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A polymer molecule in solution is treated as a porous sphere with a spherically symmetric
permeability distribution. Solvent motion in and around this sphere is described by the Debije-
Brinkman equation (Navier—Stokes equation and Darcy equation combined). The model allows a
straightforward calculation of the frictional properties of a polymer in shear flow (intrinsic
viscosity) and in translation (friction coefficient). Calculations have been carried out for a radial
dependence of the permeability of the form k(r) = K exp(Qr?). The calculations provide us with
detailed information about the solvent flow through and around the macromolecular coil.

1. Introduction

In a celebrated paper Einstein') calculated the viscosity of a dilute suspen-
sion of impermeable spheres. Einstein’s expression for the viscosity is often
used to interpret the viscosity of a solution of macromolecules in terms of an
effective hydrodynamic radius. However, a macromolecule in solution cannot
be represented by an impermeable sphere because the solvent is able to flow
through as well as around the coil. Hence, the flow of an incompressible fluid
through and around a macromolecule represented by a porous sphere may be
solved from the Debije-Brinkman equation:

—vp+n0Av—%(v—U)=o, (1)

div v =0. 2)

In this equation, which applies to the stationary state only, V and P denote
the average local velocity and pressure of the solvent, U is the local velocity
of the polymeric material, i, the viscosity of the pure solvent, and k the local
permeability.

It is implicit in the use of the Debije-Brinkman equation that the polymer is
represented by a continuum with a locally varying permeability. This equation
has been used by Ooms et al.?) to calculate sedimentation coefficients: the
values thus obtained agreed within a few percent with the experimental
values. A microscopic derivation of an equation very similar to (1) was given
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by Felderhof and Deutch®); a macroscopic derivation of (1) with a discussion
of the effects due to polymer solvent interaction was given by Wiegel and
Mijnlieff).

In a real macromolecule the permeability will be some function k(r) of the
radial distance (r) to the centre of the coil. This function is not related in a
simple way to the local segment density [c(r)], because permeability appears
to depend strongly on the quality of the solvent [see Mijnlieff and Jaspers®)].

Although an a priori calculation of k(r) is unfeasible, this function can be
determined in the following way. First one uses an exact relation between the
permeability and the sedimentation coefficient to determine the permeability
at a certain concentration [k(c¢)] from the sedimentation coefficient at the
same concentration, which can be measured accurately [compare Mijnlieff
and Jaspers®) and Wiegel and MijnlieffY)]. Next, one assumes a certain form
for the function c¢(r), after which on combining with k(c) the function k(r) is
obtained. On adopting a gaussian for ¢(r) one finds in this way that the radial
dependence of the permeability is approximately described by

k(r)= K exp(Qrd), (3)

where K and Q are positive constants the values of which depend on the
temperature and on the nature of the polymer and solvent.

It is the aim of the present paper to calculate the intrinsic viscosity and the
translational friction coeflicient of macromolecules which are characterized
by a local permeability given by the last equation. In the past (1) has been
solved for a few specific choices of k(7). Debije and Bueche®) solved (1) for a
sphere of constant permeability, both for shear flow and for translation.
Felderhof”) presented a very general formalism for the calculation of fric-
tional properties of permeable macromolecules, but gave explicit results only
for the uniform sphere and for the spherical shell. We shall use Felderhof’s
methods to study the more realistic case (3).

The content of the paper is divided as follows. Section 2 is devoted to the
derivation of a general expression for the viscosity. In section 3 we specialize
to the model characterized by eq. (3) and give the results of the numerical
solution of the relevant system of differential equations. Similarly, section 4 is
devoted to the derivation of a general expression for the translational friction
coefficient and the results for the model characterized by eq. (3) are given in
section 5. The comparison between predicted and measured values of the
intrinsic viscosity and friction coefficient (which turns out to be satisfactory)
and the relevance of these results for the understanding of frictional proper-
ties of polymers in solution are the subject of a separate paper®). (Also compare
ref. 10).

2. General expression for the viscosity

Consider an isolated macromolecule which is located at the origin of a
cartesian frame of coordinates. Due to the presence of the macromolecule in
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the origin the velocity and pressure will be the solutions of egs. (1) and (2)
which approach the simple shear flow given by
v =+ Gey; v,=0; v3= 0, 4)

at large distances from the origin.

