
A new Java Thread model for concurrent
programming of real-time systems.

Gerald Hilderink
Jan Broenink

André Bakkers
(G.H.Hilderink, J.F.Broenink, A.W.P.Bakkers)@el.utwente.nl

University of Twente, dept. EE, Control Laboratory,
P.O.Box 217, 7500 AE Enschede, The Netherlands

Abstract. The Java Virtual Machine (JVM) provides a high degree of platform
independence, but being an interpreter, Java has a poor system performance. New
compiler techniques and Java processors will gradually improve the performance of
Java, but despite these developments, Java is still far from real-time.
We propose the Communicating Java Threads (CJT) model, which eliminates several
shortcomings, such as Java's non-deterministic behavior, Java's monitor weakness,
and lack of reactiveness for real-time and embedded systems. CJT is based on CSP
providing channels, composition constructs, and scheduling of processes. The CJT
Java class library, which provides all necessary classes on top of Java, is readily
available to interested users. The main power of the method is that it integrates
these features in a natural way and in no way conflicts with other paradigms, such
as PersonalJava , EmbeddedJava , JavaBeans , CORBA, and PVM. All activities,
reported in this paper, are carried out as part of the JavaPP project, see
http://rt.el.utwente.nl/javapp.

 1. Introduction
Real-Time system design traditionally is the domain
of experienced specialists, who were faced with a
variety of custom kernels, non-standard and mostly
low-level languages and vendor specific I/O device
interfaces. The proposed new Java Thread model is
to remedy this situation. The proposed method
addresses four serious deficiencies of current
methods for the design of real-time embedded
systems: security, performance, portability, and
development time. Security is compromised by the
complexity and ill-definition of the interfaces
between current programming languages and real-
time operating-system/kernels. These semantics
cannot be formalised in ways that guarantee the
safety of systems. Performance suffers because
engineers have to accept whatever levels of

abstraction are provided by the real-time kernel. If these
are too high or too low, unnecessary overheads are
incurred. Portability problems arise because of the vendor
specific nature of current tools. The development time of
real-time embedded systems is hindered by the lack of
development tools to bridge the gap between design,
expressed as a collection of communicating processes,
and implementation on serial hardware.
We introduce the use of CSP (Communicating
Sequential Processes) channels [3] in Java providing a
communication harness to interconnect processes. The
required software is available as a Java class library and
may be downloaded from our web server
(http://rt.el.utwente.nl/javapp).
The use of Java for the design of real-time systems may
rightfully be frowned upon by real-time system
designers. Because of a number of weaknesses that Java
exhibits in this area.

Published in Real-Time Magazine 98/1 pp.30-35

The major weaknesses lie in the Java's, dynamic
memory management, the threads model, and the
lack of immediate responsiveness or reactiveness to
its environment. This has been summarized in the
following three points.
1. Java contains several dynamic components that

may jeopardize the deadlines of processes. In
Java, the cloning concept (clonable and
serializable objects) requires dynamic memory
allocation and is dependent on garbage
collection. Other components, such as the
class loader and the network classes also use
dynamic memory management. Deterministic
behavior is most important for developing
software for real-time and embedded systems.
Generally, static memory allocation without
garbage collection is used. Evading the garbage
collector is hard and several groups are
working on deterministic garbage collectors.

2. The monitor concept in Java
(synchronized-wait-notify) works
statistically correct, but the risk of starvation and
livelock, or in the worst case deadlock, may occur
when adding specific time constraints.
According to Welch [5] the Java monitor is
inefficient and dangerous to use. In the current
implementation of the Java monitor, threads
will queue up at the end of a single
synchronized queue when the monitor has
already been claimed by another thread. When
many threads cyclically claim the monitor and
on bad luck with timing, it may happen that a
particular thread never gets off the queue. The
results will be infinite starvation and livelock
[5]. A correct implementation must be
provided by a real-time operating system
(RTOS).

