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The variational multiscale method introduced by Hugheset al. @Comput. Visual. Sci.3, 47 ~2000!#
is extended to the classic filtering approach in large-eddy simulation. The role of the Germano
identity in the formulation is precisely indicated. Multiscale methods based on standard
eddy-viscosity models are related to~anisotropic! hyperviscosity models under certain conditions.
Several models are tested and found to be as accurate as the standard dynamic model, while the
implementations are more simple. Finally, the turbulent stress tensor is reformulated, such that filter
and derivative in the filtered equations can be treated as a single operator. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1595102#

The variational multiscale method~VMS! proposed by
Hugheset al.1–3 and clarified by Collis4 is a promising ap-
proach to the large-eddy simulation~LES! of turbulent flows.
It appeared that the Smagorinsky model, without wall func-
tions normally not accurate in wall bounded and transitional
flows, improved considerably when applied in a multiscale
context and became at least as accurate as the dynamic
model.2,3 In VMS three classes of scales are considered:4

large, small and unresolved. The first two classes are solved
with LES, whereas the unresolved scales are modeled. Two
modeling assumptions for the effect of the unresolved scales
are used in Refs. 1–4:~a! it is neglected in the large-scale
equation and~b! it is modeled in the small-scale equation,
with a standard LES model, but expressed in the small
scales.

In Refs. 1–4 the method is formulated as a variational
approach, i.e., posed in a weak formulation involving the
multiplication with test functions. A key feature of VMS is
the projection operator which separates scales using a set of
basis functions and this has several mathematical
advantages.1–4 A specific case of the variational formulation
is the Fourier–Galerkin method.2,3,5 Fourier methods are
nonlocal and therefore not applicable in complex flows.
However, VMS can be applied to complex flows with use of,
for example, finite element methods or discontinuous Galer-
kin methods.1,4

In this Letter, VMS is extended to the filtering approach
and then the classic approach for LES of complex flows is
followed, which is based on the application of a filter to the
Navier–Stokes equations, e.g., the top-hat filter, together
with finite difference or finite volume discretizations. Filters
in LES ~except the spectral cutoff! are not projections but
smoothing operators. For each function a large and a small-
scale component can precisely be defined, but these compo-
nents do not live in disjunct function spaces.

Filtering multiscale methods have been considered be-

fore to some extent, such as a more complicated approach
which involves computations on multiple grids.6 Jeanmeart
and Winckelmans7 tested a specific model using a discrete
compact filter in a partially spectral computation. In this
Letter we will go further: other models will be considered,
the basic filtering multiscale equations with their subgrid
terms will be formulated, and finite differencing in all direc-
tions will be used to test the models.

The standard filtered momentum equation in LES reads

] tūi1] j~ ūi ū j !1] jt i j 52] i p̄1] j s̄ i j , ~1!

whereu is the velocity,p the pressure ands viscous stress
tensor. The partial derivatives]/]t and ]/]xj are denoted
with ] t and ] j , respectively. The bar denotes an arbitrary
filter with filter width D̄ extracting the resolvedū from the
original u. Furthermore,t i j 5uiuj2ūi ū j is the turbulent
stress tensor.

In order to split the resolved scales in a large- and a
small-scale part, a second filter with filter widthD̂ is intro-
duced, a so-called test filter.8 The large-scale component of a
quantity f is denoted withf̂ and the small-scale component
is defined by7,8

f 85 f 2 f̂ . ~2!

In this paper the operation denoted with a prime is called the
small-scale extraction. For the large and small-scale parts of
the resolved velocityū, simplified notations are introduced:

V5uC ; v5ū85ū2uC5ū2V. ~3!

Next we write the exact equations for the large and for
the small scales. The turbulent stress for the large scales is
defined as

Ti j 5uiuĵ2ViVj . ~4!

The large-scale equation then reads

] tVi1] j~ViVj !1] jTi j 52] i pC1] jsC i j , ~5!a!Electronic mail: a.w.vreman@utwente.nl
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and when this equation is subtracted from~1! the small-scale
equation is obtained:

] tv i1] j~ ūi ū j !2] j~ViVj !1] jt i j 2] jTi j

52] i p̄81] j s̄ i j8 . ~6!

To rewrite these equations, the Germano identity is very use-
ful:

Ti j 5 t̂ i j 1Li j , ~7!

where the so-called resolved turbulent stress is defined by

Li j 5ūi ū ĵ2uC iuC j5ūi ū ĵ2ViVj . ~8!

Substituting~7! into ~5! and ~6! yields

] tVi1] j~ViVj !1] jL i j 1] j t̂ i j 52] i pC1] jsC i j , ~9!

] tv i1] j~ ūi ū j2ūi ū ĵ !1] j~t i j 2 t̂ i j !52] i p̄81] j s̄ i j8 .
~10!

The last equation equals

] tv i1] j~ ūi ū j !81] jt i j8 52] i p̄81] j s̄ i j8 . ~11!

