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The variational multiscale method introduced by Hugieal. [Comput. Visual. Sci3, 47 (2000 ]

is extended to the classic filtering approach in large-eddy simulation. The role of the Germano
identity in the formulation is precisely indicated. Multiscale methods based on standard
eddy-viscosity models are related (@nisotropig hyperviscosity models under certain conditions.
Several models are tested and found to be as accurate as the standard dynamic model, while the
implementations are more simple. Finally, the turbulent stress tensor is reformulated, such that filter
and derivative in the filtered equations can be treated as a single opera008® American
Institute of Physics.[DOI: 10.1063/1.1595102

The variational multiscale method/MS) proposed by fore to some extent, such as a more complicated approach
Hugheset al1~2 and clarified by Colli§ is a promising ap- which involves computations on multiple grifisleanmeart
proach to the large-eddy simulati¢bES) of turbulent flows. and Winckelmanstested a specific model using a discrete
It appeared that the Smagorinsky model, without wall func-compact filter in a partially spectral computation. In this
tions normally not accurate in wall bounded and transitionaletter we will go further: other models will be considered,
flows, improved considerably when applied in a multiscalethe basic filtering multiscale equations with their subgrid
context and became at least as accurate as the dynanterms will be formulated, and finite differencing in all direc-
model?? In VMS three classes of scales are considéred:tions will be used to test the models.
large, small and unresolved. The first two classes are solved The standard filtered momentum equation in LES reads
with LES, whereas the unresolved scales are modeled. Two
modeling assumptions for the effect of the unresolved scales
are used in Refs. 1-4g) it is neglected in the large-scale whereu is the velocity,p the pressure and viscous stress
equation andb) it is modeled in the small-scale equation, tensor. The partial derivatives/st and d/9x; are denoted
with a standard LES model, but expressed in the smalyith 5, and 9;, respectively. The bar denotes an arbitrary

scales. _ _filter with filter width A extracting the resolved from the
In Refs. 1-4 the method is formulated as a Va”at'ona|original u. Furthermore,;=T;u;— Uy, is the turbulent

approach, i.e., posed in a weak formulation involving thestress tensor.
multiplication with test functions. A key feature of VMS is In order to split the resolved scales in a large- and a

the projection operator which separates scales using a set of all-scale part, a second filter with filter widhis intro-

basis functions and this has several mathematical :
4 o o ~““uced, a so-called test filttThe large-scale component of a
advantage$:“ A specific case of the variational formulation

is the Fourier—Galerkin methd®® Fourier methods are duantityf is denoted withf and the small-scale component
. H . 78
nonlocal and therefore not applicable in complex flows.IS defined by

aUi+ 9;(Uiuy) + 975 = — dip+ ;i 1

However, VMS can be applied to complex flows with use of, % @)
for example, finite element methods or discontinuous Galer- '
kin methods"* In this paper the operation denoted with a prime is called the

In this Letter, VMS is extended to the filtering approach small-scale extraction. For the large and small-scale parts of
and then the classic approach for LES of complex flows ighe resolved velocity, simplified notations are introduced:
followed, which is based on the application of a filter to the R — A
Navier—Stokes equations, e.g., the top-hat filter, together V=Ui v=u'=u—d=u-V. )
with finite difference or finite volume discretizations. Filters Next we write the exact equations for the large and for
in LES (except the spectral cutofaare not projections but the small scales. The turbulent stress for the large scales is
smoothing operators. For each function a large and a smalljefined as
scale component can precisely be defined, but these compo- A
nents do not live in disjunct function spaces. T =Uit;—V}V;. (4)

Filtering multiscale methods have been considered be- )
The large-scale equation then reads

dElectronic mail: a.w.vreman@utwente.n| Vit a;(ViV)) +0;Tij=—a,p+ 9,5y , (5)
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and when this equation is subtracted fréththe small-scale  that the classic paper by Schumawcontained a special case
equation is obtained: of multiscale model 2: the Smagorinsky model is applied to
- the strain rate without its mean, i.e., the test filter is the
dwit di(Uty) = dy(ViVy) + 97 = 0jT;j ensemble average. The “large—small” models in Refs. 1-3
= _(95'4”9@'] ) (6) and 7 are somewhat different from M1-M3, beciuse they
) ) ) o express the strain rate in but the eddy viscocity im.
To rewrite these equations, the Germano identity is very use- We proceed to argue that all these models in combina-
ful: tion with a top-hat or Gaussian filter are related(émiso-
Tij=7;+L (7)  tropic) hyperviscosity mechanisms. The first term in the Tay-
. . lor expansiof® of the small-scale quantity is an
where the so-called resolved turbulent stress is defined by “anisotropic” Laplacian operator:

Substituting(7) into (5) and(6) yields

j

== % (A257T+ A20%F+ AZEY ). (18

For differential filters this equation is exadtFor constani,

GVt (ViV)) +djLij+9;7j=—dip+ d;0ij , (9 and incompressible flow, the eddy-viscosity modE3) re-
atvi+aj(m_ﬁi‘l~rj)+aj(7ij_}ij): — 0P + o duces to a Laplacian. Under the same conditions and with

(10) Eq. (18), models M1 and M2 become proportional to double
Laplaciangfourth-order dissipationsand M3 becomes pro-
portional to a triple Laplaciafsixth-order dissipation

dwi+0;(WU;)' + a7/, = — ap’ + d;07; - 1) _The variational multi_sca_\le m0(_1e(m_/ith orthogpn_al pro-

_ ) ) jection) were proven to dissipate kinetic energphis is also
Finally, the sum of(9) and (11) provides the equation 3 precise analytic property of the filtering multiscale model
that needs to be modeled in “filtering multiscale LES:” M3, under some conditions. A filter is symmetric if the filter

O+ 9;(UyU)) + 97 + dj 7y = — dip+ 8,7 - (12)  kernel satisfie$(x,£) = G(¢,x). By substitution of the filter
definition, it is easy to prove that for a symmetric test filter

This might appear to be a trivial result, but its derivation is

important, because E9) identifies7;; as the subgrid term f fA:ff and ff ,:f £/ 19
in the large-scale equation and Ef1) identifies 7/, as sub- g g g g- (19
grid term in the small scale equation. The knowledge of thebonsequently, M3 inherits the dissipative charactemgf,

. R , .
origin of 7 and 7' can be used to model its sum The  ,.5\ideq the test filter is not only symmetric but also com-
modeling assumptions in VMS according to Refs. 1-4 are;

! _“*“mutes with derivatives:

(a) to neglectT; in the weak form the large-scale equation,
which implies by analogy; =0 in Eq.(9), and(b) to model
7i; with (for examplg the Smagorinsky model in terms of
In the following, we will discuss assumptiofd) first and
then assumptioi(a).

Now we turn to the modeling of-i’j based on, e.g., the
Smagorinsky model,

The last equation equals

eMssziaj(mij(v))':f vidjm;j(v)=0. 20

With some calculation, model M1 can also be proven to be
dissipative, at least for the Smagorinsky base model, using
Eg. (18) and constant filter widths:

. 1
m;; (U) = — ve(U)§;; (), 13 em:j chZSAﬁ((ak3)2+E(aksm);o. (21)
_~2A2 . a1 1/2
ve(U)=CAS(U);  S=(3§;S;)™* (14) The size of the test filter controls the activity of the
Three options to construct a model faf, using m;; are  small-scale model. For small the models forrj; are rela-
considered: tively small, while for largeA they approach the basic model
(M1) The small-scale extraction from;;(u), m;; . There may be cases that the modeling assumption
Ti'j =(my;(@)’. (15) =0 in the large-scale equation is not triier example when

the test filter is very smalland then mixed models seem
(M2) Model m;; expressed in the small-scale velocity, natural candidates to mode}, .
=m(v). (16) Assume for example a .similarity or graqient
4 " (=nonlineay model «;; for 7;, which correlate well with
(M3) The small-scale extraction from M2, Tij .2 Since the small-scale dissipation of these models is
= (M ()’ a7 inadequate, they could be proposed to model the large-scale
1 g ' turbulent stres$;; only. If the small-scale part is modeled
The last model uses two small-scale restrictions; it is firsby g;; provided by M1-M3, a mixed model reads; = a;;
based on instead ofu and then the small-scale operatof +Bij . If the size of the test filter increase&, becomes
is applied. Perhaps, both restrictions are not simultaneouslymaller andB becomes larger. Other options for the closure
needed, reason to introduce models 1 and 2. Model 3 wasf the large-scale equation were listed in Ref. 4.
proposed by Hughest al1~3 (but then in the variational for- In summary, multiscale LES simulates E@) and only
mulation as the “small-small” model. It is very interesting alters the modeling ofr, which is decomposed as=7
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FIG. 1. Three sets of mean flow profiles. Lowest set: Smagorinsky model

