
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 39, NO. I, JULY 1994 1473 

Controllability Distributions and Systems 
Approximations: a Geometric Approach 

A. C. Ruiz and H. Nijmeijer 

Abstract-Given a nonlinear system we determine a relation at an 
equilibrium between controllability distributions defined for a nonlinear 
system and a Taylor series approximation of it. The value of such a 
relation is appreciated if we recall that the solvability conditions as well as 
the solutions to some control synthesis problems can be stated in terms of 
geometric concepts like controlled invariant (controllability) distributions. 
The relation between these distributions at the equilibrium will help 
us to decide when the solvability conditions of this kind of problems 
are equivalent for the nonlinear system and its approximation. Some 
examples illustrate the results. 

I. INTRODUCTION 
For decades it has been the common practice of control engineers 

to solve nonlinear control synthesis problems by using a linear 
approximation of the nonlinear system around an operating point 
and after application of linear control techniques, use the resulting 
linear solution as a linear approximation of a true solution for the 
original nonlinear control problem, see e.g. [14], [15], [17], and 
other applications. That this approach is in some cases successful 
for specific control objectives like input-output decoupling, model 
matching, etc., is partially understood, see e.g., [2], [4], [19], [lo], 
[ I l l ,  [18]. It is not a general rule, however, that the linearization 
procedure is always justified, even in the case when a particular 
nonlinear control problem is solvable for the nonlinear system and for 
the linearization the solutions of the linear problem do not necessarily 
act as a first order approximation of a solution for the nonlinear 
problem, as is stated as a principle in [13, pp. 51. 

In nonlinear control theory, differential geometric concepts as con- 
trolled invariant and controllability distributions play a fundamental 
role in the solution of synthesis problems like disturbance decoupling, 
input-output decoupling, etc., see [8], [5] ,  [3]. Not only the solvability 
conditions of this kind of problems can be stated in terms of 
these distributions, but also these distributions are fundamental to 
characterize all solutions for a particular control problem, see e.g., 
[8], [3], [5] and [ 11 in a linear context. Therefore, it is of interest for 
a relation at the equilibrium between these distributions defined for 
a given nonlinear system and an approximation of it. 

We consider nonlinear analytic control systems of the form 

defined on an open neighborhood M of xo  in R", where x o  is 
an equilibrium point for E, i.e., ~ ( X O )  = 0 and h(z0)  = 0, h:= 
(hl , . . . , f ~ , ) ~ .  Without loss of generality we assume throughout 
20 = 0. We approximate the system C and thus the vector fields 
f, g l ," . , gmr  and the output functions hl,...,h,, by means of a 
Taylor series expansion of f, 91, . . . , gm , hl , . . . , h,, respectively, 
around the equilibrium point 0. Regarding C as a system locally 
defined about 0 we denote the kth order approximation of C as 
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with f k ,  hk ,  the kth order approximation of f, h respectively, about 
the equilibrium and g,k-l is the ( k  - 1)th order Taylor series of g1 
about 0. Clearly, Ek  is defined on the same state space as E. 

In [6],  a nonlinear change of coordinates and feedback are used 
to construct linear approximations that are accurate to higher orders. 
Our analysis follows basically the same philosophy of [ I l l  where 
controlled invariant distributions defined for Ck and E"+' were 
studied. 

The main result of the paper is contained in Section IV. In Section 
I1 we fix our notation and recall some basic definitions. Section I11 
deals with accessibility distributions defined for C and C k .  Finally, 
conclusions are drawn in Section V. 

11. PRELIMINARIES 

The interested reader can find the definitions and geometric notions 
introduced in this section in [5], [8]. With respect to the nonlinear 
systems C and XIC, we impose throughout the following conditions 
on the input vector fields g, (gk- ' )  and the output maps h(hk ) ) .  
Define G: = span { gt-', . . . , gip;;'} 
and d h ,  dhk the codistributions span { d h l , .  . . , dh,} and span 
{ d h t , .  , dh i ) ,  respectively. 

Assumption I :  Consider the systems C and C k ,  k 2 1. Assume 
that 

1)  dimG = dimGk = m on M .  

