Eqe (T eb,
1 kx| (1 ikx (k03| 28
AXD=|1+| -7+ 5 |x+ g7 T 5 |X Thus for reflection, too, the results of both treatments are
exactly the same, as they should be. An important difference
3 (o o) between the treatments is, however, that in the usual electro-
+0(x°) |Ae : (22 magnetic approach the reflection is taken to be caused only

) by the surfaces of the dielectric, whereas in the scattering
Thus we see thafup to second-order scattering procegses approach we clearly see that all the atoms in the medium
we obtain identical results from both points of view. Note contribute to the reflection.

that the scattering process, described by the pararbetisr It is interesting to note that the arguments used in the
proportional to the susceptibility of the mediymand thath beginning of this section are equivalent to the statement in
is purely imaginary. the electromagnetic theory that at the boundary the electric

We can now continue with higher-order scattering pro-field must be continuous.
cesses. If we define the coefficients for fhrerder scattering

process as V. PHOTON PROPAGATION IN A TRANSPARENT
% abP MEDIUM OF FINITE LENGTH

=0 " We now apply the formalism to transmission and reflec-
we can obtain a general recursion relation between the anilon at a transparent plate with a refractive indefor light
p||tude due tq:)+l Scattering processes in terms of the am_inCident normal to the plate. Let the plate be pOSitioned be-
plitude of p scattering processes. This can be done by firsiveenx=0 andx=L, and oriented normal to theaxis(see
dividing the amplitudes fop scattering processes into paths Fi9- 3. The only difference from the preceding sections is
that arrive from positive and negativedirections, respec- that now the Upper limit of the integrals involving back-
tively. Then we add one extra forward and one extra backScattering are restricted to=L.

ward scattering process to these paths, yielding four inte- For the an_alysis it is _helpful to eval_uate first the amplitu_de
grals. Summation leads to the result: somewhere in the medium due to a single forward scattering,

A;(x), and due to a single backwards scatteridg(x).
X . o . ’ H . .

ap. 000 [ a0 ax-+be 2 [ay (e Lemung o i exponenta e factor et s we have seer
0 X ’

(24) light, we find:

A(x,t)= Ag xot (23

Application of this recursion relation yields for the next e kx e TR
term (p=3) in the expansion: Arx) =A™ o= de =AeT =, 9
5 5ikx 3(ikx)?  (ikx)?| | iy (L
(_Eﬁ 32 32 | 48 ¥ 29 Ab(x)=7xf AR glkix’ gy
X

in agreement with Eq(11). Using the method described in
Ref. 5 a general proof can be given that the recursion relation — Agkx X (e2KL=0_ 1) (30)
is in agreement with Eq11). 4 '
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Xl

Fig. 3. Light is normally incident on a slab of thickness

With these amplitudes we can now evaluate the first fe
terms for transmission and reflection. For transmission we

have:
Ag(L)=Aek, (3D
kL
AL =AY =7y, 32

iky (L (L x"
Aff(L)=TX fo Ag(x" )M Ddx!

L KeL?
=—AdC —— % (33)

iky (L -
Abb(L)=7X fo Ap(x")e - Ddx!

Classical electromagnetic analysis of this problem yields the
result!?

2
4 —r
Ei=Ege"t 1 r2e2nkC (39
and
I,_reZinkL
E,=E, 1 2e2kL (40)
where
1-n
=1 (41)

Expanding these results in terms pfgives results identical
to the treatment given above.

Once more we see that all the molecules in the slab con-
tribute, in principle, to the reflection, but the results are
equivalent to the treatment where only the boundaries are

W[hought to contribute to reflection.

Although the analysis given here assumes a plane incom-
ing wave, the results will hold also for realistic beams, e.g., a
Gaussian laser beam of diameker provided that the diver-
gence of the beam over a distanceis neglectible which
requires that.\/D2<1. In practice, this meanB>\, so
that the Gaussian profile also provides the required behavior
for f(6) in Eq. (A2).

