The water footprint of bioenergy

Winnie Gerbens-Leenesa,1, Arjen Y. Hoekstra2, and Theo H. van der Meerb

aDepartment of Water Engineering and Management and bLaboratory of Thermal Engineering, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands

Edited by David Pimentel, Cornell University, Ithaca, NY, and accepted by the Editorial Board April 20, 2009 (received for review December 12, 2008)

All energy scenarios show a shift toward an increased percentage of renewable energy sources, including biomass. This study gives an overview of water footprints (WFs) of bioenergy from 12 crops that currently contribute the most to global agricultural production: barley, cassava, maize, potato, rapeseed, rice, rye, sorghum, soybean, sugar beet, sugar cane, and wheat. In addition, this study includes jatropha, a suitable energy crop. Since climate and production circumstances differ among regions, calculations have been performed by country. The WF of bioelectricity is smaller than that of biofuels because it is more efficient to use total biomass (e.g., for electricity or heat) than a fraction of the crop (its sugar, starch, or oil content) for biofuel. The WF of bioethanol appears to be smaller than that of biodiesel. For electricity, sugar beet, maize, and sugar cane are the most favorable crops [50 m\(^3\)/gigajoule (GJ)]. Rapeseed and jatropha, typical energy crops, are disadvantageous [400 m\(^3\)/GJ]. For ethanol, sugar beet, and potato (60 and 100 m\(^3\)/GJ), the most advantageous, followed by sugar cane (110 m\(^3\)/GJ); sorghum (400 m\(^3\)/GJ) is the most unfavorable. For biodiesel, soybean and rapeseed show to be the most favorable WF [400 m\(^3\)/GJ]; jatropha has an adverse WF [600 m\(^3\)/GJ]. When expressed per L, the WF ranges from 1,400 to 20,000 L of water per L of biofuel. If a shift toward a greater contribution of bioenergy to energy supply takes place, the results of this study can be used to select the crops and countries that produce bioenergy in the most water-efficient way.

The scientific as well as the international political community often consider global change in relation to climate change. It is generally recognized that the emission of greenhouse gases is responsible for anthropogenic impacts on the climate system. To reduce emissions, a shift toward renewable energy, such as bioenergy, is heavily promoted. Other advantages of renewable energy are an increase in energy supply security, resource diversification, and the absence of depletion risks (9). The sources of bioenergy can be crops specifically grown for that purpose, natural vegetation, or organic wastes (10). Many of the crops used for bioenergy can also—alternatively, not at the same time—be used as food or feed. Biomass can be burnt to produce heat and electricity, but it can also be used for the production of bioethanol or biodiesel, which are biofuels that can displace fossil energy carriers in motor vehicles (11).

At present, the agricultural production of biomass for food and fiber requires ~56% of worldwide freshwater use (12, 13). In many parts of the world, the use of water for agriculture competes with other uses, such as urban supply and industrial activities (14), although the aquatic environment shows signs of degradation and decline (1). An increase in demand for food in combination with a shift from fossil energy toward bioenergy puts additional pressure on freshwater resources. For the future, scarcely any new land will be available so all production must come from the current natural resource base (15), requiring a process of sustainable intensification by increasing the efficiency of land and water use (16).

Globally, many countries explore options for replacing gasoline with biofuels (11). The European Union and the U.S. even have set targets for this replacement. When agriculture grows bioenergy crops, however, it needs additional water that then cannot be used for food. Large-scale cultivation of biomass for fossil fuel substitution influences future water demand (17). An important question is whether we should apply our freshwater resources to the production of bioenergy or to food crops. The Food and Agriculture Organization (FAO) estimated that in 2007 alone, before the food price crisis struck, 75 million more people were pushed into undernourishment as a result of higher prices, bringing the total number of hungry people in the world to 923 million (18). Moreover, the FAO reports that biofuels increase food insecurity (19). The World Bank recognizes biofuel production as a major factor in driving up food prices. It estimates that 75% of the increase in food prices in the period from 2002–2008 was due to biofuels (20). The current financial crisis may diminish purchasing power and increase the risk of a drop in food intake. As a result, more people are likely to fall below the hunger threshold. Households may make decisions to have fewer meals or eat cheaper foods of lower nutritional value, decisions that can have particularly severe consequences for infants and children (21).

The replacement of fossil energy with bioenergy generates the need for detailed information on water requirements for this new energy source. A concept for the calculation of water needs for consumer products is the water footprint (WF) (12, 13, 22), defined as the total annual volume of fresh water used to produce goods and services for consumption.