3. The presence of a real-time scheduler − as part
of a RTOS − doesn't necessarily make a real-
time system. A real-time system should also be
reactive on incoming stimuli, such as an alarm
sensor or a sample clock. Java has no facilities
for interrupt handling, therefore, this must be
implemented in the RTOS. A lot of things
must be solved at operating system level. Java
on the other hand is more suitable in that it is
naturally component oriented.

The Communicating Java Threads class library [1] we
have developed, solves the above mentioned
problems by means of formal methods. The total
concept [2] is derived from the mathematical
process algebra CSP [3], programming language
occam [4], and the transputer. These technologies
contain formal techniques that have been proven in
the real-time and embedded system community for
many years. With this formal approach and the use
of concise rules one can prevent race-hazards,
livelock, starvation, and deadlock during design and
implementation. The concept offers the possibility
to develop a number of design patterns. With the
use of formal methods one can guarantee the

behavior of the system. In other words, formal methods
are essential to the development of reliable systems. We
restrict ourselves to utilize the CSP concept at the above
mentioned real-time problems.

In this paper, in section 2 the CSP channels are
introduced. The impact of the use of channels on the
plug-and-play concept is described in section 3. In
section 4 the relation between the channel concept and
real-time behavior is described, while in section 5 our
scheduler methods are discussed. In section 6
conclusions are given towards the use of CSP channels
in real-time and embedded systems.

2. Programming with channels
The CSP concept offers a different parallel model than
the Java Thread model. The CSP model defines so-called
channels that synchronize processes through
communication between these processes.
With the term Java channels we restrict ourselves to CSP
channels − also called communication events.
The Java channels are intermediate objects shared by
active objects − threads or processes − in which they
communicate with each other. Channels are one-way,
initially unbuffered, and fully synchronized. This is
illustrated in figure 1. Active objects can only read or
write on channels. Communication occurs when both
processes are ready to communicate. Processes get
blocked until communication is ready. Synchronization,
scheduling, and the physical data transfer are
encapsulated into the channel. The result is that the
programmer will be freed from complicated
synchronization and scheduling constructs.

write read

dataflow

channelProcess A Process B

Figuur 1. Object oriented channel communication.

The channel model reduces the gap between concurrent
design models, such as data-flow models, and the
implementation. Figure 2 represents a data-flow at
design level, whereas figure 1 represents the
implementation.

dataflow
Process A Process B

channel

Figuur 2. Dataflow or process oriented.

In data-flow diagrams, an arrow corresponds to a
channel and a circle represents a process. The mapping
of a dataflow diagram to code is straightforward; the
one-way directed arrows represent the input/output
interfaces of the circles whereas input or output channels
define the interfaces of the processes.

Listing 1 illustrates this by mapping the design of
figure 2 into code.

1. import cjt.*;

2. public class Main
3. {
4. public static void main(String[] args)
5. {
6. Channel channel = new Channel();

7. ProcessA pa = new ProcessA(channel);
8. ProcessB pb = new ProcessB(channel);
9. }
10. }

Listing 1. Main program

The main() method acts as a so called configurer,
which typically declares channels and processes once
and subsequently terminates. This method does not
contain a common loop construct. Instead, less
complex loops are build in the processes.

The Main class represents a concurrent program for
one processor. It is trivial to split up the Main class
into several configurer classes for each processor.
Important is that the processes will stay intact and
channels possess the knowledge of the media
between the processors (see section 3).

In listings 2 and 3 ProcessA (producer process) and
ProcessB (consumer process) are given. ProcessA
produces 10000 integer incrementing numbers
starting from zero. ProcessB consumes these 10000
numbers and prints them onto the screen.
1. import cjt.*;
2. import java.io.IOException;

3. public class ProcessA extends ProcessObject
4. {
5. ChannelOutput channel;

6. public ProcessA(ChannelOutput out)
7. {
8. channel = out;
9. start();
10. }

11. public void run()
12. {
13. IntegerObject object = new

IntegerObject();
14. SeqComposition seq = new SeqComposition();