The macromolecule is represented by a rigid porous sphere with a per-
meability k(r) which has spherical symmetry, but which is otherwise arbi-
trary. Owing to the interaction with the fluid this sphere will start to rotate
around the z-axis with an angular velocity o:

U= — wy; U,=+wx; U;=0. (&)

In the stationary state the total torque of the forces which the fluid exerts on
the coil should vanish. It can easily be shown that this implies that the angular
velocity equals half the shear rate:

o = —1G.. (6)

For the actual velocity and pressure fields we make the Ansatz due to
Felderhof):

V=U+¢@w-U)—purx(@rx[v-U), @)

r-ov
P

P = po— nox (8)

Here ¢, n and x are three unknown functions of the radial distance (r) to the
origin. It is straightforward to verify that (7) and (8) are indeed the solution of
(1) and (2) provided

1

p=ig )
6 ,, ~1 X'

d"+=¢' -k +°-=0, (10)
r r
2 6 _

X' 5X = Zx =k Yé =0. an

The prime denotes differentiation with respect to r. The boundary conditions
are that the velocity and pressure stay finite in the origin and approach the
unperturbed fields v(r) and p, at distances which are large compared to the
diameter of the coil; this implies:

¢(0) finite, . (12a)
x(0) finite, (12b)
d(=) =1, (12¢)

X () =0. (12d)
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For r—« the permeability goes to infinity and the fourth term on the
left-hand side of eq. (11) vanishes. The resulting equation has the solution

x(n=24/r" (ro). (13)
Upon substitution into eq. (10) one finds
A B
d(r)=1- P (r—> o), (14)

where the boundary conditions (12) were used and where the third term on
the left-hand side of eq. (10) was set equal to zero. By substituting into (7) one
finds the asymptotic form of the three components of the velocity:

— x’y -4
Vi=+ Gy~ GAZF+ 00, (15a)
Vo= -G, (15b)
—«—(;/axyz (r ), (15¢)

which formulae determine the viscosity in the following way. Consider a
dilute solution which contains n, of these macromolecules per unit volume.
Let the solution be contained between two parallel walls situated at y =+ L
and let these walls move with equal but opposite velocities (= GL) along the
x-axis in such a way that the macroscopic velocity field has a shear rate G.
We calculate the viscosity of the solution following the method of Burgers®).
The macroscopic velocity field (macroscopic shear rate G) should be dis-
tinguished from the local velocity field in the vicinity of a macromolecule. The
velocity field which would be found at the position (r;)) of a particular
macromolecule, when that molecule has first been removed, has a shear rate
G.. The presence of the molecule at r; will add to this unperturbed velocity a
small correction given by (15), and these corrections have to be summed over
all the coils in the fluid.

To be more specific we calculate the correction to the velocity in some
point (x, y, z) due to all coils present in a thin slice of fluid parallel to the
x, z-plane and with thickness dy’. As the coils are distributed with number
density n, the correction to V, can be found from the integral

A%:~Gﬁmdy]dxfd’i;iM%;Q

—37G. Anr,b::y‘dy (16)

Note that dAV,/3dy = 0, so the molecules in this slice do not change the local
shear rate; therefore the shear at the upper and lower plates still equals G..
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Hence, the x-component of the force which the fluid exerts on a unit area of
the upper surface equals 7oG.. By integrating (16) over y’ and adding the local
velocity field one finds the macroscopic velocity field V™ described by

V¥ = + Gy, (17a)

viM =, (17b)

vi¥=0. (17¢)
Carrying out the integration one finds:

G = (1 -3mn,A)G.. (18)

The viscosity n of the solution is operationally defined by measuring the force
per unit area and dividing by the shear rate. But as the force per unit area has
an x-component equal to n,G. this gives

1nG = 10Ge. (19)

Combining the last two equations gives, for the relative increase of the
viscosity,

(n — Mo)mo =37, A. (20)

Together with eqs. (10)—(14) this relation expresses the viscosity of a dilute
solution of permeable macromolecules in terms of the asymptotic behaviour
of the flow field around one macromolecule. The result (20) was first obtained
by Burgers®).

3. Application to a realistic polymer model

We now apply the general theory which formed the subject of section 2 to a
realistic model for which the radial dependence of the permeability is given
by (3). When this expression is substituted into (10) and (11) and the
dimensionless distance x = rV' Q is introduced as the independent variable,
the differential equations become

&f 6df L ep, 1de_
d.)cz-kxdx_o‘e f+;(—i;_0” (21a)
dg,2dg 6\ raxtef=0. (21b)

dx? xdx x
Here f(x)= ¢(r), g(x) = x(r), and a denotes the dimensionless parameter
a=(KQ)". B 03]

The boundary conditions on f and g are the same as those on ¢ and .

