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In multitarget tracking, the problem of track labeling (assigning
labels to tracks) is an ongoing research topic. The existing literature,
however, lacks an appropriate measure of uncertainty related to the
assigned labels that has a sound mathematical basis as well as clear
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practical meaning to the user. This is especially important in a
situation where well separated targets move in close proximity with
each other and thereafter separate again; in such a situation, it is
well known that there will be confusion on target identities, also
known as “mixed labeling.” In this paper, we specify
comprehensively the necessary assumptions for a Bayesian
formulation of the multitarget tracking and labeling (MTTL)
problem to be meaningful. We provide a mathematical
characterization of the labeling uncertainties with clear physical
interpretation. We also propose a novel labeling procedure that can
be used in combination with any existing (unlabeled) MTT algorithm
to obtain a Bayesian solution to the MTTL problem. One advantage
of the resulting solution is that it readily provides the labeling
uncertainty measures. Using the mixed labeling phenomenon in the
presence of two targets as our test bed, we show with simulation
results that an unlabeled multitarget sequential Monte Carlo
(M-SMC) algorithm that employs sequential importance resampling
(SIR) augmented with our labeling procedure performs much better
than its “naive” extension, the labeled SIR M-SMC filter.

I. INTRODUCTION

The track labeling problem is perhaps just as old as the
multitarget tracking (MTT) problem itself. In the display
of a radar operator, it is often necessary not only to display
the estimated locations (what we refer to as the tracks) of
the multiple objects but also to attribute a unique label to
each track. Ideally, a label should consistently be
associated with the same real-world object (target),
enhancing the situational awareness of, for example the
radar operator.

In practice, the feasibility of maintaining this
label-to-target consistency depends on the observability
conditions. One situation where this consistency is
frequently lost is when the well-separated targets move in
close proximity to each other. In this case, even after the
separation, the measurements and initial information may
not allow us to precisely determine which target is which
(as illustrated in Fig. 1 with two targets). Therefore, if
required to make a hard decision to assign labels to the
estimated locations, the tracking system will frequently
make wrong choices.

This situation, where the available information allow
for more than one labeling possibility, is referred to as
“mixed labeling” by Boers et al. [1]. Being well informed
about the labeling uncertainty is of utmost relevance to an
end user when, for example, a decision involving a target
with a particular label is acceptable only if we have high
confidence in the label. It is therefore interesting and of
great importance to characterize and report these
uncertainties.

The idea of obtaining target identities using a
probabilistic approach has been known for some time and
has received its due attention in the literature (e.g., [2–7]).
These works consider situations ranging from a fixed
number of targets to a time-varying number of targets due
to target birth and death. While these works typically
suggest methods for extracting labeled tracks from a
multitarget density, they do not attempt to quantify the
amount of uncertainty in the assigned labels.
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Fig. 1. Situation where assignment of labels to tracks is ambiguous.

Other recent works [8–12] have proposed quantities to
be associated with the labeling uncertainty in a multitarget
tracking and labeling (MTTL) problem. However, the
definition of these quantities relies on abstract concepts,
such as decomposition of densities into weighted sums
and permutations of the state vector, that tend to make
them hard to interpret. They are also based on restrictive
assumptions, such as linear-Gaussian target dynamics or
being defined for only two targets or assuming the number
of targets to be known and time invariant.

Furthermore, even if one defines a suitable labeling
uncertainty measure, the uncertainty might be
lost/underestimated when it is calculated based on particle
filters or multiple hypotheses due to the degeneracy
phenomenon present in these algorithms. This weakness
has been noticed by [1, 8–12] and is further explained in
section II-C. Practical implementations of the labeling
uncertainties should therefore take this into consideration.

Throughout this paper, we will use as illustrative
example the situation of mixed labeling as depicted in
Fig. 1. A natural measure to characterize the labeling
uncertainties in Fig. 1 could be the probability that the
assignment of labels to the tracks is incorrect, in other
words, that a track swap has occurred. It is, however, not
completely clear what the exact meaning of “probability
of incorrect labeling” is. After all, the tracks are only
(point) estimates of the true target states, and they almost
never coincide. If the tracks themselves are not “correct,”
what shall we understand by “correct labeling”?

In finding the answers, we consider the Bayesian
formulation of the MTTL problem, based on the concept
of labeled random finite sets (RFS) presented in [6]. We
propose labeling-related statistics with clear meaning in
terms of quantities similar to conditional probability. Our
starting point is that an end user, for example, the radar
operator, will prefer point estimates of the target locations
rather than the whole posterior probability distribution of
the locations. The user would like to assign labels to these
point estimates of the locations. Furthermore, based on an

intuition that resembles [8–12], we explicitly make the
proposed labeling uncertainties part of our density
approximation (for the labeled tracks) so that they are not
lost during the filter recursions.

We should note here that in the target tracking
literature, labels are used mostly as means to extract
trajectories of the targets. Recently, the authors in [13]
moved away from this approach of artificial label and
considered the problem of estimating the trajectories
directly. In our work, although we consider the problem of
labeled state estimation, it is not our primary goal to
estimate trajectories of the targets. Our main goal is to
estimate, at each time, the labeled states so that we can
associate a current target to its “location at birth.” In the
context of Fig. 1, for example, if a current target is
assigned the label “T1,” then we can infer that it originated
in the upper-left corner. One can also think of situations
with air traffic control (ATC) call signs that are assigned to
aircraft by the ATC in order to uniquely identify them.
Usually, cooperative aircraft observed by a secondary
radar periodically inform their own assigned call sign to
the ATC. However, if, for example, an aircraft’s
transponder suddenly stops functioning, so does the
information about its call sign. In this case, the ATC
attempts to associate the previously assigned call signs to
targets observed using the primary radar. In this way, the
operator can relate a current target to the previously
existing targets in terms of their last known position.

The contributions of this paper are the following:

• We complement the formulation of the MTTL
problem in [6] by stating additional necessary assumptions
for the problem we consider to be meaningful.

• We provide a mathematical description of the
labeling error with clear physical interpretation based on
the labeled multitarget posterior density.

• We present a labeling procedure using the proposed
labeling uncertainty measures, which can be used to
augment existing MTT algorithms to obtain a complete
solution to the joint MTTL problem. This procedure
avoids the degeneracy in labels that typically arises in
MTTL filtering algorithms based on particles or
hypotheses.