Finally, the sum of~9! and ~11! provides the equation
that needs to be modeled in ‘‘filtering multiscale LES:’’

] tūi1] j~ ūi ū j !1] j t̂ i j 1] jt i j8 52] i p̄1] j s̄ i j . ~12!

This might appear to be a trivial result, but its derivation is
important, because Eq.~9! identifies t̂ i j as the subgrid term
in the large-scale equation and Eq.~11! identifiest i j8 as sub-
grid term in the small scale equation. The knowledge of the
origin of t̂ and t8 can be used to model its sumt. The
modeling assumptions in VMS according to Refs. 1–4 are:
~a! to neglectt̂ i j in the weak form the large-scale equation,
which implies by analogyt̂ i j 50 in Eq.~9!, and~b! to model
t i j8 with ~for example! the Smagorinsky model in terms ofv.
In the following, we will discuss assumption~b! first and
then assumption~a!.

Now we turn to the modeling oft i j8 based on, e.g., the
Smagorinsky model,

mi j ~ ū!52ne~ ū!Si j ~ ū!, ~13!

ne~ ū!5CS
2D̄2S~ ū!; S5~ 1

2Si j Si j !
1/2. ~14!

Three options to construct a model fort i j8 using mi j are
considered:

~M1! The small-scale extraction frommi j (ū),

t i j8 5~mi j ~ ū!!8. ~15!

~M2! Model mi j expressed in the small-scale velocity,

t i j8 5mi j ~v !. ~16!

~M3! The small-scale extraction from M2,

t i j8 5~mi j ~v !!8. ~17!

The last model uses two small-scale restrictions; it is first
based onv instead ofū and then the small-scale operator~ !8
is applied. Perhaps, both restrictions are not simultaneously
needed, reason to introduce models 1 and 2. Model 3 was
proposed by Hugheset al.1–3 ~but then in the variational for-
mulation! as the ‘‘small–small’’ model. It is very interesting

that the classic paper by Schumann9 contained a special case
of multiscale model 2: the Smagorinsky model is applied to
the strain rate without its mean, i.e., the test filter is the
ensemble average. The ‘‘large–small’’ models in Refs. 1–3
and 7 are somewhat different from M1–M3, because they
express the strain rate inv, but the eddy viscocity inū.

We proceed to argue that all these models in combina-
tion with a top-hat or Gaussian filter are related to~aniso-
tropic! hyperviscosity mechanisms. The first term in the Tay-
lor expansion10 of the small-scale quantity is an
‘‘anisotropic’’ Laplacian operator:

f 852 1
24 ~D̂1

2]1
2 f̄ 1D̂2

2]2
2 f̄ 1D̂3

2]3
2 f̄ !. ~18!

For differential filters this equation is exact.11 For constantne

and incompressible flow, the eddy-viscosity model~13! re-
duces to a Laplacian. Under the same conditions and with
Eq. ~18!, models M1 and M2 become proportional to double
Laplacians~fourth-order dissipations!, and M3 becomes pro-
portional to a triple Laplacian~sixth-order dissipation!.

The variational multiscale models~with orthogonal pro-
jection! were proven to dissipate kinetic energy.1 This is also
a precise analytic property of the filtering multiscale model
M3, under some conditions. A filter is symmetric if the filter
kernel satisfiesG(x,j)5G(j,x). By substitution of the filter
definition, it is easy to prove that for a symmetric test filter

E f ĝ5E f̂ g and E f g85E f 8g. ~19!

Consequently, M3 inherits the dissipative character ofmi j ,
provided the test filter is not only symmetric but also com-
mutes with derivatives:

eM35E ūi] j~mi j ~v !!85E v i] jmi j ~v !>0. ~20!

With some calculation, model M1 can also be proven to be
dissipative, at least for the Smagorinsky base model, using
Eq. ~18! and constant filter widths:

eM15E CS
2D̄2SD̂k

2S ~]kS!21
1

2
~]kSi j !

2D>0. ~21!

The size of the test filter controls the activity of the
small-scale model. For smallD̂ the models fort i j8 are rela-
tively small, while for largeD̂ they approach the basic model
mi j . There may be cases that the modeling assumptiont̂ i j

50 in the large-scale equation is not true~for example when
the test filter is very small! and then mixed models seem
natural candidates to modelt i j .

Assume for example a similarity or gradient
~5nonlinear! model a i j for t i j , which correlate well with
t i j .12 Since the small-scale dissipation of these models is
inadequate, they could be proposed to model the large-scale
turbulent stresst̂ i j only. If the small-scale partt i j8 is modeled
by b i j provided by M1–M3, a mixed model reads:t i j 5â i j

1b i j . If the size of the test filter increases,â becomes
smaller andb becomes larger. Other options for the closure
of the large-scale equation were listed in Ref. 4.

