
Belief Propagation for the
Maximum-Weight Independent Set and
Minimum Spanning Tree Problems∗

Kamiel Cornelissen1, Bodo Manthey1

1University of Twente, Department of Applied Mathematics
k.cornelissen@utwente.nl, b.manthey@utwente.nl

The belief propagation (BP) algorithm is a message-passing algorithm that is
used for solving probabilistic inference problems. In practice, the BP algorithm
performs well as a heuristic in many application fields. However, the theoretical
understanding of BP is limited. To improve the theoretical understanding of BP,
the BP algorithm has been applied to many well-understood combinatorial opti-
mization problems. In this paper, we consider BP applied to the maximum-weight
independent set (MWIS) and minimum spanning tree (MST) problems.

Sanghavi et al. (IEEE Trans. Inform. Theory, 2009) applied the BP algorithm to
the MWIS problem. We denote their algorithm by BP-MWIS. They showed that
if the LP relaxation of the MWIS problem has a unique integral optimal solution
and BP-MWIS converges, then BP-MWIS finds the optimal solution. Also, they
showed that if the LP relaxation has a non-integral optimal solution, then BP-
MWIS does not converge. In this paper, we precisely characterize the graphs for
which BP-MWIS is guaranteed to find the optimal solution, regardless of the node
weights.

Bayati et al. (J. Math. Phys., 2008) applied the BP algorithm to the MST prob-
lem. We denote their algorithm by BP-MST. They showed that if BP-MST con-
verges, then it finds the optimal solution. In this paper, however, we provide an
instance for which BP-MST does not converge. Also, since this instance is small and
simple, we believe that BP-MST does not converge for most instances encountered
in practice.

1 Introduction

The belief propagation (BP) algorithm is a message-passing algorithm that is used for solving
probabilistic inference problems on graphical models. It was proposed by Pearl in 1988 [8].
Typical graphical models to which BP is applied are Bayesian networks, Markov random
fields, and factor graphs. In this paper, we consider the max-product variant of BP (or the

∗This research was supported by NWO grant 613.001.023.

1

functionally equivalent min-sum variant), which is used to compute maximum a posteriori
probability (MAP) estimates.

Recently, BP has experienced great popularity. It has been applied in many fields, such
as machine learning, image processing, computer vision, and statistics. For an introduction
to BP and several applications, we refer to Yedidia et al. [17]. There are two main reasons
for the popularity of BP. First, it is widely applicable and easy to implement because of its
simple and iterative message-passing nature. Second, it performs well in practice in numerous
applications [14,16].

If the graphical model is tree-structured, BP computes exact MAP estimates. However, if
the graphical model contains cycles, the convergence and correctness of BP have been shown
only for specific classes of graphical models. To improve the general understanding of BP
and to gain new insights about the algorithm, it has recently been tried to rigorously analyze
the performance of BP as either a heuristic or an exact algorithm for several combinatorial
optimization problems. Amongst others, it has been applied to the maximum-weight matching
(MWM) problem [1,3,4,9,10], the minimum spanning tree (MST) problem [2], the minimum-
cost flow (MCF) problem [4,7], the maximum-weight independent set (MWIS) problem [11,12],
and the 3-coloring problem [5]. BP has even been used to analyze the satisfiability threshold [6].
The reason to consider BP applied to these combinatorial optimization problems is that these
optimization problems are well understood. This facilitates a rigorous analysis of BP, which is
often difficult for other applications.

In this paper, we consider BP applied to the MWIS and the MST problem. Sanghavi et
al. [12] introduced a variant of BP for the MWIS problem, which we denote by BP-MWIS.
They showed that BP-MWIS does not converge if the LP relaxation of the problem has a
non-integral optimal solution. Also, they showed that even if the LP relaxation of the problem
has a unique integral optimal solution, BP-MWIS is not guaranteed to converge. In this paper
we characterize precisely the graph structures for which BP-MWIS is guaranteed to work well.
This means that we characterize the graph structures for which BP-MWIS is guaranteed to
converge to the correct solution irrespective of the node weights (as long as the MWIS is
unique). We show (Section 3) that the graphs for which BP-MWIS converges to the correct
solution for all possible node weights are exactly those graphs that contain at most one even
cycle and no odd cycles.

Bayati et al. [2] introduced a variant of BP for the MST problem, which we denote by BP-
MST. The MST problem is easily solvable using a variety of algorithms. Still, it is interesting
to analyze the performance of BP applied to the MST problem since the MST problem has
a global connectivity constraint. This is in contrast to, for example, the MWM, MCF, and
MWIS problems, which only have local constraints. Bayati et al. showed the following positive
result for BP-MST: if BP-MST converges, then it converges to the correct solution. In this
paper, we show a negative result for BP-MST. In Section 4, we show a small instance for which
BP-MST does not converge. In addition, the property of this instance that ensures that BP-
MST does not converge is quite general and carries over to many other instances. Therefore,
we believe that BP-MST does not converge for most instances in practice.

The rest of this paper is organized as follows. First we introduce the MWIS (Section 1.1)
and MST (Section 1.2) problems. In Section 2, we introduce the BP algorithm and the variants
for the MWIS problem by Sanghavi et al. [12] and the MST problem by Bayati et al. [2]. In
Section 3 we state our results for BP-MWIS. Finally, in Section 4 we state our results for
BP-MST.

To conclude this section, we introduce some notation and assumptions. We denote the

2

weight of a node v by w(v). Also, we denote the weight of a set of nodes V by w(V). That is,

w(V) =
∑
v∈V

w(v).

For a graph G = (V,E) we define the neighborhood N(v) of a node v as

N(v) = {u | (u, v) ∈ E}.

In this paper, we assume that all graphs are connected. For the MST problem we do this
since no spanning tree exists for a disconnected graph. For the MWIS problem we do this since
maximum-weight independent sets on disconnected graphs can be computed by separately
computing maximum-weight independent sets on the individual components and then taking
the union of those sets. Finally, as is commonly done, we assume that the optimal solutions
for the MST and MWIS problems are unique, since it is well-known that BP does not converge
for instances that have multiple optimal solutions for these problems [1–3,10].

1.1 Maximum-Weight Independent Set Problem

Let G = (V,E) be an undirected weighted graph. An independent set S is a subset S ⊂ V of
nodes such that for every edge (u, v) ∈ E at most one of u and v is in S. The MWIS problem
consists of finding an independent set of maximum weight. A subset of nodes S∗ ⊂ V is an
MWIS of G if and only if

S∗ ∈ argmax{w(S) | S is an independent set of G}.