The organization of this paper is as follows. In section
II, we review the Bayesian formulation of the MTTL
problem given in [6] and complement it to formulate the
problem we consider. The other contributions of this paper
are presented in sections III and IV, describing the
proposed measure of labeling uncertainty and a new
method to solve the MTTL problem, respectively. Section
V contains the simulation results for labeled tracking of
two closely spaced targets. Some conclusions and
recommendations are given in section VI.

A. Notation Conventions

An uppercase letter (like X) denotes a vector-valued
random variable, and its lowercase counterpart (x) denotes
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a particular realization. An uppercase boldface letter (like
X) denotes a finite set-valued random variable, and its
lowercase counterpart (x) denotes the corresponding
realization. Vector entries and set elements have
superscripts containing their indexes, and vectors are
always row vectors (written horizontally), such as
x = [x(1), x(2)], x = {x(1), x(2)}.
II. THE BAYESIAN MTTL PROBLEM

In this section, we present the mathematical
formulation of the Bayesian MTTL problem that we
consider. The formulation (section II-A) follows the one
given in [6] but with a couple of extra assumptions. These
assumptions are elaborated further in section II-B. In our
opinion, these assumptions, though quite intuitive, have
not been discussed in detail in the existing literature. We
also present an important property of the considered
Bayesian MTTL problem, namely, the one-sided
decoupling property, which will play a central role in the
derivation of our proposed algorithm in section IV-C.
Finally, in section II-C, we discuss why mixed labeling,
such as in Fig. 1, creates an extra problem.

In what follows, we assume that the reader has basic
familiarity with the concepts of finite set statistics
(FISST), such as random finite sets and the corresponding
density functions (see, e.g., [14]).

A. Mathematical Formulation

Let us assume that the single-target state vector
(composed of entries such as position, velocity, etc., which
we will henceforth refer to simply as location) assumes
values in R

n and that a label to be assigned to a location
may assume values in a discrete set �. We then define the
labeled multitarget state at time k as the random finite set

Xk =
{
X

(1)
k , · · · , X(Tk)

k

}
,

where X
(i)
k = [S(i)

k , L
(i)
k ] with locations S

(i)
k ∈ R

n and
labels L

(i)
k ∈ �. Clearly, no two single-target states can

have the same label if the labels are to be useful as target
identifiers. As a result, an RFS density function associated
with Xk (referred to as a labeled RFS density) must satisfy

f
({[

s
(1)
k , l

(1)
k

]
, · · · ,

[
s

(tk)
k , l

(tk)
k

]})
= 0,

if ∃ i, j ∈ {1, · · · , tk} s.t. i �= j, l
(i)
k = l

(j )
k . (1)

Examples of closed-form RFS densities that satisfy (1) are
the labeled Poisson RFS density, the labeled
multi-Bernoulli RFS density, and the generalized labeled
multi-Bernoulli RFS density, all described in [6]. Let us
denote the corresponding observation as Zk (also an RFS)
and the sequence of all observations available until and
including time k by Zk.

As typical in the literature, in this paper we assume the
labeled state and observation processes (Xk, Zk) to be a
first-order partially observed Markov process with

f
(
xk

∣∣xk−1, Z
k−1

) = f (xk| xk−1) (2)

and

f
(
zk

∣∣xk, Z
k−1

) = f (zk| xk). (3)

The exact formulas for the multitarget state transition
function f (xk|xk−1), the multitarget likelihood densities
f (zk|xk), and the initial multitarget prior f(x0) depend on
the assumptions of the scenario (see, e.g., [6]).

The multitarget posterior f (xk|Zk ) can be calculated
recursively as (see, e.g., [6])

f
(
xk

∣∣Zk
) = f (zk|xk) f

(
xk

∣∣Zk−1
)

f
(
zk

∣∣Zk−1
) , (4)

where

f
(
xk

∣∣Zk−1
) =

∫
f (xk|xk−1)f

(
xk−1

∣∣Zk−1
)
δxk−1 (5)

and

f (zk|Zk−1) =
∫

f (zk|xk)f (xk| Zk−1)δxk, (6)

with the integrals being set integrals (see, e.g.,
[14, Section 9.3.2]).

We assume further that the new targets are assigned
unambiguous labels at the time of their appearances (as
explained further in section II-B1) and the following
assumption.

ASSUMPTION (L) The labels affect neither the kinematic
states of the target nor the generated observation
corresponding to those kinematic states. In particular,
we assume that

f ( sk| xk−1) = f ( sk| sk−1) (7)

and
f (zk | xk) = f (zk | sk) . (8)

Note that conditions (7) and (8) are not explicitly assumed
in [6]. Neither are they automatically satisfied by all the
models considered there. For example, (8) will be violated
if in the observation model the detection probability
pD([s, l]) (see [6, section IV-C]) depends on the label l.
Also, in the multi-Bernoulli RFS model, if the survival
probability pS([s, l]) (see [6, section IV-D]) depends on the
label l, then (7) will not be satisfied. Conditions (7) and (8)
are, however, consistent with the definition of label used in
this paper (see section II-B2).

Note further that condition (8) allows us to use in an
MTTL problem any relevant multitarget RFS
measurement model that can be used in an (unlabeled)
MTT problem. Examples of such multitarget RFS
measurement models are the point measurement model
described in [14, chapter 12] and the track-before-detect
measurement model described in [15]. Closed-form
expressions for the multitarget prior and state transition
densities (for the unlabeled MTT problem) can be found
in [14, chapters 13, 14].

B. Assumptions and Properties of the MTTL Problem

1) Nonambiguity of Initial Labels: The complete
mathematical description of the assumption is given later
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in Remark 3.2, once other necessary quantities are
introduced. Here we provide an intuitive explanation.

As in [6], we too consider a label to be a placeholder
for a target’s identity, which cannot be observed and which
is to be estimated along with the target locations in a
multitarget tracking scenario.

In section I, we have equated “labels” with “ATC call
signs” when they cannot be observed (e.g., when
transponders stopped working). Clearly, estimating ATC
call signs for aircraft with nonfunctioning transponders
makes sense only if the aircraft transponders were
functioning until some point; that is, the aircraft were
attributed unique labels in the past. In some sense, the
moment of transponder failure can be considered as the
birth of the target because from that point on, the call sign
became unobservable.