Whereas an analytic solution of (21) seems difficuit to obtain, a numerical
solution can be found, for example by a process of iteration. Note that g can
be calculated from f by solving (21b):
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A x

g(x) = fax '“fyﬁe"’:f(y)dy%axzf ye Y f(y)dy. (23)
1] X
On the other hand. once the function

N gy L de
F(x)=+ae™ f(x < da (24)

is known, (21a) can be solved for f:

Ry x

flx)= 1-%X"f,v“F(,v) d_v—%J’ vF(y)dy. (25)
0 X

The numerical procedure starts with some guess for the function f(x).
Substitution into (23) gives a guess for g(x) and hence for F(x) by sub-
stitution into (24). When this approximation of F(x) is substituted into (25)
one finds an improved approximation of f(x). The iteration is continued till
the successive approximations differ by an amount which is smaller than
some error margin. Note that (23) immediately leads to the asymptotic
behaviour of g(x): using (13) and (20) this gives for the relative increase of the
viscosity

n‘:n—;@:%wn,,l( 'Q (K Q7). (26a)
where i}
d(a) :_%fx“e":f(x)dx. (26b)
o
TABLE |

The function ®. defined by eq. (26b), and the value of f(x) in the origin

a D(a) f(0) a D(a) f(0)

0.0 0.332 1.000 2.0 0.311 0.825
0.1 0.331 0.990 3.0 0.301 0.754
0.2 0.330 0.980 4.0 0.292 0.692
0.3 0.329 0.971 5.0 0.284 0.637
0.4 0.328 0.961 6.0 0.277 0.588
0.5 0.327 0.952 7.0 0.270 0.544
0.6 0.325 0.942 8.0 0.263 0.505
0.7 0.324 0.933 9.0 0.257 0.470
0.8 0.323 0.924 10 0.251 0.439
0.9 0.322 0.915 11 0.246 0.411
1.0 0.321 0.907 12 0.241 0.385
1.1 0.320 0.898 13 0.236 0.362
1.2 0.319 0.889 14 0.231 0.341
1.3 0.318 0.881 15 0.227 0.321
1.4 0.317 0.873 16 0.223 0.304
1.5 0.316 0.865 17 0.219 0.288

18 0.215 0.273
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Fig. 1. Behaviour of the functions f(x) and g(x) for a = 10.

This function has been calculated numerically for values of a up to 18. The
results are collected in table I. Note that ®(0) = &V . The behaviour of f(x)
and g(x) is drawn in fig. 1 for the typical value a = 10. If m denotes the mass
of a single macromolecule the intrinsic viscosity [n] is given by

[n]=37m 'K™'Q" ®(K'Q™. (27

Together with the numerical results in table I this formula enables us to
predict the intrinsic viscosity of dilute polymer solutions. This is the subject
of a separate paper®). (Also compare ref. 10).

Table 1 also gives the value f(0) of f(x) in the origin of the coil, which is a
measure for the degree of draining of the coil. The velocity on the y-axis is
found by substituting x = z = 0 into (7):

1 d¢
Vi=1 + 3Gy’ == ——
1= 26y (14 @) +3Gey” 2 (28)

where x = ry, y = r,, z = r;. This velocity has been drawn in fig. 2 for a = 10.

S Y=a

Fig. 2. The velocity component V, in the r, direction as a function of rz\/z) for a = 10. The
vertical coordinate measures the value of V,Q"*G_".
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4. General expression for the friction coefficient

When a hard sphere of radius R moves through a viscous fluid with a
constant relative velocity v, the force on the sphere is given by Stokes’
formula

F= _6777)()RU(). (29)

and the friction coefficient f is given by the ratio of force and velocity:

These formulae are often used to assign an effective hydrodynamic radius to a
macromolecule of which f has been measured. However, the same criticism
applies here as in the case of the intrinsic velocity, and in this section we
calculate the frictional coefficient from the Debije-Brinkman equation (1),
where now U = 0.

Consider an isolated macromolecule located at the origin of a cartesian
system of coordinates. In the absence of the molecule the fluid would be in
a state of uniform flow and the velocity v has the components

v, =0; va=0: vy =+ vo. 3n

The pressure would equal a constant p, everywhere in the fluid. Owing to the
presence of the macromolecular coil in the origin the actual velocity and
pressure will be the solutions of (1) and (2) which approach the unperturbed
fields at large distances from the origin.