It is straightforward to formulate the MWIS problem as an integer program by identifying
with each node u ∈ V a binary variable xu ∈ {0, 1}. Here xu = 0 can be interpreted as x not
being part of the independent set S, while xu = 1 can be interpreted as x being part of S.
The integer program contains constraints that prevent two neighboring nodes from both being
included in S. The integer program (IP-MWIS) is as follows

max
∑
u∈V

w(u)xu

s.t. xu + xv ≤ 1 for all (u, v) ∈ E,

xu ∈ {0, 1}.

We obtain the LP relaxation of IP-MWIS by relaxing the constraint that xu should take an
integer value. We denote this LP relaxation by LP-MWIS.

max
∑
u∈V

w(u)xu

s.t. xu + xv ≤ 1 for all (u, v) ∈ E,

0 ≤ xu ≤ 1.

The independent set polytope is given by all feasible solutions of LP-MWIS. Every extreme
point of the independent set polytope has xu ∈ {0, 12 , 1} for all u ∈ V [13].

3

1.2 Minimum Spanning Tree Problem

Let G = (V,E) be an undirected graph. A spanning tree T of G is a connected subgraph
T = (V, F) of G, such that each node in V is incident to at least one of the edges in F and
T is a tree. That is, T does not contain any cycles. The MST problem consists of finding a
spanning tree of G of minimum total weight. A tree T ∗ is a MST of G if and only if

T ∗ ∈ argmin{w(T) | T is a spanning tree of G}.

2 Belief Propagation

In this section we give a brief introduction to the belief propagation (BP) algorithm. We
only introduce the aspects that are relevant for our analysis in Sections 3 and 4. For a more
elaborate introduction, we refer to Yedidia et al. [17]. Suppose we are given a graph G = (V,E)
with V = {1, 2, . . . , n} and for each u ∈ V an associated random variable Xu that takes values
in a finite set Xu. We define X = X1 ×X2 × . . .×Xn. Consider the probability distribution

P̂ (x) =
1

Z

∏
u∈V

φu(xu)
∏

(u,v)∈E

φuv(xu, xv), x = (xv)v∈V ∈ X . (1)

In the above, the φu and φuv are non-negative functions and Z is a normalization constant. The
graph G and the probability distribution P̂ (x) together form a graphical model, in particular
a pairwise Markov random field (MRF). Since both the MWIS problem and the MST problem
can be modeled as pairwise MRFs, we restrict ourselves to pairwise MRFs in this paper.

A maximum a posteriori probability (MAP) estimate of a probability distibution P (X) is
a most likely realization of the random variables. That is, the MAP estimate x̂ of P (X) is
defined as

x̂ ∈ argmaxP (x).

In the following we assume that the MAP estimate is unique. We call the value x̂u that xu
takes in the MAP estimate the MAP assignment of u.

Computing the MAP estimate for general probability distributions is NP-hard. The BP
algorithm is a heuristic for computing the MAP estimate. For the probability distribution
P̂ (x) (see Equation (1)), BP computes the MAP estimate exactly when the graph G is a tree.
If G contains cycles, BP is not guaranteed to compute the correct MAP estimate, but the BP
algorithm is still well-defined and in practice often gives a good approximation of the MAP
estimate.

In short, the BP algorithm works as follows. In each iteration k, each node u sends a message
vector

Mk
u→v =

(
mk
u→v(xv)

)
xv∈Xv

to each of its neighbors v ∈ N(u) containing a message for each possible value for Xv. A
message mk

u→v(xv) can be interpreted as how “likely” the sending node u thinks it is that the
random variable Xv associated with the receiving node v should take value xv in the MAP
estimate. The greater the value of the message mk

u→v(xv), the more likely it is according to
node u in iteration k that Xv should take value xv in the MAP estimate. The messages are
initialized neutrally, that is, in iteration 0 the messages are

M0
u→v = (1, 1, . . . , 1), for all u, v ∈ N(u).

4

In iterations k ≥ 1 the messages are computed from the messages in the previous iteration
as follows:

mk
u→v(xv) = max

xu∈Xu

φu(xu) · φuv(xu, xv) ·
∏

w∈N(u)\{v}

mk−1
w→u(xu)

 .

All these messages are sent simultaneously.
The belief bku of node u in iteration k is defined as

bku(xu) = φu(xu) ·
∏

v∈N(u)

mk−1
v→u(xu).

These beliefs can be interpreted as the “likelihood” that Xu should take value xu in the MAP
estimate. The greater the value of bku(xu), the more likely that Xu should take value xu in the
MAP estimate. We denote the best estimate (breaking ties arbitrarily) for the value of Xu in
the MAP estimate during iteration k by xku, that is,

xku = argmax{bku(xu) | xu ∈ Xu}.

The vector (xku)u∈V gives an estimate of the MAP estimate during iteration k. If, for some K,
we have

(xk1u)u∈V = (xk2u)u∈V , for all k1, k2 ≥ K,

then BP has converged after K iterations. In general there are three possibilities: BP converges
to the MAP estimate, BP converges to an incorrect solution, or BP does not converge at all.

2.1 Computation Tree

To show our results, we need the notion of a computation tree. Computation trees have been
used frequently to analyze the BP algorithm, for example, in the context of the Maximum-
Weight Independent Set problem [12] and the Maximum Weight Matching problem [1].

Let G = (V,E) be an arbitrary undirected graph. We denote the level-k computation tree
with the root labeled u ∈ V by T k(u). In the following we call the root of a computation tree
the CT-root, to distinguish it from the root of a directed spanning tree, which we introduce
later. The tree T k(u) is a labeled rooted tree of height k + 1. Like Bayati et al. [2] we denote
by [x, u] a node x in the computation tree with label u. In the rest of the paper we will also use
the term u-labeled to denote that a node in the computation tree is labeled with node u ∈ V
and the term S-labeled to denote that a node in the computation tree is labeled with a node
of the subset S ⊂ V .

The CT-root in T 0(u) has label u, its degree is the degree of u in G, and its children are
labeled with the adjacent nodes of u in G. The tree T k+1(u) is obtained recursively from T k(u)
by attaching nodes to every leaf node in T k(u). To each leaf node [y, v] in T k(u), a number
of nodes equal to the degree of v in G minus 1 is attached. These nodes are labeled with the
neighbors of v in G except for the label of the parent of y in T k(u). If the nodes or edges of G
are weighted, these weights are copied to the computation tree. This means that a node with
label u in the computation tree has weight w(u) and an edge between two nodes labeled u and
v in the computation tree has weight w(u, v). Figure 1 shows an example of an edge-weighted
graph and computation tree.

5

u5u1

u4

u2

u3

0

4

2
5

0

1

0

u2

u1 u3 u4

u4 u5 u4 u1 u3

u2 u3 u1 u2 u2 u5 u2

0 1 5

4 2 0 4 0

5 4 5 0 2 1

Figure 1: On the left an example edge-weighted graph and on the right the associated level-2
computation tree T 2(u2) rooted at u2 with the node labels next to the nodes.