We view the labeling problem to be similar to this
situation, where one associates, to a current (estimated)
target, one of the previously assigned labels (generally
assigned when a target is detected for the first time) or a
new one to indicate the birth of a new target. Furthermore,
keeping similarity with the nonfunctioning transponder,
we assume that the model assigns a nonambiguous label to
the target at its birth. This is possible if we assume that the
support for the probability distribution of location for a
newborn target does not overlap with that for other
(existing or other newborn) targets. With the aircraft and
ATC, it is true because of the strict regulations.

On the other hand, suppose that two targets appear at
the same time and that no matter where they appear, the
model assigns to each target, say, label A with probability
0.5 and label B with probability 0.5 (i.e., enter into
so-called total mixed labeling). Then this mixed labeling
will persist at all later times [16, section IV-C], rendering
futile the attempt to assign labels to location estimates.

Unfortunately, the labeled RFS model described in [6]
will always produce total mixed labeling if two (or more)
new targets appear at the same time instant. When one
needs to deal with more than one target appearing
simultaneously, other labeling schemes can be envisaged
to circumvent this problem, for example, by partitioning
the surveillance space into small grids and attributing
labels according to the time and grid the target appears
in. However, we do not go into this aspect here. We
assume henceforth that there is no ambiguity regarding
the labels of appearing targets, which means that total
mixed labeling is at least avoided at the time of
appearance.

2) Interpretation of Labels: When labels are used
only to estimate trajectories, their values at one particular
time instant do not carry any useful information. They
exist solely to connect target states at different time points.
This, however, does not hold in our case. In conformity
with the nonambiguous initial labels (see section II-B1)
and as mentioned in section I, we note that a label carries
some information about the location, at birth, of the target
it is attached to. In the context of Fig. 1, the label “T1”
refers to the target that appeared in the upper-left corner,

Fig. 2. Different ways of obtaining posterior fk |k(s) from prior
fk–1|k–1(x).

and in the context of ATC call signs, a label refers to its
last known position.

Despite this, we consider the label to be an artificial
addition to the physical/kinematic model of the targets in
the sense that labels do not carry any information about
the target that may influence the measurements it generate
or the transition mechanism of the locations.

Looking at it from the reverse side, the measurements
do not provide any direct information about the labels.
Information about labels are obtained only via the
estimated location of the targets (on the basis of the
measurements) and combining this with the knowledge of
transition mechanism to infer the location at birth.

Note that if labels are indeed artificial introduction to
the physical model of the unlabeled states (i.e., the
unlabeled RFS model), one would expect that given the
measurements, the results obtained using labeled and
unlabeled RFS models will be consistent with each other.
In particular, one should expect that the filtered
distribution of the unlabeled states obtained using the
unlabeled RFS model (and the observations) should
coincide with the distribution of the unlabeled states,
calculated by marginalizing the filtered distribution
obtained using the labeled RFS model (see Fig. 2).

As shown in the appendix, Assumption (L) of section
II-A and, in particular, conditions (7) and (8) indeed imply
this consistency, corroborating the viewpoint that the
labels are artificial introduction to the physical model.

3) One-Sided Decoupling Between the Tracking and
Labeling Subproblems: In view of the discussion in
section II-B2 and in particular from Fig. 2, it is clear that
for the considered Bayesian MTTL problem, one can
solve the (sub)problem of tracking, that is, estimating
the corresponding set of unlabeled target states
Sk = {S(1)

k , · · · , S(t)
k }, from a sequence of observations

Zk = (z1, . . ., zk), completely disregarding the labeling
(sub)problem. The tracking problem will involve the
following recursions, similar to (4)–(6) but with the
unlabeled states:

f ( sk|Zk) = f (zk|sk)f ( sk| Zk−1)

f (zk| Zk−1)
, (9)
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Fig. 3. Particle representation of the multitarget distribution in a
situation where mixed labeling occurs (source: [10]). The squares and
circles mark the possible locations of each target in terms of particles.

“ + ” and “X” denote the MMSE estimates.

where

f ( sk| Zk−1) =
∫

f ( sk| sk−1)f
(

sk−1|Zk−1
)
δsk−1 (10)

and

f (zk|Zk−1) =
∫

f (zk| sk)f ( sk|Zk−1)δsk. (11)

See, for example, [14, chapter 14].
Although the Bayesian tracking recursion (9) does not

involve any probability distribution of labels or labeled
multitarget states, that is, does not depend on Bayesian
labeling, the (sub)problem of Bayesian labeling will
depend on the solution of Bayesian tracking due to the
interpretation provided in section II-B2. We refer to this
property as one-sided decoupling between the two
subproblems of (unlabeled) tracking and labeling.

C. Why Mixed Labeling Makes Bayesian MTTL
More Challenging

It is tempting to believe that approximating recursion
(4), by itself, gives a practical solution to the complete
MTTL problem. However, the way the recursion is
implemented plays a major role in providing the correct
statistics about the labeling uncertainties. In most cases, a
computationally feasible approximation of the f (xk|Zk) is
used (see [14, chapter 15]). This being an approximation
may, in turn, deter us from obtaining accurate estimates of
the statistics of interest. Consider again the situation
depicted in Fig. 1. If one implements the Bayes recursion
using a particle filter (PF), then the mixed labeling
manifests itself by particle clouds corresponding to each
target getting mixed, as shown in Fig. 3. In this case, due
to the inherent resampling mechanism in the PF method,
the actual labeling error tends to get underestimated. We
explain this further below.

Suppose the multitarget sequential Monte Carlo
(M-SMC) filter, presented in [17] and [14, chapter 15], is
used to obtain the posterior. These are multitarget versions
of the well-known sequential importance resampling
particle filter (SIR PF) proposed by Gordon et al. [18] and
Kitagawa [19].