(+), M1 (O), M2 (dashed ling M3 (dotted ling, no-model LESsolid line)
and DNS from Ref. 14dashed—dotted lineMiddle set (5+u): M1 (O),

M2 (Cs=0.2, dashed line dynamic modelsolid line) and DNS(Ref. 19 lusi fth imilari d di d
(dashed—dotted lineHighest set (16 u): M2 (dashed ling M2 plus fi-  ClUSIon Of the similarity and gradient components does not

tered gradientdotted ling and M2 plus filtered similaritysolid line). further improve the results, but this could be different for
another test-filter width or in another flow.
The formulation so far was based ¢h), the equation
+7. 7' is the subgrid term that occurs in the small-scaleysed in standard LES. In the following the filtered equations

equation. It is modeled with, e.g., M1-M3, related to hyper-are rewritten such that each term is an analog of a Galerkin
viscosities.7 is the subgrid term in the large-scale equation,projection,

which is either neglected or modeled. The latter case results
in a mixed model forr, where the test-filter size defines the  g,u; + (MWHH: —%er, (22)
level of activity of 7s components.

Tests are performed for a turbulent channel flow withwith a redefined turbulent stresg =u;u;—u;u;. The same
Re,=360 in a domain of sizeld X 2H X 2H on a collocated equation actually occurred in Ref. 10, with the notable dif-
48x 63X 48 grid, using a second-order energy-conserving fiference that we do not interchange filter and derivative. Now
nite difference method. The test case is somewhat similar tthere is no commutation required between partial derivatives
Ref. 13. The LES results are compared with DNS resultsind filter operation, at least not for the convective terms. The
taken from www.afm.ses.soton.ac.tkdhi/channeldatd’  absence of commutation errors was claimed to be an impor-
The top-hat test filter is applied in three directions and apiant advantage of vmg:4

proxima‘[ed with the trapezoida| rule usiﬁg: 2K|=2h| . In Equation(22) lcan be SO|Ved. with the explicit fllterlng
addition the test filter is not allowed to cross wall boundariestechnique, but it is more attractive to treat the spatial filter
Cs=0.1 unless a different value is indicated. and derivative as one operator, i.e., to discretifedirectly.

The lowest set of mean flow profiles in Fig. 1 shows thatA Well-known example is the Fourier—Galerkin method in
the three models M1—M3 are closer to the DNS Yataan  combination with a spectral cutoff filter. For complex flows,
the no-model case and the Smagorinsky model. In more déhe combination of top-hat filter and spatial derivative sug-
tail, M1 overpredicts the velocity in the near-wall region, gests a finite volume method, because Gauss’ theorem re-
while M2 and M3 underpredict the velocity in the center of duces the filter volume integral of a derivative to a difference
the channel. For the san@;, M1 has more effect than M2, Of two surface integral®™®

while M2 has more effect than M3. Again (alternative equations folv andv can be derived,
The middle set of curves in Fig. 1 demonstrates that the e

relatively simple multiscale models are as accurate as the 4,V;+4,V;V,+4;B;; + d;a;;=rhs (23

standard dynamic model. This conclusion is supported by the

Reynolds stress predictions, for which an example is shown dwi+ (9uiu;)’ + (9;a)" =rhs. (24)

in Fig. 2. The optimal value o€5 in M2 and M3 appears to
be closer to 0.2 than to O(3ee also Ref.)2 The highest sets The trivial identity Aj; —a;;=B;; is used, whereé;; =u;u;
of curves include results for the mixed modet g, whereg ~ —V,;V; is the turbulent stress on the large-scale level and

equals M2 andv equals eitherr(u) or 5A24,U; ;. In- Bj=uju;—V;V; is a resolved stress. The formulation
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