15. try
16. {
17. while(object.value < 10000)
18. {
19. object.value++;
20. channel.write(seq, object);
21. }
22. } catch (IOException e) { }
23. catch (InterruptedException e) { }
24. }
25. }

Listing 2. Producer ProcessA.
1. import cjt.*;
2. import java.io.IOException;

3. public class ProcessB extends ProcessObject
4. {
5. ChannelInput channel;

6. public ProcessB(ChannelInput in)
7. {
8. channel = in;
9. start();
10. }

11. public void run()
12. {
13. IntegerObject object = new IntegerObject();
14. SeqComposition seq = new SeqComposition();

15. try
16. {
17. while(object.value < 10000)
18. {
19. channel.read(seq, object);
20. System.out.println(object.value);
21. }
22. } catch (IOException e) { }
23. catch (InterruptedException e) { }
24. }
25. }

Listing 3. Consumer ProcessB.

The read() en write() methods contain two
arguments seq and object. The object seq is of class
type SeqComposition, which indicates sequential
behavior of the read() and write() methods. There
also exists a ParComposition en AltComposition
for respectively parallel and alternative behavior. These
composition constructs are described in the reference
manual, which can be found at our Web site.
Channels are thread-safe for multiple readers and
writers. Multiple consumer and producer processes
may share the same channel. The channel also
performs scheduling between processes of different
priority. The priority of process can be determined by
means of the priority of communication. Naturally,
one-to-one and many-to-one relations can be realized.
A one-to-many (broadcasting) relation needs a separate
design pattern.

3. Plug-and-Play
The channel concept in Java goes beyond
communication only. The core Java development kit has
no framework for direct hardware support. Java does
support native languages, such as C/C++, through the
JNI (Java Native Interface). The more code that will be
written with JNI the less Java will be portable on other
platforms. The channel concept defines an abstract way
to control devices and confine hardware dependent code
to one place only. This approach enlarges the reusability,
extensibility, and maintainability in an object oriented
manner.
Channels between processes on one processor will use a
shared memory driver and channels between processes
on different processors will use a peripheral driver. The
result is that processes will always be hardware
independent. There will be a clear separation between
hardware dependent and hardware independent code as
illustrated by figure 3.

write read
channelProcess A Process B

dataflow

MemoryPCI CorbaTCP

Fire-
wire

VME

RS-
232

USB CAN

Plug & PlayHardware independent

Hardware dependent

Figuur 3. Plug and Play framework for devices.

To avoid developing special channels for each
peripheral, a device driver framework is developed.
The device drivers, we call them link drivers, are
hardware dependent objects that can be plugged
into the channel. The channel object will deal with
synchronization and scheduling and the link driver
will be responsible for the data transfer. Channel
objects are hardware independent. As a result, the
link driver will be freed from the tasks of
synchronization and scheduling, therefore
programming link drivers will become easier.

The read() and write() methods are, when
permitted by the synchronization mechanism of the
channel object, delegated to the link driver. Figure 4
shows communication between two processes on
one processor, whereas figure 5 shows
communication between two systems.

write read
channelProcess A Process B

dataflow

link
driver

write read

Figure 4. Data transfer through link drivers for
uni-processor systems.

write
channelProcess A

dataflow

link
driver

write

read
channel Process B

link
driver

read

interrupt driven and
hardware dependent

TCP/IP

Figure 5. Data transfer through link drivers for
multi-processor systems.

Declaring a channel with a link driver is illustrated
by the following code:

Channel chan = new Channel(new MyLinkDriver());

On our URL http://rt.el.utwente.nl/javapp we have an
example TCP/IP link driver for communication across
the Internet. This example also shows how a single
concurrent program can be split up for distributed
systems.
Hardware dependent objects can be found at the
declaration of channels, i.e. at the top-level of the
configurer. It will be easier for the programmer to
browse and to maintain the program, without changing
the processes. Again, this concept increases the
reusability, extendibility, and maintainability of the
software.