The definition of the computation tree is such that each non-leaf node [x, u] in the compu-
tation tree has neighbors with the same labels as the neighbors of u in G. Also, the messages
that the CT-root of a level-k computation tree with label u receives after k iterations of the
BP algorithm on the computation tree are exactly the same as the messages that u receives
after k iterations of the BP algorithm on G. The behavior of the BP algorithm on trees is well
understood, in contrast to the behavior of the BP algorithm on graphs with cycles. Therefore,
computation trees form a useful tool for analysis of the BP algorithm on graphs with cycles.

On a computation tree T = (VT , ET) we can naturally define a probability distribution PT
using the node labels and the functions φu and φuv as defined for G (see Equation (1)):

PT (x) =
1

Z

∏
[y,u]∈VT

φu(xy)
∏

([y,u],[z,v])∈ET

φuv(xy, xz), x ∈ XT . (2)

In the above, analogously to Equation (1), we have VT = {1T , 2T , . . . , nT }, we associate a
random variable Xy with each [y, u] ∈ VT which takes values in Xy = Xu, and we define
XT = X1T ×X2T × . . .×XnT .

If BP converges, then the MAP assignment (given by the MAP estimate of PT) of all nodes
in the computation tree that are sufficiently far away from the leafs of the tree is according
to the assignment that the BP algorithm converged to. This follows, for instance, from the
periodic assignment lemma by Weiss [15]. Nodes that are close to the leafs do not necessarily
take the assignment that BP converged to. (In the above we mean by ‘leafs’ only those leafs
of the computation tree that are in the lowest level of the computation tree, not the nodes
in the higher levels of the computation tree that are leafs only because the nodes that they
are labeled with have degree 1 in the original graph G. For example, the u5-labeled node at
distance 2 from the CT-root in the computation tree in Figure 1 is not considered a leaf, while
the u3-labeled node at distance 3 from the CT-root is considered a leaf.)

Theorem 2.1 (Weiss [15]). Assume that the BP algorithm converges after K iterations.
Each node [x, v] in the computation tree T k(u) (k ≥ K) that is at distance at most k−K from
the CT-root of T k(u) has MAP assignment equal to the assignment that v converged to.

2.2 Belief Propagation for the Maximum-Weight Independent Set Problem

Sanghavi et al. [12] developed a variant of the BP algorithm for the MWIS problem, which we
denote by BP-MWIS. For a graph G = (V,E) they associate with each node u ∈ V a random

6

variable Xu which takes values from the set {0, 1}. A value of ‘0’ for Xu can be interpreted
as u not being part of independent set S, while a value of ‘1’ can be interpreted as u being
part of S. They define φu(xu) = ew(u)xu , φuv(xu, xv) = 0 if xu + xv > 1, and φuv(xu, xv) = 1
otherwise. Let the probability distribution PIS be given by

PIS(x) =
1

Z

∏
u∈V

φu(xu)
∏

(u,v)∈E

φuv(xu, xv), x ∈ {0, 1}|V |.

For distribution PIS, only x corresponding to independent sets of G have positive probability.
Since the MAP estimate of PIS corresponds to the MWIS of G, BP can be used as a heuristic for
computing the MWIS of G. BP-MWIS is the BP algorithm by Sanghavi et al. for the graphical
model given by graph G and probability distribution PIS. In each iteration of BP-MWIS each
node sends two messages mu→v(0) and mu→v(1) to each of the nodes v in its neighborhood
N(u). Since the exact structure of the messages does not play a role in our analysis, we will
not further specify them and refer to the original paper. At the end of each iteration each node
estimates whether it should be in the MWIS. We denote the estimate of node u in iteration
k by xku ∈ {0, 1, ?}. An estimate of ‘0’ can be interpreted as u believing that it should not
be in the MWIS, an estimate of ‘1’ can be interpreted as u believing that it should be in the
MWIS, and an estimate of ‘?’ as u considering it equally likely that it is part of the MWIS
or not. Sanghavi et al. showed that if BP-MWIS converges (that is, there exists a number of
iterations K such that the estimate xku is equal to xKu for all u ∈ V and k ≥ K), the estimates
correspond to the optimum of LP-MWIS (see Section 1.1). That is, if for all u ∈ V we set
xu = 0 if xKu = ‘0’, xu = 1 if xKu = ‘1’, and xu = 1/2 if xKu = ‘?’, the vector x is an optimum
of LP-MWIS.

In our analysis we use several results by Sanghavi et al. [12] which we list below.

Theorem 2.2 (Sanghavi et al. [12]). If LP-MWIS has a non-integral optimal solution, then
BP-MWIS does not converge.

Just like for the original graph G, we can consider maximum-weight independent sets of a
computation tree T k(u). The estimates xku of BP-MWIS can be directly related to whether or
not the CT-root of the computation tree T k(u) is part of a MWIS of T k(u).

Theorem 2.3 (Sanghavi et al. [12]). For any node u ∈ V and any number of iterations k
we have:

• xku = ‘1’ if and only if the CT-root of T k(u) is a member of every MWIS of T k(u);

• xku = ‘0’ if and only if the CT-root of T k(u) is not a member of any MWIS of T k(u);

• xku = ‘?’ otherwise.

2.3 Belief Propagation for the Minimum Spanning Tree Problem

Bayati et al. [2] developed a variant of the BP algorithm for the MST problem, which we
denote by BP-MST. For convenience, we give a short description of their algorithm below.
Also, we state their results that we use in Section 4 to show that BP-MST does not converge
for all instances of the MST problem. For a more elaborate description of the algorithm we
refer to the original paper.

7

A spanning tree of an undirected graph G = (V,E) is modeled as a rooted directed tree.
One of the nodes in V is designated as the root of the tree. To distinguish the root of a rooted
spanning tree from the root of a computation tree, we call the former the MST-root. Each node
u ∈ V has an associated parent node pu ∈ N(u) and an associated depth du ∈ {0, 1, . . . , n−1}.
(Though Bayati et al. [2] did not specify the maximum value dmax for the depth of a node,
we make the natural choice of dmax = n − 1. Using smaller values of dmax, we can model the
NP-hard problem of finding minimum spanning trees of bounded depth.) The MST-root has
(by definition) itself as its parent and depth 0. For each other node u it has to hold that
(u, pu) ∈ E and that dpu = du − 1. Note that every spanning tree of G can be modeled in this
way and that each set {(pu, du)u∈V } that satisfies the above conditions provides a spanning
tree of G. For an example of an undirected spanning tree modeled as a directed spanning tree,
we refer to the right image of Figure 2.