As a SIR PF, the M-SMC filter suffers from the
well-known degeneracy phenomenon described in
[20–22]. For any given time j, the resampling mechanism
will cause the hypotheses on the multitarget trajectory
(X0, . . ., Xj) to eventually (i.e., at some time step k > j)
collapse into a single hypothesis (x∗

0, · · · , x∗
j ), leading the

particle approximation of the posterior f (xk|Zk) to be
biased toward f (xk|x∗

0, · · · , x∗
j , Z

k). This degeneracy will
definitely have an impact on the filter estimates unless we
have the “forgetting condition”

f (xk|Zk) ≈ f
(
xk

∣∣x∗
0, · · · , x∗

j , Z
k
)
. (12)

Condition (12) is likely going to fail in a situation such
as “total mixed labeling,” that is, where, according to the
true posterior distribution, for any given location, all
possible labeling assignments are equally probable. It is
argued in [16, section IV-C] that if a total mixed labeling
arose at some point, it would persist at all later times.
Consequently, if total mixed labeling already arises at
j′ < j, then it will persist at all later times, including time
k. In this case, the true posterior f (xk|Zk) will contain
mixed labeling. However, given x∗

j , that is, assuming
unique labels for all targets at time j, f (xk|x∗

j , Z
k) may not

have any mixed labeling, thus significantly violating (12).
The M-SMC filter has therefore a tendency to “forget”

the mixed labeling that exists in the true posterior density,
leading to the underestimation of the labeling errors. This
is what the authors in [1] observed empirically through the
analysis of the SIR PF mechanism.

It is easy to see that multitarget tracking techniques
based on representing the multitarget posterior as some
sort of set of hypotheses and periodically pruning
low-probability hypotheses will generally suffer from a
similar degeneracy phenomenon. This will happen, in
particular, if each hypothesis on the multitarget state at
time k implicitly assumes hypotheses on the multitarget
state at past times 0, . . ., k – 1, like the approach presented
in [6]. Since low-probability hypotheses are periodically
pruned, information about past trajectories will eventually
collapse into a single hypothesis.

III. MEASURE OF LABELING UNCERTAINTY IN
BAYESIAN MTTL

In section I, the “probability of (in)correct labeling” is
mentioned loosely as a possible measure of the labeling
uncertainty. A proper way of formalizing this will be to
define the event “correct labeling” and consider the
probability of the (complementary) event. However, as
mentioned in the same discussion, it is not obvious how to
define correct labeling of tracks if the tracks themselves,
being estimated values, are not correct.

At this point, many different alternative interpretations
can be envisaged, such as [23]. We adopt a conditional
approach. From the point of view of an end user, say, the
radar operator, there already exist satisfactory solutions to
the MTT problem at hand based on which point estimate
of the target locations are on the display. The end user is
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interested in having labels assigned to these point
estimates. With this viewpoint, we define the labeling
probability associated with a point estimate of the labeled
state to be the conditional probability that the assignment
of labels is correct if the targets are (truly) located at the
estimated positions. The precise definition is as follows.

1) The Labelling (Un)Certainty:

DEFINITION 3.1 Consider a RFS X, a finite set of labeled
target states, as described in section II-A. Let the RFS S be
the corresponding unlabeled target states. The labeling
probability associated with a realization
x = {[s(1), l(1)], · · · , [s(t), l(t)]} of X is defined to be the
(conditional) probability that label l(i) is associated with
the (unlabeled) state s(i), i = 1, . . ., t, given that (there are
t targets present and) S = s := {s(1), . . ., s(t)}. It is
subsequently denoted as L(x|s). �

It can be shown (see, e.g., [16, lemma 3.5]) that the
labeling probability is given by

L(x| s) = f
({[

s(1), l(1)
]
, · · · , [s(t), l(t)

]})∑
l̃(i)∈�

1≤i≤t

f
({

[s(1), l̃(1)], . . . , [s(t), l̃(t)]
}) = f (x)

f (s)
.

REMARK 3.2 The assumption of nonambiguity of initial
labels can now be fully described in terms of the labeling
probability. In particular, we assume that for any initial
unlabeled state s0, there exists one labeled state x0 such
that L(x0 | s0) = 1. �

2) Posterior Labeling Probability: For Bayesian
labeling purposes, we are interested in the posterior
version of the labeling probability, that is, conditioned on
all observations up to and including time k, given by

L
(

xk| sk,Z
k
) = f

(
xk|Zk

)
f

(
sk|Zk

) = f
(

xk| Zk
)∑

xk∈�k(sk)
f

(
xk| Zk

) , (13)

where

�k

({
s

(1)
k , · · · , s(tk)

k

})
�=

{
xk

∣∣∣xk = {[s(1)
k , l

(1)
k ], . . . , [s(tk)

k , l
(tk)
k ]}, f (xk|Zk) > 0

}
.

(14)

Note that (13) defines a discrete probability distribution on
�k (sk), that is, over the possible values of xk formed by
assigning labels to sk, because∑

xk∈�k(sk)
L

(
xk| sk, Z

k
) = 1. (15)

The following lemma will be useful in our later analysis.

LEMMA 3.3 Under condition (8),

L
(

xk| sk,Z
k
) = f

(
xk|Zk−1

)
f

(
sk|Zk−1

) [= L
(
xk

∣∣sk, Z
k−1 )]

.

(16)

PROOF From (13), we have

L(xk|sk, Z
k) = f (xk|Zk)

f
(
sk

∣∣Zk
) =

f (zk |xk )f (xk|Zk−1 )
f (zk|Zk−1 )
f (sk|Zk)

[from (4)]

= f (zk |sk ) f
(
xk

∣∣Zk−1
)

f
(
zk

∣∣Zk−1
)
f

(
sk

∣∣Zk
) [using (8)]

= f
(
xk

∣∣Zk−1
)

f (zk|Zk−1 )f (sk|Zk )
f (zk |sk )

= f
(
xk

∣∣Zk−1
)

f
(
sk

∣∣Zk−1
) ,

where the last equality follows from (9). �
Lemma 3.3 complies with the interpretation that an

observation provides information about label only via the
location estimate (see section II-B2). Hence, given
“locations” sk, the corresponding observation zk does not
carry any extra information about the labels at time k.

In other words, measurements cannot reduce the
labeling uncertainties for some given locations sk.
However, they may still reduce our overall (i.e., when
locations are not given) uncertainties in the labels if they
happen to tell us that sk is more likely to belong to a region
with fewer labeling uncertainties. On the other hand, once
we have reached a stage of total mixed labeling [16],
where the labeling uncertainties are large everywhere, this
is no longer possible, and the uncertainties will never be
reduced again.

3) Labeling Error: We can now use (13) to measure
the labeling error in a labeled track estimate.

DEFINITION 3.4 Let ŝk be the unlabeled tracks
corresponding to a set of labeled tracks x̂k . Then the
labeling error associated with x̂k is defined to be
1 − L(x̂k|ŝk, Z

k). �

IV. A LABELING ALGORITHM FOR MTTL PROBLEMS

In this section, we propose a labeling procedure that
can be combined with existing (unlabeled) MTT
algorithms to provide a complete MTTL solution. The
resulting solution has the advantage that it makes the
statistics proposed in section III readily available and does
not suffer from the degeneracy phenomenon described in
section II-C.