Basic in the sequel are the following concepts. A distribution A 
is involutive if [ X ,  Y ]  E A for all vector fields X ,  Y E A. A 
constant dimensional involutive distribution A is said to be controlled 
invariant if there exists a C" regular static state feedback 

(1) 

with a : M -+ R", p : M --+ R" '", P ( x )  a nonsingular matrix 
for all z E M and v E- R" such that after applying (1) to C the 
modified vector fields f:= f + g a ,  gz:= (g/3)%, i E m, satisfy 
[f, XI C A, [&, XI C A, i E 114, for all X E A. 

The accessibility distribution C of C is the smallest involutive 
distribution invariant under f which contains G. A controllability 
distribution D is an involutive distribution that contains a distribution 
G c G that is invariant under f and , i E 114 for some feedback ( I )  
and D is the smallest distribution containing G having this property. 

Denote by A* (A;) (TI* (IIfk)), the maximal controlled invari- 
ant distribution (maximal controllability distribution) contained in 
kerdh (kerdhk) of C(Ck) ,  respectively. An algorithm to compute 
TIi(rI*) is taken from [5]. 

span { 91, . . . , gm }, GIC: = 

2) dimdh = dimdhk = m on M .  

U = CY(.) + P ( X ) V  

Algorithm: 

II," = A; n G k ,  

/ m \ 

The algorithm to compute II* is obtained by replacing 
TI:, ( A i ,  GIC), i 2 0, by IIz, (A*, G), respectively. In connection 
with this algorithm we make some standard assumptions. 

Assumption 2: 
1) For each k 2 1, there exists an integer k*(k*(k)) 2 0 such that 

the algorithm terminates in the IC*(  k* (k))th step when applied 
to C(C". 

2) n,, TI:, i E IN, k 2 1, have constant dimension on M .  
3) The distributions A*, A;, k 2 1, have constant dimension on 

M .  
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Remark 2.1: The algorithm provides a sequence of nondecreasing 
distributions and given Assumption 2-1) it terminates whenever 
&+I = lTp = II*, for some p 2 0, [5]. Note that II* generated 
by the algorithm is, in general, not an involutive distribution. Its 
involutivity is assured, however, by the constant rank conditions in 
Assumption 2. Moreover, since dimkerdh = n - p and thus dim 

Actually, C associated to C can be computed by applying the 
algorithm and replacing A* by T M .  C is usually called the strong 
accessibility distribution of C. We investigate in which cases does 
there exist a relation between C(z) and Ck(z )  at the equilibrium. 
The relevance of knowing such a relation is better appreciated if we 
recall that the system C is locally strong accessible about 0 if and 
only if dim C(0)  = n, [16]. Therefore a relation between C(0)  and 
C'(0) can be useful to recognize accessibility properties of C by a 
hopefully simpler analysis of C k  . 

A* 5 n - p  then dim 11* 5 n - p .  

nI. ACCESSIBILITY DISTRIBUTIONS FOR AND Ck 
To give some insight into the problem we start by studying the ac- 

cessibility distribution defined for C and its first order approximation 
C'. The first order approximation of C is given by 

E': i = A z + B i i ,  g = C z  

with A : =  (df/az)(O), B : =  [bl,.--,b,], b , : =  gt(0), C:= 
(dh/dz) (O) ,  ii E R" and fj E RP. The distribution C'(z )  in 
this case reduces to the well known controllable subspace 

R =  ( A  I I m B )  = span{B, A B , . . . , A " - ' B )  . (2) 

Our interest is to compare the controllability subspace R defined 
for C' with the accessibility distribution C associated with C, at 
the equilibrium. To do so, we may consider the linear subspace R 
as a flat distribution on T M .  In general, C1(0) C(0). For the 
second order approximation of C, denoted C z ,  we intuitively expect 
that C2(0)  C C(0). It turns out, however, that this is not always 
the case. An example of this phenomenon is in order. For this we 
introduce some extra notation. 

Let CF, i = 0, 1, . . . , be a set of distributions associated with 
Ck defined as 

C,"(z, = span{g:-', . . . ,gL-l}(z) 

(3) 

for i = 1, 2 , . . . ,  and X j  any vector field in the set 
Ifk, d-',... , gk-' }. In a similar way we define the distributions 
C,(z), i = 0, 1,. . . , for E. Note that the distributions 
Cf (0), i = 0, 1, .  , defined in (3) correspond to the algorithm 
with A* replaced by T M .  