In each iteration of BP-MST each node u sends a message mu→v(pv, dv) to each of the nodes
v in its neighborhood N(u) for all the possible combinations of values for pv and dv. Such
a message mu→v(pv, dv) can be interpreted as the likelihood according to the sending node u
that the receiving node v should have parent pv and depth dv in the MST of G. Since the exact
structure of the messages does not play a role in our analysis, we will not further specify them
and refer to the original paper. At the end of each iteration, each node u uses the incoming
messages to estimate its parent pu and depth du in the MST. Bayati et al. showed that if
BP-MST converges, it finds the MST.

Theorem 2.4 (Bayati et al. [2]). If BP-MST converges to (pu, du)u∈V , then the set of edges
{(u, pu)u∈V \{MST-root}} is the minimum spanning tree of G.

For another result by Bayati et al. that we use in our analysis, we need the notion of an
Oriented Spanning Tree (OST) on the computation tree T k(u) (see Section 2.1) for BP-MST.
We assign to each node [x, v] in T k(u) a depth dx ∈ {0, 1, . . . , n − 1}. To each non-leaf node
[y, v] in T k(u) we assign a parent py in its neighborhood N([y, v]) (or [y, v] itself in case v is the
MST-root of G). Here ‘leafs’ are again only those leafs in the lowest level of the computation
tree, see also Section 2.1. We call such an assignment valid if it satisfies two properties:

• Every non-leaf node [y, v] of T k(u) for which v is the MST-root of G has itself as its
parent and depth dy = 0.

• For every non-leaf node [y, v] of T k(u) for which v is not the MST-root of G, it has to
hold that dpy = dy − 1.

Every such valid assignment gives an OST{
([y, v], py) | [y, v] is not a leaf in the lowest level of T k(u) and v is not the MST-root of G

}
.

Among all OSTs on the computation tree, we call the one of minimum weight the Minimum-
Weight Oriented Spanning Tree (MWOST). Bayati et al. showed that BP-MST solves the
MWOST problem on the computation tree.

Theorem 2.5 (Bayati et al. [2]). BP-MST solves the MWOST problem on the computation
tree. That is, the MAP assignment of all nodes in the computation tree is such that it corre-
sponds to the MWOST on the computation tree. In particular, for all u ∈ V , the estimates pku
and dku at the end of iteration k are equal to the values of pCT-root and dCT-root in the MWOST
of T k(u).

8

Theorem 2.4 and Theorem 2.5 show that, though BP-MST actually computes the MWOST
of the computation tree, if it converges, it finds the MST of G. However, convergence of BP-
MST is not guaranteed. In Section 4 we show a small example graph G for which BP-MST
does not converge and explain why we believe that BP-MST does not converge for most graphs
in practice.

3 Convergence of BP-MWIS

In this section we characterize the graphs G for which BP-MWIS converges for all possible node
weights (assuming that the MWIS is unique). We show that BP-MWIS is only guaranteed to
work well for bipartite graphs that are trees plus at most one additional edge. In Section 3.1
we show that BP-MWIS converges for all possible node weights for all G that contain no odd
length cycles and at most one even length cycle. In Section 3.2 we show that if G contains
an odd length cycle or at least two even length cycles, there exist node weights for which
BP-MWIS does not converge.

3.1 Graphs for Which BP-MWIS Converges

In this section we show that BP-MWIS converges to the correct solution for all possible node
weights for graphs that contain no odd cycles and at most one even cycle. The idea is that
computing an MWIS in such graphs boils down to computing an MWIS in a cycle of even
length, where the weight of a node v is the weight of an MWIS of the tree, whose root v is,
including v minus the weight of an MWIS of the tree excluding v.

Theorem 3.1. Let G = (V,E) be a graph that contains no odd cycle and at most one even
cycle. Then BP-MWIS converges to the correct solution for all possible node weights w for
which the MWIS of G is unique.

Proof. If G is a tree, then after at most n iterations, the computation tree T is equal to G.
Since the MWIS of G is unique, the MWIS of T is unique as well and according to Theorem 2.3
BP-MWIS converges to the correct solution.

Next we consider the case that G contains exactly one even cycle C = (W,F) and no
odd cycles. Let q = |W |. We denote the nodes in C by v0, v1, v2, . . . , vq = v0 such that
(vi, vi+1) ∈ F . Furthermore, we define sets V1, V2, . . . , Vq where Vi consists of node vi plus all
nodes u that are not on the cycle C and for which the shortest path from u to one of the cycle
nodes ends in vi. We also define weights

w+
i = max{w(B) | vi ∈ B,B ⊂ Vi, B is an independent set on G} and

w−i = max{w(B) | vi /∈ B,B ⊂ Vi, B is an independent set on G}.

We denote by V +
i ⊆ Vi and by V −i ⊆ Vi the subsets for which the weights w+

i and w−i are
obtained, respectively, breaking ties arbitrarily. Using the above definitions, the problem of
finding the MWIS of G can be reduced to finding the independent set D ⊂W for which∑

i:vi∈D
w+
i +

∑
i:vi /∈D

w−i is maximized.

9

We denote the MWIS ofG by I. Also, we denote by I ′ an arbitrary second-heaviest independent
set, that is

I ′ ∈ argmax{w(S) | S ⊂ V, S 6= I, S is an independent set of G}.

Since the MWIS of G is unique, there is a strictly positive difference between the weight of
I and the weight of I ′. We define δ = w(I)−w(I ′) > 0. We denote the weight of the heaviest
node of G by w∗.

Let T = (VT , ET) be a computation tree for G and let R ⊆ VT be a subset of W -labeled
nodes of the computation tree. In the following we denote by M [R] the subgraph of T that
is induced by R plus all nodes u in T that are not W -labeled and for which a path from u to
some v ∈ R exists for which all nodes except for v are not W -labeled.

Note that from the above definitions we immediately obtain

w+
i ≤ w

−
i + w∗, (3)

since B = V +
i \ {vi} is an independent set on G, B ⊂ Vi, and vi /∈ B. Also, we have

w+
i ≥ w

−
i if vi ∈ I, (4)

because otherwise, we can improve I by removing the nodes in V +
i and then adding the nodes

in V −i .
We first show that BP-MWIS converges to the correct solution for nodes v ∈ W, v ∈ I.

Assume to the contrary that BP-MWIS does not converge to the correct solution for v. We
define K∗ = n2w∗

δ . Then, according to Theorem 2.3 there exists a k > K∗ + 3n such that
the CT-root of the computation tree T = T k(v) is not a part of every MWIS of T . Let J
be an MWIS of T that does not include the CT-root. We now define sets S+ and S− on T
recursively. We start by adding the CT-root to S+. Each time we add a node to S+, we add to
S− each of its neighbors in the computation tree that is W -labeled, is in J , and is at distance
at most K∗ + 2n+ 1 from the CT-root. Each time we add a node to S−, we add to S+ each
of its neighbors in the computation tree that is W -labeled, is I-labeled, and is at distance at
most K∗ + 2n from the CT-root.