Recall from section II-C that when labels are part of
the state, the degeneracy phenomenon of the SIR PF and
similar algorithms creates an extra problem for MTTL in,
for example, the situation depicted in Fig. 1. In the
literature, the Rao-Blackwellized marginal particle filter
(RBMPF) (see [24, 25]) has been successfully applied to
counter PF degeneracy for the joint state and parameter
estimation problem. The algorithm is essentially a
combination of the Rao-Blackwellized particle filter [20]
and the marginal particle filter [26].

The idea of the RBMPF is to split the state vector into
two parts and handle only the part that is less likely to
violate the “forgetting condition” in (12) using particles
while attempting to express the conditional distribution of
the other states exactly.
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We apply the same idea to the MTTL problem by
decoupling the labels and the unlabeled states. We
estimate the unlabeled states by a suitable MTT algorithm
and calculate the probabilities of the labels, conditioned
on the unlabeled states, in a deterministic manner. By
doing so, we prevent degeneracy in the MTTL solution
that may arise due to the labels (e.g., when the solution
involves pruning of hypothesis on labels).

The proposed method is described in detail in section
IV-A. The corresponding algorithm is presented in section
IV-B. Finally, we discuss the computational aspects in
section IV-C.

A. Derivation of the Labeling Procedure

Note that due to the one-sided decoupling property, as
described in section II-B3, we can iteratively obtain a
representation of the unlabeled multitarget posterior
f (sk|Zk) without any need to concern ourselves with
labeling. Labeling can be done at a complementary step.

We will henceforth assume that f (sk|Zk) can be
effectively approximated using state-of-the-art MTT
techniques. We further assume that the chosen MTT
technique for unlabeled tracking represents the unlabeled
multitarget posterior f (sk|Zk) by a set of weighted
particles as follows:

f
(
sk

∣∣Zk
) ≈

NP∑
i=1

wk(i)δsk(i)(sk). (17)

Otherwise, we should be able to obtain such
representation by numerically approximating (e.g., by
sampling) the output of the algorithm. Choices of such
unlabeled tracking algorithms include the M-SMC filters
in [17] and [14, chapter 15], the hypotheses-based
algorithm proposed in [6] (though we should discard the
labels generated by the algorithm, as we are using another
labeling scheme), and, for the track-before-detect
measurement model, the Markov chain Monte Carlo
(MCMC) MTT algorithm proposed in [15].

By combining (13) with (17), we can express the
labeled posterior as

f
(
xk

∣∣Zk
) ≈

NP∑
i=1

wk(i)L
(
xk

∣∣sk(i), Zk
)
δsk(i)(sk). (18)

A general expected value E[g(Xk) |Zk] can thus be
approximated as

E
[
g(Xk)|Zk

] ≈
NP∑
i=1

wk(i)
∑

xk∈�k(sk(i))

g(xk)L
(
xk|sk(i), Zk

)
,

where �k(·) is as given in (14).
From (18), it is clear that the additional quantity that

our labeling algorithm should compute is the labeling
probability L(xk|sk(i), Zk). We develop a recursive
algorithm to compute these probabilities by making use of
(16). Noting that the denominator f (sk|Zk−1) in (16) does
not depend on the labels; we can approximate the labeling

probabilities as

L
(
xk

∣∣sk, Z
k
) ∝ f

(
xk

∣∣Zk−1
) =: L

(
xk

∣∣sk, Z
k
)

=
∫

f (xk |xk−1 )f
(
xk−1

∣∣Zk−1
)
δxk−1 (19)

≈
NP∑
j=1

wk−1(j )
∑

xk−1∈�k−1(sk−1(j ))

f (xk|xk−1)

× L
(
xk−1

∣∣sk−1 (j ) , Zk−1
)
, (20)

assuming that we have already computed the labeling
probabilities L(xk−1|sk−1(j ), Zk) at time (k – 1), for
j = 1, . . ., Np and xk−1 ∈ �k−1(sk−1(j )).

It should be noted that the summations in (20) need to
be computed for every particle sk(i) and its labeled version
xk ∈ �k(sk(i)) at time k. Depending on the number of
targets present and the number of used particles, this may
become computationally intractable. One way to reduce
the burden is to set the terms inside the second sum in (20)
with negligible contribution to zero.

This is equivalent to approximating the sets �k(sk) in a
specific way. First, note from (14), (18), and (20) that
�k(sk) may be approximated as

�k

({
s

(1)
k , . . . , s

(tk)
k

})
≈

{
xk

∣∣∣xk = {[
s

(1)
k , l

(1)
k

]
, . . . ,

[
s

(tk)
k , l

(tk)
k

]}
and

∃ j, xk−1 ∈ �k−1(sk−1(j ))

s.t. f (xk|xk−1)L
(
xk−1|sk−1(j ), Zk−1

)
> 0

}
. (21)

In the approximation above, one can use a higher
threshold τ k instead of 0 and use the condition

f (xk|xk−1)L
(
xk−1|sk−1(j ), Zk−1) > τk.

Then the number of terms in the sums over �k(sk) will
be reduced. One has to be very careful, though, in
selecting a threshold. A large threshold can cause labeling
hypotheses to disappear prematurely. This would, in turn,
lead to a sort of degeneracy that we are trying to prevent in
the first place.

To initialize the recursion for L(xk|sk, Z
k), the

quantities �0(s0) and L(x0|s0) are obtained as follows:

�0

({
s

(1)
0 , · · · , s(t0)

0

})
≈

{
x0

∣∣∣x0 = {[
s

(1)
0 , l

(1)
0

]
, . . . ,

[
s

(t0)
0 , l

(t0)
0

]}
, f (x0) > 0

}
(22)

and

L (x0 |s0 ) = f (x0) /f (s0) . (23)

Note that according to the assumption of nonambiguity of
initial labels (see section II-B1 and Remark 3.2), given
s0, �0(s0) will be a singleton set, and L(x0|s0) = 1 for
x0 ∈ �0(s0).
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B. The Algorithm

We now describe the (sub)algorithm for the labeling
procedure to be used as a “plug-in” to an (unlabeled) MTT
algorithm. The latter is assumed to generate, at every time
step k, a particle representation {sk(i), wk(i)}NP

i=1 of the
unlabeled posterior. For each particle sk(i), the labeling
algorithm computes the corresponding labeling
probabilities L(xk|sk(i), Zk) using the (unlabeled) particles
and labeling probabilities of previous time (k – 1).