Example 3.1: Consider the nonlinear systems 

E :  X=g1(z)u1+gz(z)uz,  C2: X=g9:(z)u1 +g:(z)uz 

withgl(2) = ( l + z z ,  1, 1 ,0 ,  ~ ) ~ . g z ( z )  = (0, 1 + 1 3 , 0 ,  1, z2gY9 
g:(z) = (1 + ZZ, 1, 1, 0, and g:(z) = (0, 1 + 23, 0, 1, O ) T .  
For Cz and C as above we readily have Cz(0)  # C(0). This means 
that neither C'(O) c C(O)  or C(O) c C'(O) are true. 

An explanation of the underlying idea in Example 3.1 is in 
order. Consider the systems C ( C k )  and the set of vector fields 
associated to them {f, g l , . . - , gm}({ fk ,  g:-',...,gk-'}). It is 
shown that for every Lie bracket up to order k - 1 of the vector fields 

f, 91,. . . , gm there exists a Lie bracket of the same order with the 
vector fields fk, gt-', . . . , gip '  such that they agree when evaluated 
at the equilibrium. This is a rough statement of what is claimed in 
Proposition 3.2. From this proposition a fundamental conclusion is 
made. Suppose the system C is locally strong accessible at 0, i.e., 
dim C(0)  = n. Then there exist an integer s* 2 0, such that the Lie 
brackets up to order s* of the vector fields f, 91,. . . , gm span c(0). 
Thus, it suffices to take the (s* + 1)th Taylor series approximation of 
C to ensure that E"*+' is also locally strong accessible at 0 and that 
C" * + l ( O )  = C( 0). Even more, if the distributions C, (z) , i E E, are 
assumed to be of constant dimension then s* 5 n. Now, if the system 
C is not strongly accessible at 0 there does not exist, in general, a 
relation between C(0) and Ck(0)  for any k 2 0. 

Observe in Example 3.1 that C is not locally strong accessible at 0. 
Only the third-order approximation of C is such that "(0) = C3(0) 
because the system C equals its third-order approximation. 

The next result relates the distributions CF(z) with C,(z) for 
i = 0, 1, . . . , k - 1. Abusing of notation, for any distribution 
D ( z ) ,  ( D ( z ) ) ~ ,  denotes the kth order Taylor series approximation 
of every vector field X ( z )  E D ( z ) .  Similarly, for X ( z )  E D ( z ) ,  
we let ( X ( X ) ) ~  be the kth order approximation of X ( z )  around the 
equilibrium. 

Proposition 3.2: Consider the analytic systems E, C', for a fixed 
k 2 1 and the distributions C,, Cf, i = 0, l , . . .  , as defined in 
(3). Then 

(c:(z))k-l-t = (ct(z))k-l-a, 

that (X)k-l-l = ( X ) k - l - a ,  and vice versa. 

i = 0, 1, .  , k - 1. 

That is, for each X ( z )  E C,(z) there exist a X(z) E C;(z) such 

Pro08 See [9], [12]. From Proposition 3.2 it follows that 
Ck(0) = C,(O), i = 0 , .  . . , k - 1. Although in general Ck(0) # 
C(0)  for an arbitrary k 2 1, it is desira!le to know if there 
exists a nonnegative integer s** for which C" (z), the accessibility 
distribution associated with C" , yields C"'(0) = C(0) .  An answer 
to this question is given in 

Corollary 3.3: Consider the nonlinear system E. Assume C is 
locally strong accessible at 0 and let T be the smallest nonnegative 
integer for which dimC,(O) = dimC(0) = n, on M .  Then 
C"(0) = C(O), s* = T + 1, with C s * ( x )  the accessibility 

The concept of accessibility distribution is closely related to that 
of maximal controllability distribution contained in the kernel of the 
output map. In the next section we define similar objects for C and 
Ck and find a relation between them. 

distribution associated with E'*. 

N. CONTROLLABILITY DISTRIBUTIONS CONTAINED IN THE 
KERNEL OF THE OUTPUT MAP DEFINED FOR AND C k  

In this section we investigate the relation at the equilibrium, if any, 
of the maximal controllability distribution contained in the kernel of 
the output map defined for C with the analogous object defined for 
C k .  By means of an example we exploit the importance of knowing 
such a relation. To some extent, a controllability distribution II in the 
kernel of the output map can be seen as the nonlinear analogous of a 
controllability subspace R contained in the kernel of the output of a 
linear system of the form C', see [19] for some further explanation. 
In particular, we study the case when for a nonlinear system and the 
linear approximation of it the triangular decoupling problem (TDP) 
is solvable and compare the solutions obtained from the linearization 
with the solutions of the original nonlinear problem. This comparison 
is based on specific controllability distributions defined for both 
systems. Therefore we briefly review the solution of the TDP. 