VI. DISCUSSION

Let us begin the discussion with a citation of Feynman in
his original paper on the path integral formalidf* al-
though it does not yield new results there is pleasure in
recognizing old things from a new point of viéwrhis is, of
course, true for the present approach. The main advantage of
the description given here is that it deals with the quantum
nature of photons: it combines the wave-like properties

This yields for the total transmission amplitude up to seconcgumng in the phase delaand the particle propertiggropa-

: 1 kL 1
= ikL| _ — T T A2ikL 2
A€ ( 16 8 +16e )X (34
order iny:
N 1+ikL . 1 ikL kL2
L=ASTII 5oxt ~ 165~ 8
|00 (35)
16 '
For reflection we find contributions:
_ X p a2kl
Ap(0)=7 A(e™—1), (36)
iky (L !
Afb(o):Abf(o)ZTJ As(x")e" dx’
0
1 1 ikL
—| T Q2ikLy T A2ikL 2
(16 16e + e Ax°. (37
So that up to second order jpwe have for reflection:
. 1 1 1
—| Z q2ikL _ — T Q2ikL
A, 4e 4A)(+ 3 8e
ikL
+— e A0, (39)
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gation of single photonsn a simple theory. The path inte-
gral formalism very clearly illustrates the essential wonder of
guantum mechanics in an appealing way: We only have to
consider familiar classical paths, but the strange thing is that
if there is no way of telling which path has actually been
taken, the particle in a way has taken all the paths.

The essential result of our analysis is that we can interpret
the propagation of a photon through a medium as a sum of
alternative paths. In examining the exponential term in Eq.
(9) one would expect at first sight that it should be expanded
in terms of (—1). Indeed, this is what Feynman suggested.
However, this works only for values of close to 1. The fact
that we have to expand the exponent in termg o, from a
physical point of view, not really surprising since the essen-
tial process involved in the interaction between light and
matter, dipole scattering, depends on the polarizability of the
medium.

A remarkable outcome of an analysis of this sort is that the
resulting amplitude is finite. By adding all possible paths one
might fear that the resulting expression for the amplitude
would be divergent. Indeed, the individual terms in our ex-
pression can be gigantic. As an example, let us consider the
situation where the light source is embedded in an infinite
medium with refractive index close to 1, so that we can
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approximaten—1 by x/2. In that case, using the electromag- another point in a differen_t medium B, we _have to sum the
netic description the oscillating part of the electric field canamplitudes of all the possible ways. Following the usual ar-

be expanded in terms ¢f as: gument in discussing path integrdlsye now conclude that
only those paths for which the exponents are stationag give
_ “ (ikx(n—1))P contributions that are not canceled by neighboring pdths.
ik(n—1)x ( ( )) e . g f
e = 2 — The condition for this to occur is just equivalent to Fermat's
p=0 P principle, from which Snell’'s law is obtained directly. It
o (ikx(x/2))P “ (bx)P should be noted, however, that in this reasoning we assumed
= E AT 2 , (42) that the effective action formula also holds for the case that
p=0 p! p=o P! the boundary of the medium is not perpendicular to the

. ) ) o propagation direction of the light. This remains to be proven.
which according to our new interpretation |nd|c§1tes that theror this case, too, it would be nice to evaluate the problem
process can be described by forward scattering processg§ summing up the scattering amplitudes directly, eventually
only, since it is easy to show that the amplitudepdbrward  |eading to Ewald—Oseen'’s extinction theor&hior another
scattering processes is given by the terms in the summatioapproach to a quantum mechanical description of Snell’s law
(On the average, the amplitudes of backward scattering praand the Ewald—Oseen theorem the reader is referred to Cook
cesses cancel for continuous megigor values ofx>1/k  and Milonnil®
the largest term in this expansion is obtained ffier —ibx.

Even for relatively small values ok, say 1 mm andn  ACKNOWLEDGMENTS

=1.01, this yields a number equal to 12%5%7125.6!, _ _ _ o

which is about 1.25% 1073 for visible light with a wavelength | would like to thank Frits W. Wiegel and Dik Feil for a
of 500 nm. We are saved only by the fact that these termsritical reading of the manuscript :;md valuab_le discussions,
oscillate so rapidly that the net result is less than 1. Howeve@nd Bert Altenburg for getting me interested in the problem
this makes it difficult or impossible to treat the expansion in0f Photon propagation.

a perturbative approach where we could limit the analysis to

those terms that contribute significantly to the total ampli-APPENDIX

tude.