In summary, multiscale LES simulates Eq.~1! and only
alters the modeling oft, which is decomposed ast5 t̂

L62 Phys. Fluids, Vol. 15, No. 8, August 2003 A. W. Vreman

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.89.112.124 On: Wed, 26 Nov 2014 11:04:14



1t8. t8 is the subgrid term that occurs in the small-scale
equation. It is modeled with, e.g., M1–M3, related to hyper-
viscosities.t̂ is the subgrid term in the large-scale equation,
which is either neglected or modeled. The latter case results
in a mixed model fort, where the test-filter size defines the
level of activity of t’s components.

Tests are performed for a turbulent channel flow with
Ret5360 in a domain of size 6H32H32H on a collocated
48363348 grid, using a second-order energy-conserving fi-
nite difference method. The test case is somewhat similar to
Ref. 13. The LES results are compared with DNS results
taken from www.afm.ses.soton.ac.uk/;zhi/channeldata.14

The top-hat test filter is applied in three directions and ap-
proximated with the trapezoidal rule usingD̂ i52D̄ i52hi . In
addition the test filter is not allowed to cross wall boundaries.
CS50.1 unless a different value is indicated.

The lowest set of mean flow profiles in Fig. 1 shows that
the three models M1–M3 are closer to the DNS data14 than
the no-model case and the Smagorinsky model. In more de-
tail, M1 overpredicts the velocity in the near-wall region,
while M2 and M3 underpredict the velocity in the center of
the channel. For the sameCS , M1 has more effect than M2,
while M2 has more effect than M3.

The middle set of curves in Fig. 1 demonstrates that the
relatively simple multiscale models are as accurate as the
standard dynamic model. This conclusion is supported by the
Reynolds stress predictions, for which an example is shown
in Fig. 2. The optimal value ofCS in M2 and M3 appears to
be closer to 0.2 than to 0.1~see also Ref. 2!. The highest sets
of curves include results for the mixed modelâ1b, whereb
equals M2 anda equals eithert(ū) or 1

12Dk
2]kūi ]kūj . In-

clusion of the similarity and gradient components does not
further improve the results, but this could be different for
another test-filter width or in another flow.

The formulation so far was based on~1!, the equation
used in standard LES. In the following the filtered equations
are rewritten such that each term is an analog of a Galerkin
projection,

] tūi1] j~ ūi ū j !1] jai j 52] i p1] js i j , ~22!

with a redefined turbulent stressai j 5uiuj2ūi ū j . The same
equation actually occurred in Ref. 10, with the notable dif-
ference that we do not interchange filter and derivative. Now
there is no commutation required between partial derivatives
and filter operation, at least not for the convective terms. The
absence of commutation errors was claimed to be an impor-
tant advantage of VMS.1–4

Equation ~22! can be solved with the explicit filtering
technique, but it is more attractive to treat the spatial filter
and derivative as one operator, i.e., to discretize] j f directly.
A well-known example is the Fourier–Galerkin method in
combination with a spectral cutoff filter. For complex flows,
the combination of top-hat filter and spatial derivative sug-
gests a finite volume method, because Gauss’ theorem re-
duces the filter volume integral of a derivative to a difference
of two surface integrals.9,15

Again ~alternative! equations forV andv can be derived,

] tVi1] jViVĵ1] jBi ĵ 1] jai ĵ 5rhŝ, ~23!

] tv i1~] j ūi ū j !81~] jai j !85rhs8. ~24!

The trivial identity Ai j 2ai j 5Bi j is used, whereAi j 5uiuj

2ViVj is the turbulent stress on the large-scale level and
Bi j 5ūi ū j2ViVj is a resolved stress.15 The formulation

FIG. 1. Three sets of mean flow profiles. Lowest set: Smagorinsky model
~1!, M1 ~s!, M2 ~dashed line!, M3 ~dotted line!, no-model LES~solid line!
and DNS from Ref. 14~dashed–dotted line!. Middle set (51u): M1 ~s!,
M2 (CS50.2, dashed line!, dynamic model~solid line! and DNS~Ref. 14!
~dashed–dotted line!. Highest set (101u): M2 ~dashed line!, M2 plus fil-
tered gradient~dotted line! and M2 plus filtered similarity~solid line!.

FIG. 2. Reynolds stress profiles Reyy . See caption of Fig. 1.
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based on Eq.~1! is only an analog of VMS, but Eqs.~23! and
~24! reduce to an equivalence of VMS in case the filter is a
projection in a Galerkin method.

Denoting the combined filter and partial derivative with
d j , i.e., d j f 5] j f , the convective term in Eq.~22! equals
d j (ūi ū j ). The subgrid-term then equalsd jai j . It is split into
large- and small-scale components,d jai ĵ and (d jai j )8. The
large-scale component is precisely the subgrid term in~23!.
It could be neglected, or a similarity–gradient model derived
from the definition ofai j could be used.15 The small-scale
component is modeled by (d jmi j )8, wheremi j is based onū
or v.
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