Given the system C with m outputs the problem consists in 
finding a regular static state feedback as defined in (1)  such that 
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the closed-loop system C together with (1) is triangularly decoupled. 
That is, V I  affects yl and possibly yz,. . . , ym; vz influences y2 and 
possibly y 3 , .  . . , ym but not y1,  etc. (see [7], [lo], for details). 

Necessary and sufficient conditions to solve the TDP for C are 
given in terms of ( A r ) * ,  the maximal controlled invariant distribution 
contained in 

r 

n k e r d h ; ,  T = O ,  l , . . . , m  (4) 
2 = 1  

with (Ao)*: = C ,  the accessibility distribution of E. 
Theorem 4.1 ([16]): Assume the system C satisfies 

dimdh(C(z))  = m, for all 2 E M, and suppose that 
( A r ) * ,  (Ar)* nG,  with ( A r ) *  the largest controlled invariant 
distribution in (4), have constant dimension for T = 0, 1 , .  # .  , m. 
Then the TDP is locally solvable on M if and only if 

w dim ((Ar)* n G) = m - r ,  T = 0, 1, . . . , m. 
These facts are used in Example 4.2 below. 
Example 4.2 ([lo]): Consider the nonlinear control system 

,l = U1 + 29, y 1  = 21 ,  

i 3  = u1 + ex2 - 22 - 1 + 2 1 ,  ( 5 )  

The control objective is to solve the TDP for (5). It can be checked 
that the conditions stated in Theorem 4.1 are satisfied and thus the 
TDP is locally solvable for (5). 

The linearization of (5) around (20 ,  u ~ )  = (0, 0) is given by 

i l  = G I ,  $1 = 21, 

i 3  = U1 + 2 1 ,  (6) 

The solutions for the linear TDP are characterized in terms of the 
maximal controllability distribution contained in the kernel of d&, 
denoted as R; and given by 

(7) 

Any feedback law G = F z  + G6 which leaves the system (6) 
triangularly decoupled is of the form 

RZf = span((0 1 o ) ~ > .  

f l 3 )  (::) + (“11 g z 1  Q22 O )(“’).  U 2  (8) 
2 3  

f 2 1  f 2 2  f23 

with 9 1 1  # 0, g22 # 0. For the nonlinear system (5) it can be shown 
that II;(z) = span{(a/az:,), ( a / & ~ ) } ,  where II; is the maximal 
controllability distribution contained in the kernel of dyl. But any 
feedback that leaves the nonlinear system (5) triangularly decoupled 
must have the form 

with 4 1 1 ( r )  # 0, Pz,(z) # 0. Hence, if f13 # 0 in (8) then (8) does 
not correspond to a linearization of (9), i.e., the linear solution is not 
a first order approximation of a true solution for the nonlinear TDP. 
Basically, the reason for which the linear feedback law (8) is not a 
linearization, in general, of (9) is this: for a system with m = 2 which 
is triangularly decouplable any feedback of the form (1) leaving the 
system triangularly decoupled must satisfy [7], [ 101 

X(@l)(Z) = 0, X(Pll)(2) = 0, P l Z ( 2 )  = 0 (10) 

for all vector fields X E n;. Note that the feedback (9) satisfies 
(10). The feedback (8) also must satisfy conditions of the same type 
as (lo), namely 

X(&) = 0, X(&,) = 0, 6 1 2  = 0 (1 1 )  

for all X E R;, with &(z):=  f1.1 4- f z z z  f f3z3 ,  &,(z) :=  
9 1 1 ,  P12(z):= 912. But since the distributions R; and II; do not 
agree at the equilibrium, (8) does not correspond to the linearization 
of (9). On the other hand, if in the_ system (5) we would have that 
i 3  = u l + z 1 ,  we obtain IIz(0) = R;. Since these distributions agree 
at 0 we are able to approximately solve the original local nonlinear 

To state the main result of this section an assumption concerning 

Assumption 3: Consider the systems C and C k .  Suppose that 

Remark4.3: If this assumption is dropped it seems not to be 
possible to conclude any relation between II*(O)  and n;(0); at least 
not by analysis of the algorithm. Sufficient conditions for the systems 
C and C k  to satisfy Assumption 3 are analogous to those given in 
[ 111 where the systems Ck and Ck+’ were treated. Observe also that 

Theorem 4.4:  Consider the systems C, C k ,  k 2 1 and the con- 
stant dimensional distributions A*, A;, together with the algorithm. 
If Assumptions 1-3 are satisfied then 

TDP by using the linear feedback (8). 