The objective of this study is to give a global overview of the WF per unit of bioenergy [m\(^3\)/gigajoule (GJ)], including heat, electricity, bioethanol, and biodiesel. This study covers the 12 main crops that together form 80% of global crop production.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. D.P. is a guest editor invited by the Editorial Board.

Freely available online through the PNAS open access option.

1To whom correspondence should be addressed. E-mail: p.w.gerbens-leenes@ctw.utwente.nl.

This article contains supporting information online at www.pnas.org/cgi/content/full/0812619106/DCSupplemental.
In this way, biofuel produced per unit of crop can be using new technology, now under development, that aims to also source for the production of next-generation biofuels. Next-is expected that these cellulosic fractions will form an attractive energy by burning it to provide heat and produce electricity. It losic matter. To date, the cellulosic fraction has been used for Bioenergy. Energy derived from biomass is termed bioenergy. The FAO (24) defines biomass as material of organic origin, in nonfossilized form, such as agricultural crops and forestry products, agricultural and forestry wastes and by-products, ma-nure, microbial matter, and industrial and household organic waste. Biomass is used for food or feed (e.g., wheat, maize, sugar), materials (e.g., cotton, wood, paper), or for bioenergy (e.g., maize, sugar, jatropha). Figure S1 shows that biomass can provide different forms of bioenergy: heat, electricity, and biofuels such as ethanol and biodiesel. First-generation biofuels are presently available biofuels produced using conventional technology, i.e., fermentation of carbohydrates into ethanol, and extracting and processing oil from oil crops into biodiesel. Biomass not only contains starch, sugar, and oil that can be processed into biofuel; it also contains large amounts of cellu-lusic matter. To date, the cellulosic fraction has been used for energy by burning it to provide heat and produce electricity. It is expected that these cellulosic fractions will form an attractive source for the production of next-generation biofuels. Next-generation biofuels are biofuels available in the future, produced using new technology, now under development, that aims to also convert cellulosic fractions from crops into biofuels, e.g., ethanol (25). In this way, biofuel produced per unit of crop can be increased substantially.

WF. The WF of a product is defined as the volume of freshwater used for production at the place where it was actually produced (13). In general, the actual water content of products is negligible compared with their WF, and water use in product life cycles are dominated by the agricultural production stage. The WF consists of 3 components: the green WF, the blue WF, and the gray WF (13). The green WF refers to rainwater that evaporated during production, mainly during crop growth. The blue WF refers to surface and groundwater for irrigation evaporated during crop growth. The gray WF is the volume of water that becomes polluted during production, defined as the amount of water needed to dilute pollutants discharged into the natural water system to the extent that the quality of the ambient water remains above agreed water quality standards.

Crops Considered in This Study. Globally, a limited number of crops determines total production. Theoretically, all crops can be used for bioenergy, but in practice some crops dominate production: sugar cane, sugar beet, maize, rapeseed, and soybean (25). Because this study aims to provide a global overview of the WFs of the main crops that can be used for bioenergy, it includes the 12 crops that contribute 80% of all biomass production. Table S1 shows these crops in decreasing order of annual production. Additionally, this study includes jatropha curcas, a tree species with seeds from which oil can be extracted (26).

The composition of biomass determines the availability of energy from its specific type, resulting in differences in combustion energy and options for biofuel production. This study includes 4 categories of biomass: starch crops [cereals (barley, maize, rice, rye, sorghum, and wheat) and tubers (cassava and potato)]; sugar crops (sugar beet and sugar cane); oil crops (rapeseed and soybean); and trees (jatropha).

<table>
<thead>
<tr>
<th>Crop</th>
<th>Total WF</th>
<th>Blue WF</th>
<th>Green WF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar beet</td>
<td>46</td>
<td>27</td>
<td>19</td>
</tr>
<tr>
<td>Maize</td>
<td>50</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Sugar cane</td>
<td>48</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td>Barley</td>
<td>70</td>
<td>39</td>
<td>31</td>
</tr>
<tr>
<td>Rye</td>
<td>77</td>
<td>36</td>
<td>42</td>
</tr>
<tr>
<td>Paddy rice</td>
<td>85</td>
<td>31</td>
<td>54</td>
</tr>
<tr>
<td>Wheat</td>
<td>93</td>
<td>54</td>
<td>39</td>
</tr>
<tr>
<td>Potato</td>
<td>105</td>
<td>47</td>
<td>58</td>
</tr>
<tr>
<td>Cassava</td>
<td>148</td>
<td>21</td>
<td>127</td>
</tr>
<tr>
<td>Soybean</td>
<td>173</td>
<td>95</td>
<td>78</td>
</tr>
<tr>
<td>Sorghum</td>
<td>180</td>
<td>78</td>
<td>102</td>
</tr>
<tr>
<td>Rapeseed</td>
<td>383</td>
<td>229</td>
<td>154</td>
</tr>
<tr>
<td>Jatropha*</td>
<td>396</td>
<td>231</td>
<td>165</td>
</tr>
</tbody>
</table>

Table 1. Total weighted-global average WF for 13 crops providing electricity (m³/GJ)

It is assumed that not only crop yields, but total biomass yields are used for the generation of the electricity.