Note that the nodes in S+∪S− induce a path P that starts at a vi-labeled node, continues to
a vi+1-labeled node, etc., and ends in a vj-labeled node. We can partition this path in shorter
paths, such that p parts P1, . . . , Pp are equal to (vi, vi+1, . . . , vi−1), that is, every P` is equal
to cycle C with edge (vi−1, vi) removed. In addition, the partition consists at most one part
P ∗ of length less than |W | which is equal to (vi, vi+1, . . . , vj).

Next we show that we can construct an independent set J̃ on T of weight greater than w(J)
as follows. We set J̃ = J . For each node [u, vi] in S+ we first remove from J̃ all nodes in
M [{u}], then add to J̃ all V +

i -labeled nodes in M [{u}]. In addition, for each node [u, vi] in
S− we first remove from J̃ all nodes in M [{u}], then add to J̃ all V −i -labeled nodes in M [{u}].
Note that J̃ is again an independent set on T , since the W -labeled neighbors of each node
[u, vi] ∈ S+ are either in S− and therefore not in J̃ , or they were not in J (otherwise they
would have been added to S−) and therefore not in J̃ either.

Now we consider one path P` and the graph M` = (VM`
, EM`

) = M [P`]. Note that M` is
a copy of G, except for the missing edge (vi−1, vi). The set of labels of the nodes in VM`

∩ J̃
is exactly equal to I. Also, the set of labels of the nodes in VM`

∩ J is equal to some other
independent set Ĩ of G. Since I is at least δ heavier then any other independent set of G, we
have that

10

w(VM`
∩ J̃) ≥ w(VM`

∩ J) + δ. (5)

In the following we denote by M∗ = (VM∗ , EM∗) = M [P ∗]. We now distinguish two cases.

Case 1: |P | > K∗+n. Since |P | > K∗+n, we have p ≥ K∗/n+1. By Equation (5), we
have w(VM`

∩ J̃) ≥ w(VM`
∩ J) + δ for all `. By Equations (3) and (4) we have w(VM∗ ∩ J) ≤

w(VM∗ ∩ J̃) + (n− 1)w∗. Combining these two inequalities yields

w(J̃)− w(J) ≥ pδ − (n− 1)w∗ > 0.

Since J̃ is heavier than J , our assumption that BP-MWIS does not converge to the correct
solution for node v, graph G, and weights w was incorrect.

Case 2: |P | ≤ K∗ + n. Let [x, vi] and [y, vj] be the endpoints of P . Suppose x ∈ S+.
Since x ∈ S+, we have vi ∈ I by definition and therefore vi−1 /∈ I. Suppose now x ∈ S−. Since
the vi−1-labeled neighbor u of x was not added to S+, u cannot be I-labeled by definition, so
vi−1 /∈ I. Similarly, the vj+1-labeled neighbor of y that is not in P cannot be I-labeled, so
vj+1 /∈ I. Consider now P ∗. Suppose that J ∩ VM∗ is at least as heavy as J̃ ∩ VM∗ . Since
neither vi−1 nor vj+1 is in I, we can define a new independent set Î of G of weight at least
w(I). We set Î = I. Next, we remove from Î all nodes in the sets Vi for which vi is used to
label one of the nodes in P ∗. By doing so, w(Î) decreases by w(J̃ ∩ VM∗). Then we add to Î
all nodes that are used to label one of the nodes in J ∩ VM∗ . By doing so, w(Î) increases by
w(J ∩ VM∗). Since the nodes in J ∩ VM∗ are at least as heavy as the nodes in J̃ ∩ VM∗ , we
have that Î is at least as heavy as I. This contradicts the fact that I is the unique MWIS of
G. Therefore, our assumption that J ∩ VM∗ is at least as heavy as J̃ ∩ VM∗ was wrong. Since
also J̃ ∪ VM`

is heavier than J ∪ VM`
for all `, we have that J̃ is heavier than J .

We set Î = I. Next, we remove from Î all nodes in the sets Vi for which vi is used to label
one of the nodes in P ∗. By doing so, w(Î) decreases by w(J̃ ∩ VM∗). Then we add to Î all
nodes that are used to label one of the nodes in J ∩ VM∗ . By doing so, w(Î) increases by
w(J ∩ VM∗). Since the nodes in J ∩ VM∗ are at least as heavy as the nodes in J̃ ∩ VM∗ , we
have that Î is at least as heavy as I. This contradicts the fact that I is the unique MWIS of
G. Therefore, our assumption that J ∩ VM∗ is at least as heavy as J̃ ∩ VM∗ was wrong. Since
also J̃ ∪ VM`

is heavier than J ∪ VM`
for all `, we have that J̃ is heavier than J .

Since J̃ is heavier than J , our assumption that BP-MWIS does not converge to the correct
solution for node v, graph G, and weights w was incorrect.

We showed convergence of BP-MWIS for nodes v ∈ W, v ∈ I. Next we consider nodes
v ∈ W, v /∈ I. The proof that BP-MWIS converges to the correct solution for these nodes is
very similar to the proof for nodes that are in I. Assume that BP-MWIS does not converge to
the correct solution for v. Then, according to Theorem 2.3, there exists a k > K∗ + 3n such
that the CT-root of the computation tree T = T k(v) is part of some MWIS J on T . We now
define sets S+ and S− analogously to the proof for v ∈ I and start the recursive definition of
these sets by including the CT-root in S−. We can then show that J is not an MWIS of T , so
the assumption that BP-MWIS does not converge for v ∈ W, v /∈ I was wrong. We omit the
rest of the proof, since it is very similar to the proof for v ∈ I.

Finally, we show that BP-MWIS converges to the correct solution for nodes v /∈W . Assume
w.l.o.g. that v ∈ V1 and let d be the length of the shortest path from v to v1 in G. Note

11

that T = T k+d(v) is exactly the same as T̂ = T k(v1) for k ≥ n (except that the CT-root is
different). Since these two computation trees are the same, also the MWISs on these trees are
the same. We denote the v1-labeled node that is closest to the CT-root in T by u. Since u
corresponds to the CT-root of T̂ , v1 ∈ W , and BP-MWIS converges to the correct solution
for nodes in W , u is in every MWIS of T if v1 ∈ I and it is in no MWIS of T if v1 /∈ I. Let
M = M [{u}]. We now consider the case where u is in every MWIS of T . In computation tree
T , all nodes in M \ {u} are only connected to other nodes in M . Therefore, every MWIS J on
T with u ∈ J includes each [x, y] ∈ M if and only if y ∈ V +

1 . If y ∈ V +
1 and v1 ∈ I, then also

y ∈ I. On the other hand, if y /∈ V +
1 and v1 ∈ I, then also y /∈ I. This holds in particular for

the CT-root. It will be in every MWIS of T if v ∈ I and in no MWIS of T if v /∈ I. The case
that u is in no MWIS of T is similar and we therefore omit the proof.