The macromolecule is again represented by a rigid porous sphere with a
permeability k(r) which has spherical symmetry, but which is otherwise
arbitrary. For the actual velocity field and pressure field we use the Ansatz
due to Felderhof”):

V=4(r)v—v(ryr x(r xv), (32a)
P = py—moé(r) 7. (32b)

Here ¢, v and ¢ are three unknown functions of the radial distance to the
origin. It is straightforward to verify that (32) solves (1) and (2) provided

V:2_1rl//’s (333)
t/f”+§t/f’—k“df+§’:0, (33b)
” g ;_2 — —Iyg

E+iE -5k Yy =0, (33c)

The prime denotes differentiation with respect to r. The boundary conditions
are that the velocity and pressure stay finite in the origin and approach the
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unperturbed fields at large r; this implies

$(0) finite, (34a)
&(0) finite, (34b)
P(o) =1, (34¢)
Y() = 0. (34d)

For r— = the function k™' vanishes and the last term on the left-hand side of
(33c) vanishes. The resulting equation has the solution

Er=Clr  (r-w), (35)
where the boundary condition (34d) was used. Substituting into (33b) and
using the boundary condition (34¢) one finds the asymptotic behaviour

sn=1-5+8 (o), (36)

These asymptotic formulae determine the friction coefficient in the following
way. From the macroscopic derivation of the Debije-Brinkman equation,
given for example by Wiegel and Mijnlieff*), it is clear that the z-component
of the total force which the fluid exerts on the coil equals

Fo=mo [ k() Vi) dr. (37
Using (1) this can be written in the form
P
F,= f (— ot v3) &r.

With Gauss’s theorem the volume integral can be replaced by a surface
integral over the surface of a sphere with a large radius r; subsequently the
limit r - will be taken. Denoting the surface element of this sphere by d2S
one finds
- _épZa 8Vix 3Vsy a_Vsz) 2
F,= §Prds+n03§(ax L (38)
The advantage of this approach is that only the asymptotic form of V; and P
is needed.
Using the results (32), (33), (35) and (36) one finds

_ _ ‘U()C__ U()C22 3
Vi= v, 2 T +0(r ), (39a)
C
P = py— 1025 (39b)

Substituting this into (38) and taking the limit » — % one finds
F; = 471y Cuo. (40)
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Hence by (30) the friction coefficient 1s
f=4mrnC; 41

its value depends only on the value of the constant C, i.e. on the leading term
in the asymptotic behaviour of pressure and velocity.

5. Application to a realistic polymer model

We now apply the general theory which formed the subject of section 4 to
the model for which k(r) is given by eq. (3). When this expression is
substituted into (33b) and (33c) and when the dimensionless distance x = rVQis
introduced as the independent variable, the differential equations become

&*h  4dh dg

ac Txax ¢ PRt @
2

Here h(x)= ¢(r) and q(x) = Q "2£(r). The boundary conditions on k and ¢
are the same as those on  and &. It is straightforward to show that the boundary
condition that h and g should be finite in the origin, is equivalent to the
boundary conditions

q(0) =0, (43a)
h'(0) =0, (43b)

which are easier to use.

Whereas an analytic solution of (42) seems difficult to obtain, a numerical
solution can be found in the following way. We set

c d ¢
h(x)= 1—;+?, CI(X)—Xz (x > xo), (44)

for x larger than some large positive constant x,, then use (42) to calculate
q(0) and h'(0). In general these values will violate the boundary conditions
(43). The values of ¢ and d are then adjusted till (43) is fulfilled within some
error margin. Denoting the correct value of ¢ by a¥(a) we have

C=0Q "c=Q0"a¥(a). 49)

For the record only we just mention that it can easily be shown that
‘P(a)=%f x*e ™ f(x)dx. (46)
0
This implies, among others, that

x

V(0= f e tdx = W 47)

0
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TABLE I1
The function ¥, defined by eq. (46)

a Y(a) a Y(a) a V(a) a Y(a)
0 0.443 5 0.209 10 0.141 15 0.108
1 0.359 6 0.190 11 0.133 16 0.103
2 0.303 7 0.175 12 0.125 17 0.099
3 0.263 8 0.162 13 0.119
4 0.233 9 0.151 14 0.113
The friction coeflicient follows upon substitution of (45) into (41):

f=4mmQ a¥(a). (48)

The values of the function ¥(a) have been calculated for values of a up to
17; the results are collected in table II. The behaviour of h(x) and g(x) is
drawn in figs. 3 and 4 for some typical values of «. For a comparison between
the predicted and measured values of the friction coefficient we again refer to
Mijnlieff and Wiegel®).
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Fig. 3. The function h(x) for @ =0, 1, 2, 6 and 14.
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The velocity in the z-direction is given by

o di

Vi= vy + (X2+ )’2) 2rdr

(49)
where x = r|, y = r,, and z = r;. Hence, along the z-axis the velocity is given
by Vi(0,0, z) = $uv,; this profile is essentially given in fig. 3. Along the x-axis
the z-component of the velocity equals

2 Uy dljl

Vi(x,0,0) = oo+ x° 3 dr 50

this profile is drawn in fig. 5 for a = 14.

10 20 30 40 x=rva

Fig. 5. The velocity component V, as a function of r,VQ for a = 14. The vertical coordinate
measures the value of V,u,'. The limiting value 1 is indicated by a short horizontal bar.
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