*Average figures for 5 countries (India, Indonesia, Nicaragua, Brazil, and Guatemala).

Results

Crop Production, Crop Water Requirements, and Irrigation Requirements. Some countries make a large contribution to global production. For example, Brazil produces 27% of globally available sugar cane; the U.S. has almost half of the global soybean production, 40% of the maize, and one quarter of the sorghum production; and China provides 18% of all wheat, one third of the paddy rice, one fifth of the potatoes, and 27% of the rapeseed production. Half of the global production of rye takes place in Russia and Germany, whereas Nigeria shows the largest contribution to cassava production. For other crops, such as sugar beet and barley, production is distributed more evenly among countries.

Irrigation is required at almost every crop location. The exceptions are sugar beet grown in Japan; maize from South Africa; wheat from Australia; cassava from Nigeria, Angola, Benin, Guinea, the Philippines, Vietnam and India; potato from Bangladesh, Peru, and Japan; sorghum from Nigeria, Ethiopia, Chad, and Venezuela; and rapeseed from Bangladesh. In some countries crop water requirements are completely or almost completely accounted for by irrigation water. These crops and countries are sugar cane from Argentina (96%) and Egypt (92%); wheat from Argentina (100%), Kazakhstan (98%), and Uzbekistan (98%); potato and barley from Kazakhstan (100%); sorghum from Yemen (100%); and soybean from Brazil (95%).

For the other crops and production locations, irrigation requirements are between these 2 extremes.

The WF of Biomass. WFs show large variations for similar crop types, dependent on agricultural production systems used and climate conditions. Table S2 shows extreme values of total and blue WFs per crop. Most total WFs show variations of a factor of 4 to 15, with 2 exceptions. These exceptions are the values for wheat and sorghum, with a difference of a factor of 20 and 47, respectively. Kazakhstan occurs 3 times as the country with the largest total and blue WF for a crop (barley, potato, and wheat).

The WF of Heat and Electricity from Biomass. Table 1 shows the total weighted global average WF for 13 crops providing electricity. It is assumed that not only crop yields, but total biomass yields are used for the generation of electricity. The largest difference of WF is found between jatropha and the sugar beet; the beet is almost 10 times more water efficient. The WF of heat is at all
times 59% of the WF of electricity, as shown in Table 1, based on the energy efficiency assumed in this study (see Methods).

The WF of First-Generation Biofuels. Table S3 shows energy provided by ethanol [higher heating value (HHV) ethanol in megajoule/kg fresh weight of the crop] from 2 sugar and 8 starch crops included in this study. There are 3 groups: sugar crops and 1 starch crop with relatively low values for energy provided by ethanol (sugar beet, sugar cane, and potato), starch crops with relatively large values for energy provided by ethanol (sorghum, maize, wheat, barley, paddy rice, and rye), and 1 crop in between (cassava). These variations are caused by differences in the water content of the crops, where a large water content relates to relatively low energy values from ethanol. Table S3 also shows the energy provided by oil from the 3 oil crops included in this study. The HHV of oil from soybean is the lowest, about half the value of rapeseed or jatropha.

The WF of Bioethanol: Biofuel Energy Production per Crop Unit. Fig. 1 shows the lowest value, the highest value, and the weighted-average global value of the WF for energy of 10 crops providing ethanol, showing the enormous variation in the total WF among crops. This is especially true for sorghum, mainly caused by unfavorable conditions in Niger and highly efficient production in Egypt.

Fig. 2 gives weighted global average green and blue WFs for 10 crops providing ethanol. It shows that there are large differences among crops. Currently, sugar beet is the most favorable crop and sorghum the most disadvantageous, with a difference of a factor of 7 in terms of the size of the WF. When data for the 2 main ethanol producing countries, Brazil and the U.S., are compared, Brazilian ethanol from sugar cane is more efficient than maize (99 against 140 m^3/GJ ethanol); however, in the U.S., maize is more attractive than sugar cane (78 against 104 m^3/GJ ethanol). Fig. 2 also shows the distinction between green and blue water. As a global average, the blue WF of cassava is smallest. Other efficient crops are sugar beet, potato, maize, and sugar cane. In terms of blue water, sorghum is unfavorable.