Initialization: (for each s0(i), i = 1, . . ., NP)

• Set �0(s0(i)) according to (22), by taking s0 = s0(i).
• For each x0 ∈ �0(s0(i)), set L(x0|s0(i)) =

f(x0)/f(s0(i)).

At every time step k: (for each sk(i), i = 1, . . ., NP)
(L.1) Obtain �k(sk(i)) by taking sk = sk(i) in (21).
(L.2) For each xk ∈ �k(sk(i)), calculate the

unnormalized labeling probabilities L(xk|sk(i), Zk)
according to (20).

(L.3) For xk ∈ �k(sk(i)), normalize the labeling
probabilities

L
(
xk

∣∣sk (i) , Zk
) = L

(
xk

∣∣sk(i), Zk
)∑

x̃k∈�k(sk(i)) L
(
x̃k

∣∣sk(i), Zk
) .

C. Computational Cost of the Labeling Procedure

If we consider a constant number of targets t, there are
t possible labels. Hence, given a location sk–1(i), the
corresponding |�k–1 (sk–1(i))| can be as high as t!. Then,
from (20), it follows that the worst-case complexity of
calculating a single labeling probability for a single
particle–label combination xk is O(NPt!) and O(N2

P (t!)2)
to compute all labeling probabilities for all particles.
Needless to say, this computational cost can be prohibitive
if we have large number of targets.

The computational problem is aggravated when we
consider target births and deaths, where in fact �k(sk) may
grow with time, for example, when a target disappeared a
long time ago but its corresponding label still maintains a
nonzero probability of existence. This may happen if other
targets whose identities have been confused with the
“dead” target still exist.

Therefore, without additional approximations, the
labeling procedure presented here would be unsuitable for
large-scale MTTL problems. However, for problems of
tracking a small group of targets in a situation like Fig. 1
and individually identifying the targets after separation,
the labeling procedure is suitable. The algorithm has also
good parallelization properties: steps (L.1)–(L.3) can be
fully parallelized by letting each (parallel) computing
node process a single labeling hypothesis xk(i) with a
computational complexity of O(NP t!).

V. NUMERICAL RESULTS

In this section, we present the simulation results for
the proposed labeling procedure by analyzing the effect of
adding it as a “plug-in” to an unlabeled M-SMC filter. We

compare the results to those from a labeled M-SMC filter,
which estimates labels as part of the single-state state.

We start by explaining the metrics we use to evaluate
the algorithms. Subsequently, in section V-B, the
considered scenarios are described. The comparison
results are presented in sections V-C and V-D.

A. Metrics for Performance Evaluation

We recall that though the overall goal of MTTL is to
obtain labeled tracks, the focus of this paper is on the
labeling part. Subsequently, we compare different
algorithms on the basis of the labels the algorithms will
assign to a set of given unlabeled states. In the simulation
examples, the natural choice of the unlabeled states is the
synthetic location values used in the simulation.

Suppose that in a simulation run s̃k represents the true
unlabeled multitarget states (locations) at time k and that
x̃k represents the true labeled multitarget states. For any
given algorithm producing a particle representation of the
posterior f (xk|Zk) at each time k, we calculate the
labeling probabilities L(xk|s̃k, Z

k) for xk ∈ �k(s̃k) by
calculating first the unnormalized versions from (19),
where the set integral is evaluated using the particle
representation of f (xk−1|Zk−1).

Subsequently, we compare the point estimate x̂k , given
by

x̂k = arg max
xk∈�k(s̃k)

L
(
xk

∣∣̃sk, Z
k
)
, (24)

to the true labeled state x̃k using the hit-or-miss metric:

ε(x̂k, x̃k) ≡ ε
({[

ŝ
(1)
k , l̂

(1)
k

]
, . . . ,

[
ŝ

(tk)
k , l̂

(tk)
k

]}
,{[

s̃
(1)
k , l̃

(1)
k

]
, . . . ,

[
s̃

(tk)
k , l̃

(tk)
k

]})
�=

{
1, ∃ i, j s.t. ŝ

(i)
k = s̃

(j )
k and l̂

(i)
k �= l̃

(j )
k

0, otherwise;
(25)

that is, the value of the metric is 1 if there is at least one
incorrectly assigned label and 0 otherwise. Naturally, the
metric is statistically relevant only when averaged over a
sufficient number of Monte Carlo runs. Thus, we define
for an MTTL algorithm the observed average labeling
error at time k as

εtrue
k = 1

NR

NR∑
i=1

ε(i), (26)

where NR is the number of Monte Carlo runs and ε(i) is
calculated according to (25) for the ith Monte Carlo run.

Recall further that the labeling error in x̂k , given by
1 – L(x̂k|s̃k, Z

k), represents the (conditional) probability
that the true labels (L(1)

k , . . . , L
(tk)
k ) associated with the

locations (s̃(1)
k , . . . , s̃

(tk)
k ) are different from (l̂(1)

k , . . . , l̂
(tk)
k ).

In other words, ε(x̂k, x̃k) of (25) can be considered as a
realization/observation from the Bernoulli distribution
with success probability 1 − L(x̂k|s̃k, Z

k). Thus, when
averaged over a series of Monte Carlo runs, these two
quantities should be close to each other.
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We thus also calculate the algorithm-suggested
average labeling error as

εcalc
k = 1

NR

NR∑
i=1

(
1 − L

(
x̂k(i)

∣∣s̃k(i), Zk(i)
))

, (27)

where i stands for the Monte Carlo run number. As argued
above, the quantities εcalc

k and εtrue
k should not have a large

difference. Otherwise, it will indicate inconsistency
between the observation and the expectation, both derived
using the same algorithm.