4. Real-time aspects
Timing is one the most critical aspects of modern real-
time systems. From the requirement point of view, we
are only concerned with external timing [7]. The users are
concerned only that the system will respond overall to a
certain stimulus within certain time constraints. Whether
the response was achieved by a background task or
foreground task, how it was scheduled relative to other
tasks, what the internal port-to-port timing was, and what
kind of executive controller was needed to achieve it, are
issues that do not concern the system designers. From
the same point of view, timing is related only to the
signals of the system interface as indicated by the
context diagram. The context diagram is a data-flow
diagram at the top-level by which signals flow between
the system and the peripherals or terminators. In the
context diagram, the arrows are also communication
channels where communication takes place at specified
times. This makes channels important for real-time
systems.
The channel concept offers a solution to the realization
of real time requirements as follows:
1. The non-deterministic behavior of Java that is

caused by cloning objects or object serialization,
together with garbage, collection can be avoided
when using channels. Channels copy the contents
of the source object to the destination object when
communication is ready. Therefore objects can
efficiently be reused and the process behavior will
be deterministic. However, this copying concept
does not conflict with the cloning and serialization
concepts of Java, which can be used as well.
However it does not require the need of garbage
collection.

2. Special link drivers may extend the scheduling
behavior of the channel. A link driver consisting of
a one-place buffer may alleviate the priority
inversion problem combined with a rate
monotonic priority scheduler. Despite general
believe this type of scheduler may be used to the
full 100% CPU utilization [6].

3. Interrupt handling in a channel philosophy
becomes the scheduling of a respective process at
the required priority. This is implemented as the
placement of that particular process in its
respective active queue.

4. The channel can be fully optimized for processes
of equal priorities and also for processes of

different priorities separately. The processes
will not notice any changes between different
channels, because of its unique interface
definition.

From the above, it can be concluded that the
programmer can safely concentrate on the use of
channels whereas inside the channels the
embedded scheduler takes care of the proper
scheduling without any user intervention. The
implications of the embedded scheduler are
therefor considered next.

5. Embedded scheduler
Thread scheduling belongs to the domain of the
application that executes its tasks in parallel. So, a
scheduler is not necessarily part of the operating
system. A scheduler as an operating system resource
is all right for multitasking, but we can generalize
this concept. Each concurrent program may have its
own embedded scheduler that schedules its parallel
tasks. An operating system may be a concurrent
program as well. In other words, there may be more
than one scheduler running in a system; a scheduler
may schedule another scheduler and so on. In such a
way, different concurrent programs can be
scheduled in it's own way. An embedded scheduler
cuts a thread into multiple threads by means of task
switching (or context switching).

This approach corresponds to the objectives of
object orientation. A single program is an active
object, i.e. an object with a life of its own, with its
behavior encapsulated within. A concurrent program
contains multiple active objects, which must be
scheduled. Thus, concurrent programs need an
embedded scheduler that takes care of
multithreading. An embedded scheduler is also an
object that is part-of the total program. There are
several benefits to this approach:

1. The scheduler object can be included when one
is needed. When more than one schedulers of
the same type is needed only one code segment
resides in memory.

2. Different types of schedulers can be used. The
scheduling behavior can be nested such that
logistic and real-time policies can be mixed.

3. The Java Virtual Machine may be simplified by
leaving out the scheduler part. This makes the
JVM more compact and better portable. The
scheduler classes can be treated as object
oriented concepts and are therefore better
maintainable, extensible and reusable.

4. The open interface of this approach permits
other design patterns for concurrent
programming and scheduling policies.

With the wait(), notify(), and
synchronized() methods one can write robust
programs according to certain design patterns [9].
One should follow to these patterns closely

otherwise this great extend of freedom may turn into a
source of errors.

The channel concept comprehends several design
patterns, which are very related to each other. These
patterns deal with avoiding deadlock, starvation and
livelock at a more abstract level than dealing with
hazardous synchronization concepts. Together with the
embedded scheduler concept and the link driver
framework we can deal with real-time constrains at a
more abstract level through design patterns based on the
channel concept.