Table 2 shows the total weighted global average WF for 10 crops providing ethanol, as well as their blue and green WF. Table 2 also shows the amount of water needed for a specific crop to produce 1 L of ethanol. On average, to produce 1 L of ethanol from sugar beet takes ~1,400 L of water, production from potato takes 2,400 L, production from sugar cane takes 2,500 L, and production from maize takes 2,600 L. Sorghum is the most inefficient crop, needing 9,800 L of water for 1 L of ethanol. Irrigation is least for cassava, at 400 L of blue water for 1 L of ethanol, followed by 800 L for sugar beet and 1,000 L for maize. Sorghum is the crop showing the largest blue WF, with 4,250 L per L of ethanol. As can be seen from a comparison of Tables 1 and 2, sugar beet is most efficient in terms of both ethanol and electricity. The other crops are in different order regarding the efficiency at which electricity and ethanol are produced. In general, the production of ethanol from only part of the crop is less water efficient than the production of electricity from total biomass.

The WF of Biodiesel. The WF of biodiesel derived from soybean, rapeseed, and jatropha shows differences among the main producing countries. For rapeseed, Western Europe has the smallest WFs and Asia has the largest (especially in India, where rapeseed has a large, blue WF). For soybean, Italy, Paraguay, and Argentina have the smallest WFs and India has the largest. Biodiesel from jatropha is produced in the most water-efficient way in Brazil and inefficiently in India. Table 2 shows the total weighted global average WF for biodiesel from soybean and rapeseed, and the average WF for biodiesel from jatropha, as well as their blue and green WF. Table 2 also shows the amount of water needed to produce 1 L of biodiesel; on average, it takes ~14,000 L of water for soybean or rapeseed, and 20,000 L for jatropha.

The WF of Next-Generation Biofuels. For next-generation biofuels, total biomass of a crop can be used. When we optimistically assume that their production will be as efficient as the production of electricity from biomass (in terms of GJ/ton), the results shown in Table 1 form a lower limit for the WF of these next-generation biofuels. Another factor that has to be taken into account is the water use of biomass processing, fermentation, and distillation of these next-generation biofuels. On the other hand, agricultural water use is much larger than the processing water use. In the SI Methods, it is argued that water is predominantly used during the first link of the production chain—agriculture. This study, therefore, only took water requirements in agriculture into account and ignored water use in the industrial links of the production chain.

Discussion

Assumptions. Similar to earlier studies (12, 13, 27), the calculations have been based on the assumption that crop water use is equal to crop water requirements. When actual water availability is lower and water stress occurs, this study overestimates the crop water use. With respect to agricultural yields, we have taken...
actual yields, which in many cases can be increased in the future without increasing water use per unit of product. This future yield increase means that in some cases WFs per unit of energy can be significantly lowered. For the efficiency of obtaining electricity or biofuels from biomass, we have made optimistic assumptions by taking theoretical maximum values of yields that refer to the best available technology. These assumptions mean that the resulting WF figures are conservative.

Sensitivities. The results of this study are based on rough estimates of freshwater requirements in crop production and on theoretical maximum conversion efficiencies in the production of bioelectricity and biofuels. For the assessment of the WF of bioenergy, the study integrated data from several sources, each of which adds a degree of uncertainty. For example, the calculations using the FAO model CROPWAT (28) required input of meteorological data that are averages over several years rather than data for a specific year. The data presented thus do not reflect annual variations. Estimated crop water requirements are sensitive to the input of climatic data and assumptions concerning the start of the growing season. In the most extreme cases, this study found crop water requirements that were a factor of 2 different from earlier studies (12, 13, 27), whereas at other times the results were similar. The aspects mentioned above imply that results presented here are indicative. However, the differences in calculated WFs are so great that general conclusions with respect to the WF of bioethanol vs. the WF of biodiesel. This difference is caused by the crop fraction that can be used. For electricity, total biomass can be used; for bioethanol or biodiesel, only the starch or oil fraction of the yield can be used. In general, the WF of bioethanol is smaller than that of biodiesel. The WF of bioenergy shows large variation, depending on 3 factors: (i) the crop used, (ii) the climate at the location of production, and (iii) the agricultural practice:

Gross vs. Net Production of Bioenergy. There is a distinction between gross and net production of bioenergy (29, 30). In assessing the WF of heat, electricity, and fuels from biomass, we looked at the WF of the gross energy output from crops. We did not study energy inputs in the production chain, such as energy requirements in the agricultural system (e.g., energy use for the production of fertilizers and pesticides) or energy use during the industrial production of the biofuel. Neglecting energy inputs means that this study underestimates the WF of bioenergy, most particularly so in cases where agricultural systems have a relatively large energy input. For example, if energy input equals 50% of the energy output—something common in bioenergy production systems (30)—the WF of the net bioenergy production would be twice the WF of the gross energy production.