Another related measure of importance is the variance
of the labeling error, (1 − L(x̂k|s̃k, Z

k)). Note that this
variance has two contributors: 1) the variability due to the
varying sequence of (unlabeled) state sk and observations
Zk and 2) the variability in the estimation of posterior
distribution of the labeled locations. It is, however, the
latter type that is more relevant for us because a high
variance would indicate that the calculated
(1 − L(x̂k|s̃k, Z

k)) is unreliable. In order to observe this
latter variance, we perform a second analysis, this time
running the algorithm many times on a fixed sequence of
measurements Zk (and, necessarily, for fixed sequence of
locations sk). Then the variance in these estimated errors
will be due entirely to the algorithm of obtaining the
labeled states. In this analysis, we look at the standard
deviation of the calculated labeling error given by

σ ε
k =

√√√√ 1

NR

NR∑
i=1

((
1 − L

(
x̂k(i)

∣∣s̃k, Zk
)) − εcalc

k

)2
. (28)

B. Simulation Scenarios

In our analysis, we consider the following four
scenarios:

1) Two targets approach each other, move closely
spaced for a while, and separate.

2) Two targets approach each other, move closely
spaced for a while, and separate, crossing paths.

3) Two targets approach each other, move coalesced
for a while, and separate.

4) Two targets approach each other, move closely
spaced for a while, and separate. However, one of the
targets appears later but well before they come close, and
the other disappears soon after the separation.

The trajectory of the targets and the simulated
measurements in one Monte Carlo run is shown in Fig. 4.
The targets (as well as the time) move from left to right.
The multitarget measurement model f(zk|sk) is taken to be
the detection-type measurement model described in [14,
section 12.3]. Missed detections and false alarms are
considered only in the last scenario (with target birth and
death), with probability of detection 0.95 and uniform
clutter density of 2 · 10−7 per unit of area. The
single-measurement, single-target likelihood function is

given by

p
(
z

(i)
k

∣∣∣s(j )
k

)
= N

(
z

(i)
k ;

[
p(j )

x , p(j )
y

]
,

[
676 0

0 676

])
. (29)

The location has the form S
(i)
k = [P (i)

x , P (i)
y , V (i)

x , V (i)
y ],

where (P (i)
x , P (i)

y ) is the position in Cartesian coordinates x
and y and (V (i)

x , V (i)
y ) corresponds to the velocities. The

single-target state transition model corresponds to the
popular discretized white noise acceleration model
described in [27], with T = 2 as the interval between
observations and σ 2 = 676 as the power spectral density
of the process noise.

In all scenarios, we assume perfect knowledge of the
targets’ initial positions as well as their time of appearance
(for the appearing target in scenario 4). The possibility of
target death is considered only in scenario 4, with the
probability of target survival at each time step assumed to
be constant and equal to 0.95. With the given assumptions,
the multitarget predictive density f (xk|Zk–1) and the
posterior density f (xk|Zk) are generalized multi-Bernoulli
RFS densities, with analytical formulas presented in
[16, section IV].

For all scenarios, we evaluate two MTTL algorithms:

1) A “naive” M-SMC filter that attempts to estimate
labels as part of the single-target state without preventing
the degeneracy phenomenon described in section II-C;

2) A decoupled tracking/labeling approach that uses
an M-SMC filter only for unlabeled tracking and the
labeled “plug-in” described in section IV-B to calculate
the labeling probabilities.

For both the naive and the decoupled algorithms, we
use 2000 particles for scenarios 1, 2, and 3, and 4000
particles for scenario 4. For both filters, we use blind
importance sampling; that is, we use f (xk|xk–1) as proposal
density for the naive M-SMC filter and f (sk|sk–1) for the
decoupled algorithm. For the calculation of the average
errors, we have used NR = 100 Monte Carlo runs.

C. Results for Monte Carlo Runs With Varying
Sequence of Measurements

The results from the Monte Carlo simulation with sk

and Zk being regenerated at each Monte Carlo run are
shown in Fig. 5. The observed and algorithm-suggested
average labeling errors, εtrue

k and εcalc
k , respectively, are

plotted for both the naive M-SMC filter and the decoupled
MTTL algorithms. In terms of the observed errors, εtrue

k ,
we see that the decoupled approach provides lower
average labeling errors for all scenarios. The improvement
of using our proposed labeling procedure is much more
significant in scenarios 1 and 2, where the separation
between the targets was larger (and hence ambiguity in
label-to-location association was lower).

In terms of the algorithm-suggested errors, εcalc
k , we

see that for the naive M-SMC filter, after the targets
separate, it decreases with time. This indicates that the
algorithm becomes increasingly confident in the
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Fig. 4. Multitarget simulation scenarios. Plots show the trajectory of the targets, moving from left to right, and the measurements in a particular MC
run. The x-axis can also be considered as time axis (naturally, with a different scale).

correctness of the assigned labels, while the observed
errors, εtrue

k , are much higher. This clearly shows that the
algorithm underestimates the true labeling uncertainty.
This can be attributed to the degeneracy inherent in the
naive M-SMC filter.

The decoupled algorithm, on the other hand, exhibits
far more consistency between the observed and calculated
errors, as εcalc

k remains constant over time after the targets
separate. This is consistent with the theoretical behavior of
f (xk|Zk) for this type of scenario, namely, the persistence
of mixed labeling, as described in [16, section IV-C].

D. Results for Monte Carlo Runs With Fixed Sequence
of Measurements

In this section, we analyze the standard deviation, σ ε
k ,

of the labeling errors from a labeled MTTL solution. For
this analysis, as mentioned in section V-A, we perform the
simulations for fixed sequence of sk and Zk. Since in

section V-C we have established that the estimated
labeling errors with the naive (labeled) M-SMC filter are
erroneous (severely underestimated) there is no point
analyzing the variance of these underestimated quantities.
So we exclude the naive (unlabeled) M-SMC filter and
consider only the decoupled algorithm in our analysis.
Furthermore, we consider only scenarios 1 and 3 to see
how the estimation of labeling error is affected by the
degree of target separation (while they move closely
spaced).

The results on the standard deviation, σ ε
k , of the

algorithm-suggested labeling errors are shown in Fig. 6.
Recall that with fixed observation series, the variation in
εcalc
k is caused solely by the estimation of posterior

distribution of the labeled locations. In our case, this
means by the (unlabeled) M-SMC filter and subsequently
when that is used to calculate the labeling probabilities.
Hence, a large σ ε

k indicates low reliability of the
augmented algorithm. It is interesting to notice in Fig. 6
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Fig. 5. Comparison of naive labeled M-SMC filter and decoupled M-SMC filter (varying Zk).