3.2 Graphs for Which BP-MWIS Does Not Converge

In Section 3.1 we showed that BP-MWIS converges to the correct solution for all possible node
weights for graphs with at most one even cycle and no odd cycles. In this section we show
that these are the only graphs for which BP-MWIS converges to the correct solution for all
possible node weights. First we show that there exist node weights such that BP-MWIS does
not converge for graphs that contain an odd cycle and then we show that there exist node
weights such that BP-MWIS does not converge to the correct solution for graphs that contain
two or more even cycles.

In our proofs we use the concept of heavy nodes and light nodes. We denote the set of heavy
nodes by H and the set of light nodes by L. The heavy nodes all have weight at least 1. We do
not specify the exact weights of the light nodes, but they all have weight from the open interval
]0, 1/9n2[such that the weights of all subsets of L are different, that is, w(S) = w(T)⇒ S = T
for all S, T ⊂ L. We choose the node weights like this to ensure that the MWIS is unique.

First we consider graphs with at least one odd cycle. For these graphs our result follows
directly from Theorem 2.2 and the fact that for graphs with an odd cycle we can choose node
weights such that LP-MWIS does not have an integral optimal solution.

Theorem 3.2. Let G = (V,E) be a graph that contains at least one odd cycle C = (W,F).
Then there exist weights for the nodes such that the MWIS of G is unique, but BP-MWIS does
not converge.

Proof. Let k = |W |. We denote the nodes in C by v0, v1, v2, . . . , vk = v0 such that (vi, vi+1) ∈
F . We choose the node weights such that the nodes in T = {v1, v3, v5, . . . , vk−4, vk−2} have
weight 1 + 1/(2n), the nodes in W \ T have weight 1, and all nodes in V \W are light nodes.
We show that the optimal solution of LP-MWIS is non-integral.

The MWIS of G consists of the nodes in T plus some light nodes. This is because we can
include at most (k − 1)/2 nodes from W and including a node from W \ T instead of a node
in T costs us 1/(2n), while we can gain at most (n− k)(1/(9n2)) < 1/(9n) by including more
of the light nodes. The weight of the MWIS of G is therefore bounded by ((k − 1)/2)(1 +
1/(2n)) + (n − k)(1/(9n2)) < k/2. By our assumption on the weights of the light nodes, the
MWIS is unique.

Let x be the solution of LP-MWIS with xi = 0 if i /∈ W and xi = 1/2 if i ∈ W . The
objective value for x is clearly greater than k/2. This shows that LP-MWIS cannot have an
integral optimal solution and according to Theorem 2.2 BP-MWIS does not converge.

12

Next we consider graphs with at least two even cycles.

Theorem 3.3. Let G = (V,E) be a graph that contains at least two even cycles C1 = (W1, F1)
and C2 = (W2, F2). There exist node weights such that the MWIS of G is unique, but BP-
MWIS does not converge to the correct solution.

Proof. If G contains an odd cycle, then the theorem follows from Theorem 3.2. We therefore
assume in the following that G is bipartite. We now define a set X of nodes and a set Y of
edges as follows. If C1 and C2 have at least one node in common, we define X = W1 ∪W2 and
Y = F1 ∪ F2. If C1 and C2 have no nodes in common, let P = (WP , FP) be an arbitrary path
from W1 to W2. In this case we define X = W1 ∪W2 ∪WP and Y = F1 ∪ F2 ∪ FP . Note that
all nodes in X have degree at least 2 in the graph M = (X,Y), since either they are on one of
the two cycles, or they are a non-leaf node of the path P .

Since M is a connected bipartite graph, we can uniquely partition the nodes in X into two
sets X1 and X2 such that there are no edges (x1, x2) in Y between a node x1 ∈ X1 and an
node x2 ∈ X2. We now distinguish two cases.

Case 1: |X1| 6= |X2|. Assume w.l.o.g. that |X1| > |X2|. We define weights w̃ for the
nodes in X as follows. Each node x1 ∈ X1 has weight w̃(x1) = 1 and each node x2 ∈ X2 has
weight w̃(x2) = 1 + 1/(2n). Let S ⊂ X be an arbitrary MWIS of M according to the weights
w̃. Since G is bipartite, S is an independent set of G as well. We now define weights w on
the nodes V of G as follows. All nodes in V \X are light nodes. Each node x ∈ S has weight
w(x) = w̃(x) + 1/(4n). Finally, each node x ∈ X \ S has weight w(x) = w̃(x). By choosing
the weights w like this, we ensure that the MWIS J of G is unique and consists of the nodes
in S plus the heaviest subset L̂ of light nodes such that nodes in L̂ are not incident to nodes
in S or other nodes in L̂. The MWIS is unique, since the nodes in S have total weight at least
1/(4n) greater than any other subset of X and the total weight of all light nodes is at most
1/(9n).

Note that at least one of the nodes in X1 is part of J , since X1 is an independent set of M
and it has total weight greater than any subset of nodes D ⊂ X2, because of |X1| > |X2|.
Let x1 ∈ X1 be part of J . Assume that BP-MWIS converges to the correct solution in K
iterations. We consider the computation tree T = T k(x1) for some even k ≥ K. Since
BP-MWIS converged to the correct solution by assumption and because of Theorem 2.3, the
CT-root of T is a member of every MWIS of T . We now show by induction that this is not
the case and that our assumption that BP-MWIS converges to the correct solution is wrong.
In particular, we show that all X1-labeled nodes are in no MWIS of T , while all X2-labeled
nodes are in every MWIS of T . Note that a node u in T that is heavier than all of its neighbors
together is in every MWIS of T , since we can always improve independent sets of T that do
not include u by including u and removing all neighbors of u.

As the basis step, we consider the leafs of T . Since the leafs are at an odd distance from
the CT-root, they cannot be X1-labeled. If they are X2-labeled, they are in every MWIS of
T , since they have greater weight than their parent node.

As the induction step, we consider the nodes at distance t from the CT-root. We assume
that for all nodes at distance greater than t from the CT-root it holds that they are part of
no MWIS of T if they are X1-labeled and that they are part of every MWIS of T if they are
X2-labeled. For even t, nodes cannot be X2-labeled. X1-labeled nodes u at distance t from the
CT-root have at least one X2-labeled neighbor v which is at distance t+ 1 from the CT-root.

13

Since v is part of every MWIS of T by assumption, u is part of no MWIS of T . For odd t,
nodes cannot be X1-labeled. An X2-labeled node u at distance t from the CT-root is in every
MWIS of T , since its X1-labeled neighbors at distance t+ 1 from the CT-root are in no MWIS
of T by assumption and its parent plus its light neighbors in T have total weight less than
w(u).