In deriving our results for the amplitude to detect a photon _ The treatment given below serves as a heuristic derivation
propagating through a refractive medium, we paid no atten®f the amplitude for scattering by an infinitesimal slab of
tion to the normalization. As it turns out, our equations for diélectric material. The situation described macroscopically
the amplitude are the same as those for the complex electr¥ith Ed. (9) will be treated microscopically with the linear
field. Therefore, normalization of the amplitudes to conserveélectric dipole approximation for the interaction between
the total probability for detecting a photon is equivalent tolight and atoms. The validity of this approximation is dis-
the normalization of intensity in the electromagnetic case. [fussed in Ref. 20. Furthermore, it is assumed that the fre-

we insist that the probability of detecting a photon in timeguency of the light is much smaller than the atomic excita-

intervaldt in an aregO should be given by the square of the tion frequencies, which is the condition of Rayleigh light

modulus of the amplitude, we obtain the correct results b)f d the elect tic field onl tth i
generalizing Eq(7) and replacinge, by e. oms and the electromagnetic field only occurs at the position

It should be noted that in the above treatment we deter2f the a@toms, and the interaction consists of annihilation of a

mined the phase velocity of light. To determine the velocitypho'[On from the field followed instantaneously by the cre-

, : . : tion of a photon of the same frequency with a dipole angu-
with which a light pulse propagates through the medium w ation of a p 2021 . ‘
could follow the usual treatment.In short, the pulse is de- far distribution Finally, we will assume that the medium

. . . : ; .__is isotropic.
composed into its Fourier components. Without dispersion, Consider a thin slab of material positioned st with

each component travels with the reduced spefe so that thicknessdx’ extending parallel to thg—z plane (Fig. 4).

the pulse also travels with this speed. In a dispersive m ) . . .
dium, the pulse will propagate with the group velocity. A|_eThe amplitude for an undisturbed photon to arrive at position

though simple and elegant, a treatment similar to the treatt IS given by Eq.(3). We will now derive a relation for the
ment given above, where the time delay of the different path@Mplitude that a photon is scattered by the atoms in the slab
is taken into account, would be desirable from a didactidoward the detector placed at,0,0). The scattering process
point of view. Moreover, the simple Fourier approach yieldsis modeled as follows: There is an amplitude that a photon
wrong results for regions with anomalous dispersicand ~ Will be absorbed(annihilated by an atom and that subse-
no distinction is made between signal and group velocityuently a new photon is emitted in a new direction. For the
(see also Ref. 16 and references therein for a discussion @fesent purpose we can limit ourselves to linear elastic di-
the meaning of different velocities of lightA treatment Pole scattering. Then the amplitude of the emittschtterey
along the lines outlined above should enlighten this more; aghoton is proportional to the amplitude of the incoming pho-
an example, the so-called front velocity mentioned by Bril-ton (linean and it has the same energy as the incoming pho-
louin is evidently caused by the unscattered photons. ton (elastig. We also restrict ourselves to nonresonant inter-
Finally, we come back to the original question aboutactions, which means that the interaction is instantaneous.
Snell's law! Our result suggests that we can describe thelhe amplitude to scatter in a direction making an angle
propagation of photons through a transparent medium withvith the x axis will be dependent on that angle. Let this
an effective action proportional to the time of transit from dependency be described by the functiff®) with f(0)
source to detector along a straight line path, but with “effec-=1. Integrated over a closed spherical surface centered
tive” speedc/n in the transparent medium. Now in order to around the scattering atom, theobability to detect the scat-
find the amplitude to go from one point in medium A to tered photon must be constant, independent of the radius of
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that have scattered once is only given by the phase of the
constantb. As will become clear from Eq21), b is purely
imaginary, which yields a phase delay of 90 deg for the
scattered contribution. Ultimately, this phase delay accounts
av for the reduced phase velocity. This analysis clearly illus-
z P r trates the relation between path integral formalism and Huy-
y gens principlé? The fact thatb is purely imaginary is in
0 agreement with the required phase difference between the
X nonscattered and scattered contributionsr(f (see Ref. 7,
P p. 438. The functionf(8) plays the same role as the oblig-
uity factor (see Ref. 7, p. 434
The evaluation of Eq(A2) given here is only valid in the
limit x—x'>\ so that the integrand has made a sufficient
b number of oscillations before it attenuates. For smaller val-
ues of x—x' the exact formula off(#) should be used,
which would require one to take into account the polarization
ax of the light. An alternative approach is to calculate the elec-
tric field due to the scattering of the molecules in the slab
Fig. 4. Calculating the amplitude due to scattering off an infinitesimal thinusing the electromagnetic approach outlined by James and
sheet of dielectric material. Griffiths.® Their result—Eq(20)—can be rewritten as