Conclusions

The WF of bioenergy is large when compared to other forms of energy. In general, it is more efficient to use total biomass, including stems and leaves, to generate electricity than to produce a biofuel. For most crops, the WF of bioelectricity is about a factor of 2 smaller than the WF of bioethanol or biodiesel. This difference is caused by the crop fraction that can be used. For electricity, total biomass can be used; for bioethanol or biodiesel, only the starch or oil fraction of the yield can be used. In general, the WF of bioethanol is smaller than that of biodiesel.
crop is for energy or for food. Some food crops, including rice, are more water-efficient in producing a unit of ethanol, biodiesel, or electricity than some typical energy crops, such as rapeseed or jatropha. The ethical discussion on whether food crops can be used for energy should be extended to a discussion on whether we should use our limited water resource base for food or for energy.

The scientific and the international political communities promote a shift toward renewable energy sources, such as biomass, to limit the emission of greenhouse gases. This study has shown that biomass production goes hand in hand with large water requirements. There are already reasons for profound concern in several regions and countries with limited water resources about whether the food and fiber needs of future generations can be met. If a shift toward a larger contribution from bioenergy to total energy supply takes place, results of this study can be used to select the crops and countries that (under current production circumstances) produce bioenergy in the most water-efficient way.

Methods

The calculation of the WF of bioenergy is done in several steps including the calculation of (i) the WF of crops, (ii) energy yields of bioethanol, biodiesel, heat, and electricity per crop, and (iii) the WF of heat, electricity, and first-generation and next-generation biofuels. The method is presented in detail in the SI Methods.

Calculation of the WF of Crops

For the assessment of the WF of bioenergy, the study follows the method of Hoekstra and Chapagain (13) to arrive at estimates of the WF of crops. WF calculations were made by adding up daily crop evapotranspiration (mm/day) using the model CROPWAT 4.3 (28) over growing periods distinguishing between the green and the blue WF. These calculations provided information on the crop water requirements for the 12 crops shown in Table S1 and for jatropha. Calculations were performed for the main producing countries, deriving data from the FAO (3). In general, yields show variations over the years. The study, therefore, calculated average yields over 5 production years (1997–2001) by using data from the FAO (31).

Calculation of the WF of Heat and Electricity from Biomass

For the calculation of the WF of heat from biomass, the study has followed the method of Gerbens-Leenes et al. (23), which calculated the energy yield of a crop (GJ/ton) by combining data on the heat of combustion of plant components with information on composition, harvest index, and dry-mass fraction of a crop, as shown in Tables S4 and S5. The WF of heat from a crop (m3/GJ) was calculated by dividing the WF of the total crop biomass, including stems and leaves, (m3/ton) by the total heat content (GJ/ton). The WF of biomass energy (m3/GJ) was calculated by dividing the WF of the total crop biomass (m3/ton) by the electricity output per crop unit (GJ/ton).

Calculation of the WF of First-Generation Biofuels

The WF of ethanol-energy from a crop (m3/GJ) was calculated by dividing the WF of the crop yield (m3/ton) by the ethanol-energy yield (GJ/ton). The WF of biodiesel-energy (m3/GJ) was calculated in a similar way. Table S6 gives the HHVs of ethanol and biodiesel. For first-generation biofuels, this study fully allocated the WF of the crop to the biofuels derived, assuming that the value of the residues of production is much lower than the value of the biofuel.

Calculation of the WF of Next-Generation Biofuels

It is expected that wastes, including cellulose, will form an attractive source for the production of liquid, next-generation biofuels so that industry can use total biomass. For the WF of next-generation biofuels, this study assumes that the WF of next-generation biofuels will never be lower than the WF of the total crop biomass (m3/ton) divided by the energy content (GJ/ton), where the latter is expressed in terms of its HHV.

Acknowledgments

We gratefully acknowledge the valuable comments of David Pimentel on an earlier version of this paper.