Case 2: |X1| = |X2|. The only connected graphs for which all nodes have degree at
most 2 are paths and cycles. Since M is connected and is neither a path nor a cycle, it must
contain at least one node with degree at least 3. Assume w.l.o.g. that node x ∈ X1 has
degree at least 3. We define weights w̃ for the nodes in X as follows. Node x has weight
w̃(x) = 5/3. Each node x1 ∈ X1 \ x has weight w̃(x1) = 1 and each node x2 ∈ X2 has weight
w̃(x2) = 1 + 1/(2n). Let S ⊂ X be an arbitrary MWIS of M . We now define weights w on
the nodes V of G as follows. All nodes in V \X are light nodes. Each node x ∈ S has weight
w(x) = w̃(x) + 1/(4n). Finally, each node x ∈ X \S has weight w(x) = w̃(x). Again, this way
we ensure that the MWIS J of G is unique and consists of the nodes in S plus the heaviest
subset L̂ of light nodes such that nodes in L̂ are not incident to nodes in S or other nodes in
L̂. The MWIS is unique, since the nodes in S have total weight at least 1/(4n) greater than
any other independent set on M and the total weight of all light nodes is at most 1/(9n).

Note that at least one of the nodes in X1 is part of J , since X1 is an independent set on
M and it has total weight greater than any subset of nodes D ⊂ X2. Let x1 ∈ X1 be part of
J . Assume that BP-MWIS converges to the correct solution in K iterations. We consider the
computation tree T = T k(x1) for some even k ≥ K. Since BP-MWIS converged to the correct
solution and by Theorem 2.3, the CT-root of T is a member of every MWIS of T . We now
show by induction that this is not the case and that our assumption that BP-MWIS converges
to the correct solution is wrong. In particular, we show that all X1-labeled nodes are in no
MWIS of T , while all X2-labeled nodes are in every MWIS of T .

As the basis step, we consider the leafs of T . Since the leafs are at an odd distance from the
CT-root, they cannot be X1-labeled. The X2-labeled leafs that do not have an x-labeled node
as their parent are in every MWIS of T , since they have greater weight than their parent node.
Now consider an X2-labeled leaf u that has an x-labeled node v as its parent. Since x has
degree at least 3 in M , v has at least two heavy leafs as its children. Therefore, v cannot be
in any MWIS of T , since we can improve any independent set of T containing v by removing
v and adding its children in T . Since v is the only neighbor of u and v is in no MWIS of T ,
node u is in every MWIS of T .

As the induction step, we consider the nodes at distance t from the CT-root. We assume
that for all nodes at distance greater than t from the CT-root it holds that they are part of
no MWIS of T if they are X1-labeled and that they are part of every MWIS of T if they
are X2-labeled. For even t, nodes cannot be X2-labeled. X1-labeled nodes u at distance t
from the CT-root have at least one X2-labeled neighbor v which is at distance t+ 1 from the
CT-root. Since v is part of every MWIS of T by assumption, u is part of no MWIS of T . For
odd t, nodes cannot be X1-labeled. For X2-labeled nodes u at distance t from the CT-root
we again distinguish two cases. If the parent of u is not x-labeled, u is in every MWIS of T ,
since its X1-labeled neighbors at distance t + 1 from the CT-root are in no MWIS of T by
assumption and its parent plus its light neighbors in T have total weight less than w(u). If the
parent v of u is x-labeled, it has at least two heavy X2-labeled nodes as its children. Node v
cannot be in any MWIS of T , since we can improve any independent set of T containing v by

14

u5

u6

u7

u1

u4

u2

u3

0

0

0

0

0

1

2
u5

u6

u7

u1

u4

u2

u3

0

0

0

0

0

1

2

d = 1

d = 1

d = 1

d = 0 d = 1

d = 3

d = 2

Figure 2: The left image shows the instance for which BP-MST does not converge. The right
image shows the MST (dashed edges) for this instance, modeled as a directed tree
rooted at u1.

adding all its heavy children C in T and removing all neighbors of nodes in C (since X1-labeled
neighbors at distance greater than t from the CT-root are in no MWIS this always leads to
an improvement), leading to a contradiction. Since v is in no MWIS of T and all X1-labeled
neighbors of u at distance t+ 1 from the CT-root are in no MWIS of T by assumption, u is in
every MWIS of T .

4 Non-Convergence of BP-MST

In this section we provide an instance of the MST problem for which BP-MST does not converge
to the correct solution. The instance G = (V,E) is as follows (see Figure 2):

• V = {u1, u2, u3, u4, u5, u6, u7};

• E = {(u1, u2), (u1, u3), (u1, u4), (u1, u5), (u5, u6), (u5, u7), (u6, u7)};

• The weights of the edges are w(u1, u5) = 2, w(u5, u6) = 1, and the rest of the edges have
weight 0.

As can easily be observed, the MST T ∗ of G consists of all edges except for the edge (u5, u6).
Modeled as a directed spanning tree rooted at u1, the set S of parents and depths corresponding
to T ∗ is given by

S = {(pu1 = u1, du1 = 0), (pu2 = u1, du2 = 1), (pu3 = u1, du3 = 1), (pu4 = u1, du4 = 1),

(pu5 = u1, du5 = 1), (pu6 = u7, du6 = 3), (pu7 = u5, du7 = 2)}. (6)

Before we formally prove that BP-MST for G does not converge to T ∗, we give an intuitive
explanation of why this is the case. Note that in any spanning tree of G the expensive edge
(u1, u5) has to be included, since this is the only edge that connects the nodes {u1, u2, u3, u4}
with the nodes {u5, u6, u7}. However, copies of the edge (u1, u5) in the computation tree are
not necessarily included in an oriented spanning tree (OST). In fact, for any u5-labeled node
in the computation tree it is cheaper to have either its u6-labeled neighbor or its u7-labeled
neighbor as its parent than its u1-labeled neighbor.

We show that BP-MST does not converge for G by proof by contradiction. Assume to the
contrary that BP-MST for G converges. According to Theorems 2.1, 2.4, and 2.5, if we consider
a sufficiently large computation tree T , the MWOST T̂ on T should consist of copies of T ∗

15

close to the root of T . Therefore, T̂ contains several edges labeled (u1, u5). We show that we
can construct an OST on T with lower costs than T̂ by replacing an (expensive) edge labeled
(u1, u5) by a (cheaper) edge labeled (u5, u6), changing the node depths where necessary. This
contradicts the optimality of T̂ . We conclude that BP-MST does not converge for G.

We proceed with the formal proof.

Lemma 4.1. If BP-MST converges for G, then it converges to the set S (see Equation (6)).