Fig. 6. MC variation in estimated labeling error probabilities for the
decoupled MTTL algorithm.

that the variance is higher when targets came close but not
very close than when the targets actually coalesce. At first

sight, this may seem counterintuitive because labeling
should be easier when the targets are more separated, and
so variability in error probabilities should be less.

However, this is not so if we realize that when the
targets coalesce and move at this state for some time, then
“total mixed labeling” will appear. In other words,
according to the true posterior distribution, given any
possible location of the targets, all possible label
assignments will become equally probable, and it will
continue to be like that at all later times (see, e.g., [16,
section IV-C]). A good algorithm will reflect this by
having/estimating the labeling errors to be almost constant
(in our case 0.5), which will lead to smaller variance.

VI. CONCLUSIONS AND RECOMMENDATIONS

In this paper, we have complemented the introduction
to the Bayesian MTTL problem, presented in [6], with a
discussion on the additional assumptions needed to keep
the target labeling problem meaningful. A mathematical
characterization of the labeling uncertainties present in an
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MTTL solution is provided by defining properly the
quantities such as labeling probability and labelling error.
These quantities have clear practical interpretations (i.e.,
meaningful to the user of the system) rather than being
only abstract mathematical quantities. The existing
literature either lacks these sort of uncertainty measures or
these measures do not have clear interpretation.

We have also devised a new labeling procedure that
can be combined with existing (unlabeled) MTT
algorithms to provide a complete solution to the Bayesian
MTTL problem. The resulting solution avoids the
degeneracy that may appear due to the labels (e.g., when
the solution involves pruning of hypothesis on labels).

Numerical examples show that when the (unlabeled)
M-SMC filter is augmented with the proposed labeling
procedure, it performs much better than the naive labeled
M-SMC filter, which estimates labels as part of the
single-target state.

In terms of theoretical research, an interesting topic of
future work would be to devise different ways of
generating labels that have better capabilities of assigning
unambiguous labels to appearing targets than in [6] and
therefore could be applied to more general scenarios. In
terms of practical research, it is worth investigating
possible improvement of the computational performance
of our proposed labeling procedure by finding more
computationally efficient ways to calculate the labeling
probabilities. Naturally, it would also be interesting to try
the labeling procedure with more complex observation
models, such as the track-before-detect observation model.
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APPENDIX

To see that the conditions (7) and (8) indeed lead to the
consistency criteria mentioned in section II-B2 (Fig. 2),
consider sk = {s(1)

k , . . . , s
(t)
k }. From marginalization and

(5), we have the following:

f (sk|Zk−1)

= f
({

s
(1)
k , . . . , s

(t)
k

} ∣∣Zk−1
)

=
∑
l
(i)
k

∈�

1≤i≤t

f

({[
s

(1)
k , l

(1)
k

]
, . . . ,

[
s

(t)
k , l

(t)
k

]} ∣∣∣∣Zk−1

)

=
∑
l
(i)
k

∈�

1≤i≤t

∫
f

({[
s

(1)
k , l

(1)
k

]
, . . . ,

[
s

(t)
k , l

(t)
k

]}∣∣∣∣xk−1

)

× f
(
xk−1

∣∣Zk−1
)
δxk−1. (30)

From the definition of set integral (see, e.g.,
[6, proposition 2], we then have (31) below. Furthermore
taking the sum over l

(i)
k in (31) inside the integral

(which is permitted because all the terms are nonnegative)
and subsequently using marginalization and (7), we obtain

f (sk|Zk−1)

=
∑
l
(i)
k

∈�

1≤i≤t

∞∑
m=0

1

m!

∑
l
(j )
k−1∈�

1≤j≤m

∫
(Rn)m

f

( {[
s

(1)
k , l

(1)
k

]
, . . . ,

[
s

(t)
k , l

(t)
k

]}∣∣∣∣ {[
s

(1)
k−1, l

(1)
k−1

]
, . . . ,

[
s

(m)
k−1, l

(m)
k−1

]})
× f

({[
s

(1)
k−1, l

(1)
k−1

]
, . . . ,

[
s

(m)
k−1, l

(m)
k−1

]} ∣∣∣∣Zk−1

)
× d(s(1)

k−1, . . . , s
(m)
k−1) (31)

=
∞∑

m=0

1

m!

∑
l
(j )
k−1∈�

1≤j≤m

∫
(Rn)m

f
(

sk

∣∣{s(1)
k−1, . . . , s

(m)
k−1

})

× f

({[
s

(1)
k−1, l

(1)
k−1

]
, . . . ,

[
s

(m)
k−1, l

(m)
k−1

]} ∣∣∣∣Zk−1

)
× d

(
s

(1)
k−1, . . . , s

(m)
k−1

)
. (32)

Interchanging the sum over l
(j )
k−1 and the integral, it follows,

from marginalization and the definition of set integral, that

f (sk|Zk−1)

=
∞∑

m=0

1

m!

∫
(Rn)m

f
(

sk |{s(1)
k−1, . . . , s

(m)
k−1}

)
× f

(
{s(1)

k−1, . . . , s
(m)
k−1}|Zk−1

)
d(s(1)

k−1, . . . , s
(m)
k−1)

=
∫

f (sk|sk−1)f (sk−1|Zk−1)δsk−1,

which is the Chapman–Kolmogorov
equation corresponding to the unlabeled RFS model.

Furthermore, from (4) and (8), we have

f (sk|Zk)

=
∑
l
(i)
k

∈�

1≤i≤t

f

({
[s(1)

k , l
(1)
k ], . . . , [s(t)

k , l
(t)
k ]

} ∣∣∣∣Zk

)

=
∑
l
(i)
k

∈�

1≤i≤t

f

(
zk

∣∣∣∣ {
[s(1)

k , l
(1)
k ], . . . , [s(t)

k , l
(t)
k ]

})
f

(
zk

∣∣Zk−1
)

× f

({
[s(1)

k , l
(1)
k ], . . . , [s(t)

k , l
(t)
k ]

} ∣∣∣∣Zk−1

)
=

∑
l
(i)
k

∈�

1≤i≤t

f (zk|sk)

f
(
zk

∣∣Zk−1
)f

(
{[s(1)

k , l
(1)
k ], . . . , [s(t)

k , l
(t)
k ]}|Zk−1

)

= f (zk|sk)

f
(
zk

∣∣Zk−1
)f (sk|Zk−1),
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which is the measurement update equation for the
unlabeled RFS model.
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