dE= 'kTX ek XDE(x,t)dx’. (A4)
the sphere. Therefore, tf@nplitudeto detect the photon at
position (x,0,0) should be proportional to the inverserof If we now interpret this complex field to be proportional to
the distance between the scattering atom and the detector.the amplitude, as we did in Sec. I, this result is in agreement
We first evaluate the contribution for an infinitesimal vol- With (A3). Moreover, we have thus obtained the identifica-
ume elementlV. Within this volume the possible indistin- tion betweenb and x [Eq. (21)] immediately. It should be
guishable alternatives are proportional to the number of atboted that with this approach the polarization of the light is
oms in this volume, and thus the amplitude will be treated correct_ly_. Th_e essential restr_ictic_)n ir_1 the model of
proportional todV [using postulaté3)]. Since we assumed James and Griffiths is that the polarization is linear to the
the amplitudes to be scalar, the contribution of the molecule§!ectric field and has no phase delay with respect to the os-
in the ring with radius (see Fig. 4is obtained by integrat- cillating field. This is equivalent to the condition of linear

ing over ¢: elastic dipole scattering for which the fully quantum me-
to) chanical trzzelatment gives identical results as the classical
6 . .
dA=2mp - aAy(x',t—r/c)dp dx’ descriptiorr.
f(o ) ISteve Blau and Brad Halfpap, “Question #21. Snell's law in quantum
(0) k(x" +
=2mp - aAdkx tn-eby, x| (A1) mechanics,” Am. J. Phy$3(7), 583 (1995.

%Richard P. FeynmarQED, the Strange Theory of Light and Mat{@rin-

: - : ! ceton U.P., Princeton, 1985
wherea is a constant for the material considered, that defines,; = " FeynmarThe Feynman Lectures on Physigsldison-Wesley,

the scattering amplitude of a unit volume _of the material for Reading, MA, 1963 Part I, Sec. 26-6.
0=0. We have used postulaté) and(7). Using the fact that  4john A. Wheeler, “The young Feynman,” Phys. Toddg(2), 24—28
pdp=rdr we obtain (1989.
SMary B. James and David J. Griffiths, “Why the speed of light is reduced
ey @ : in a transparent medium,” Am. J. Phy&0(4), 309-313(1992.
. _ kx" — ot k
dA(X';x,t)=2maAdkx ~« )J ,el "f()dr dx’ ®Richard P. Feynman and A. R. HibbQuantum Mechanics and Path
X=X Integrals (McGraw-Hill, New York, 1963. For further interpretation of
ik(x—x") amplitudes see also the first chapters in the Feynman lectures R&etl!|
=—27aAd® ") ———dx'. (A2 3.
& ik (A2) "Eugene HechtQptics (Addison-Wesley, Reading, MA, 19872nd ed.
. i i i 8John David JacksorGlassical Electrodynamic@Viley, New York, 1975,
The integral can be evaluated in this way provided that ong ed.
f(0) gradually decreases wheid increases from 0 to 90 °Technically, some of the integration regions in E&)—(19) violate the
de922 and thatx—x’>\. If we collect the constants in the conditionx-x">\ needed for the evaluation of E¢A2) and therefore

. . . . (A3) given in the Appendix to be valid. In view of the alternative approach
above e.quatlon Ir.]to a new constdnt 2mria/k, we obtain indicated in the Appendix, however, use of E43) seems to be justified
the relation used in the text:

for all values ofx-x’.
10 . . . . .
. A il (kX' — o) i K(X=X") {3 ! See Ref. 3, Sec. 30-7. Physically this term is due to scattering contribu-
dA(X";x,t) Aé be dx tions atx approaching infinity. The term disappears if we take into account
, iK(X—X") 4 that the light was turned on in the distant past or we account for a small
=Ag(X",1)be€ dx’. (A3) loss in the material. The problem can be mathematically handled by intro-

The formula was derived for forward Scattering For back- ducing an attenuation term expéx) in the integral where can be taken

. h in th ki ' arbitrarily small but finite. See also the notes in Ref. 5.
scattering t e argume_nt in the exponentiaikiéx _X) Hn the evaluation of this integral we obtain a value that is formally equal to
Thus the difference in phase between the amplitude for the« exp(e). Again this term disappears for realistic physical situations us-

direct (unscatteredpath and the total amplitude for all paths ing the reasoning in Ref. 10.
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