6. Conclusions
The use of CSP channels in real-time system design
offers a unified framework that clears the programmer
from complicated and unnecessary programming tasks
such as thread programming and scheduling. The
proposed method allows for deadlock and starvation
checks. The notion of priority should be considered a
property of communication between processes rather
than of processes by itself.

The resulting programs are easy to read and maintain.
The resulting code is as fast or as slow as equivalent
well-written Java code. Experience from the past has
learned that CSP channels may be designed with
lightning speed. There is sufficient room for
performance improvement and this should be
undertaken in parallel to the activities to make Java more
suitable for real-time programming in general.

The Java channels as introduced do not require garbage
collection.

References
[1] G.H. Hilderink, "Communicating Java Threads -

Reference Manual", Proceedings of WoTUG-20
conference Parallel Programming and Java, IOS Press,
1997, pp.283-324.

[2] G.H. Hilderink et al., "Communicating Java
Threads", Proceedings of WoTUG-20 conference
Parallel Programming and Java, IOS Press, 1997,
pp.48-76.

[3] C.A.R. Hoare, "Communicating Sequential
processes", Communications of the ACM, Aug. 1978,
pp. 666-677.

[4] INMOS Ltd., "Occam2 Reference Manual",
Prentice-Hall (ISBN 0-13-629312-3), 1987.

[5] P. H. Welch, “Java Threads in the Light of CSP”,
Proceedings NLUUG Conference, Ede, The
Netherlands, 20 Nov. 1997. see: http://www.nluug
.nl/nluug/nj97/progboekje/lezing10.html.

[6] C.L. Liu and J.W. Layland, "Scheduling Algorithms
for Multiprogramming in a Hard Real-Time
Environment", Journal of the ACM, Volume 20,
Number 1 (January 1997), pp. 46-61.

[7] D.J. Hatley and I.A. Pirbhai, "Strategies for Rel-
Time System Specification", Dorset House

Publishing Co. (ISBN 0-932633-11-0), New
York, 1988.

[8] A. Bakkers, J. Sunter and E. Ploeg, “Automatic
generation of scheduling and communication
code in real-time parallel programs”, Proceedings
of the ACM SIGPLAN 1995 Workshop on
Languages, Compilers & Tools for Real-Time
Systems, La Jolla, California, June 21-22, 1995

[9] D. Lea, "Concurrent Programming in Java:
Design Principles and Patterns", Addison-
Wesley Publishing Co. (ISBN 0-201-69581-2),
Massachusetts, 1997.

About the authors

Gerald H. Hilderink is currently a Ph.D. student in
computer engineering at the Control Laboratory of
the University of Twente, The Netherlands. His
main research interest is the development of a
reliable foundation using formal methods for real-
time and embedded system design. He is interested
in proposing a new parallel model for real-time and
embedded systems in Java.

Jan F. Broenink received his Ph.D. in Electrical
Engineering in 1990 from the University of Twente.
His Ph.D. research was in the design of computer
facilities for modeling and simulation of physical
systems using bond graphs. He is presently Assistant
Professor at the Control Laboratory of the
Department of Electrical Engineering of the
University of Twente, where he the project leader
software tools development. His research interests
include development of computer tools for
modeling, simulation and implementation of
embedded control systems and robotics.

André W.P. Bakkers is an appointed professor at the
Dutch Open University in the field of information
technology with a special assignment in the area of
real time and parallel systems. Since 1977 he worked
in the Control Laboratory of the University of
Twente as a Senior Lecturer with the control
systems and computer-engineering group of the
electrical engineering faculty of the University of
Twente. His present research covers the realization
of real-time control systems using parallel
processing.

Correspondence address

University of Twente
Prof.ir. A.W.P. Bakkers
Faculty of Electrical Engineering
Control laboratory
7500 AE Enschede
The Netherlands
tel. +31-53-482606
fax. +31-53-4892223