A* and A; is made. 

A;(0) = A*(O). 

for the Example 4.2, Assumption 3 is fulfilled. 

1) ( q ( 2 ) ) k - l - J  = ( I I J ( 2 ) ) k - 1 - J ,  j = 0, 1,. . . , k - I, 
2) r I $ ( O )  = IIJ(0), j = 0, 1,. . . , k - 1, 
3) If k*(k) = k* 5 k - 1 then nL(0) = n*(0), 
4) If k*(k) < k* and k*(k) 5 k - 1 then II f , (O)  C I I*(O) .  
where II: ( U J )  corresponds to the j t h  step of the algorithm applied 

to Ck (E). w 
Pro03 See [9], [12]. 

V. CONCLUSIONS 

A relation at an equilibrium point between maximal controllability 
distributions defined for a nonlinear system and the kth order Taylor 
series approximation of it is given, provided particular maximal 
controlled invariant distributions defined for both systems agree at the 
equilibrium. If Assumption 1 is satisfied there exists a nonnegative 
integer s* for which locally strong accessibility of the s*th order 
Taylor series approximation of a nonlinear system implies this 
property on the original nonlinear system. Whenever the solutions 
for a nonlinear synthesis control problem are characterized in terms 
of maximal controllability distributions we have identified some cases 
in which it is possible to locally approximately solve the nonlinear 
problem by using a solution obtained from the associated problem 
for the kth order Taylor series approximated system. 
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A Recursive Schur-Based Solution 
of the Four-Block Problem 

Tiberiu Constantinescu, Ali H. Sayed, and Thomas Kailath 

Absbact-We describe a new solution to the four-block problem 
using the method of generalized Schur analysis. We first reduce the 
general problem to a simpler one by invoking a coprime factorization 
with a block-diagonal inner matrix. Then, using convenient spectral 
factorizations, we are able to parameterize the unknown entry in terms 
of a Schur-type matrix function, which is shown to satisfy a finite number 
of interpolation conditions of the HermibFbjer type. AU possible inter- 
polating functions are then determined via a simple recursive procedure 
that constructs a transmission-line (or lattice) cascade of elementary J -  
lossless sections. This also leads to a parameterization of all solutions of 
the four-block problem in terms of a linear fractional transformation. 

I. INTRODUCTION 
A central problem in Hw-optimal control is the design of stabiliz- 

ing controllers that minimize or at least impose an upper bound on the 
Hw-norm of the closed-loop transfer function. This problem has been 
widely studied in the literature and we may refer to the monograph of 
Francis [ 13 and the notes of Doyle [2] for more details and discussion. 
The existing approaches cover a wide range of settings and contexts. 
Doyle and Francis [2], [3] reduced the equivalent so-called model 
matching problem to a one-block (or Nehari) problem, which was 
then solved using the theory studied by Ball and Helton [4]. Foias and 
Tannenbaum [5] approached the four-block distance problem within 
the framework of skew Toeplitz operators and studied the associated 
spectral properties. Ball and Cohen [6] gave a parameterization of all 
suboptimal solutions based on J-spectral factorization theory, while 
Kimura and Kawatani [7] employed the notion of conjugation. Doyle 
et al. [8] provided state-space formulas for the stabilizing controllers 
by employing a separation argument and replacing the four-block 
problem by a pair of two-block problems. Most recently, Glover et 
al. [9] (see also Limebeer et al. [ll], [lo]) described a state-space 
procedure that yields an all-pass dilation of the original problem; part 
of this all-pass matrix was shown to generate all solutions. 

We present a new solution that approaches the four-block problem 
within the framework of generalized Schur analysis and leads to a 
transmission-line (or lattice) structure that parameterizes all possible 
unknown entries. The derivation can be summarized as follows: 
we use a special factorization, with a block-diagonal inner factor, 
that reduces the original four-block problem with L” functions 
to an equivalent problem with A” functions. We then invoke 
convenient spectral factorizations and an inner dilation to express all 
possible choices of the unknown entry in terms of a Schur matrix 
function, which is shown to be characterized by a finite number 
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