Proof. Assume that BP-MST converges for G after K iterations. First we show that BP-MST
converges to the correct parents pv as given by S. For u1 this is clear, since it is the MST-root
and its parent is u1 by definition. Now assume that for some nodes BP-MST does not converge
to the correct parents. Among all these nodes, let v be one of minimum depth dSv as given
by S and let pSv be the parent of v as given by S. Since S is a rooted spanning tree, pSv has
smaller depth as given by S than v and, therefore, BP-MST converges to the correct parent
for pSv . This means that we have neither ppSv = v, nor pv = pSv . Therefore, the edge (v, pSv) is
not in the set {(v, pv)v∈V \{MST-root}}, contradicting Theorem 2.4. We conclude that BP-MST
converges to the correct parents for all nodes.

Finally, we show that BP-MST converges to the correct depths dv. For u1 this is again
true by definition. Assume that for some nodes, BP-MST converges to the incorrect depths.
Among all these nodes, let v be one of minimum depth dSv as given by S and let pSv be the
parent of v as given by S. Consider the computation tree TK+1(v). According to Theorem 2.1
and the above, the neighbor [x, pSv] of [CT-root, v] has depth dx = dS

pSv
. Since pCT-root = x

and v takes the incorrect depth, we have dCT-root = dv 6= dSv = dS
pSv

+ 1 = dx + 1, contradicting

Theorem 2.5. We conclude that BP-MST converges to the correct depths for all nodes.

Theorem 4.2. BP-MST does not converge for G.

Proof. Assume to the contrary that BP-MST converges for G after K iterations. According
to Lemma 4.1, BP-MST converges to the set S. We now consider the computation tree
T = TK+4(u5). According to Theorem 2.1, all nodes in T that are at distance at most 4
from the CT-root [root, u5] take MAP assignment according to S. We denote the OST that
corresponds to the MAP assignment on T by T1. We now show that we can change the parents
and depths for some nodes in T such that we obtain another OST T2 of weight less than the
weight of T1. Consider all nodes in T at distance at most 4 from the CT-root and all edges
between them (see Figure 3). We make the following changes to the assignments of the nodes.
We change proot to [x2, u6]. We change droot to 4, dx3 to 5, and dx8 to 6. Note that the new
assignment is valid. For the nodes at distance 4 or less from the CT-root this can easily be
checked and for nodes further away from the CT-root it follows since we did not change their
parents and depths, and also the parents and depths of nodes at distance exactly 4 from the
CT-root were not changed.

The new assignment corresponds to another OST T2. The new tree T2 contains exactly
the same edges as T1, except that it contains an extra edge labeled (u5, u6) and it does not
contain one of the edges labeled (u1, u5) (see Figure 3). Since edge (u5, u6) weighs less than
edge (u1, u5), T2 weighs less than T1. Therefore, BP-MST did not compute the MWOST on
T , contradicting Theorem 2.5. We conclude that our initial assumption was incorrect and that
BP-MST does not converge for G.

The graph G shows that BP-MST does not converge for all graphs. Since computing the
MST on a tree is trivial, G is one of the simplest non-trivial instances. Bayati et al. [2] showed

16

[root, u5] d = 1

[x2, u6]
d = 3 [x3, u7] d = 2

[x7, u7]
d = 2

[x8, u6]
d = 3

[x9, u5]
d = 1

[x10, u5] d = 1

[x13, u7]
d = 2

[x12, u6]
d = 3 [x14, u1]

d = 0
[x11, u1]

d = 0

[x1, u1]

d = 0

[x6, u4]
d = 1

[x5, u3]
d = 1

[x4, u2]

d = 1

[root, u5] d = 4

[x2, u6]
d = 3 [x3, u7] d = 5

[x7, u7]
d = 2

[x8, u6]
d = 6

[x9, u5]
d = 1

[x10, u5] d = 1

[x13, u7]
d = 2

[x12, u6]
d = 3 [x14, u1]

d = 0
[x11, u1]

d = 0

[x1, u1]

d = 0

[x6, u4]
d = 1

[x5, u3]
d = 1

[x4, u2]

d = 1

Figure 3: Both images show all nodes in the computation tree TK+4(u5) that are at distance
at most 4 from the CT-root [root, u5], and all edges between these nodes. The left
image shows (dashed edges) the OST T1 and the right image shows the OST T2.

that BP-MST is correct if it converges. However, the graph G shows that there exist simple
instances for which BP-MST does not converge. We believe that BP-MST does not converge
for most instances encountered in practice. The reason for this is that to form the MWOST
of the computation tree it is often not optimal to use copies of the MST of the input graph
H. Even if the MST of H contains only one somewhat expensive edge e, an OST on the
computation tree consisting of copies of the MST of H can usually be improved by leaving out
a copy of edge e and adding a cheaper edge.

5 Concluding Remarks

In this paper, we have analyzed belief propagation for minimum spanning trees (BP-MST) and
minimum-weight independent set (BP-MWIS).

For BP-MWIS, we completely characterized the graphs on which BP-MWIS converges for all
node weights, provided that the minimum-weight independent set is unique. We remark that
the node weights that we provide for showing that BP-MWIS does not converge are robust
against small perturbations. This indicates that the non-convergence is not a pathological
behavior, but likely to occur.

For BP-MST, we gave a small example on which BP-MST does not converge. Since this
example is quite small, it is likely that such a structure occurs in many practical instances,
which is an indication that BP-MST does not converge on many instances.

References

[1] Mohsen Bayati, Christian Borgs, Jennifer Chayes, and Riccardo Zecchina. Belief-
propagation for weighted b-matching on arbitrary graphs and its relation to linear pro-
grams with integer solutions. SIAM Journal on Discrete Mathematics, 25(2):989–1011,
2011.

[2] Mohsen Bayati, Alfredo Braunstein, and Riccardo Zecchina. A rigorous analysis of
the cavity equations for the minimum spanning tree. Journal of Mathematical Physics,
49(12):125206, 2008.

[3] Mohsen Bayati, Devavrat Shah, and Mayank Sharma. Max-product for maximum weight

17

matching: Convergence, correctness, and LP duality. IEEE Transactions on Information
Theory, 54(3):1241–1251, 2008.

[4] Tobias Brunsch, Kamiel Cornelissen, Bodo Manthey, and Heiko Rglin. Smoothed analysis
of belief propagation for minimum-cost flow and matching. Journal of Graph Algorithms
and Applications, 17(6):647–670, 2013.

[5] Amin Coja-Oghlan, Elchanan Mossel, and Dan Vilenchik. A spectral approach to
analysing belief propagation for 3-colouring. Combinatorics, Probability and Computing,
18(6):881–912, 2009.

[6] Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large k. In
Rocco A. Servedio and Ronitt Rubinfeld, editors, Proc. of the 47th Ann. ACM Symp. on
Theory of Computing (STOC), pages 59–68. ACM, 2015.

[7] David Gamarnik, Devavrat Shah, and Yehua Wei. Belief propagation for min-cost network
flow: Convergence and correctness. Operations Research, 60(2):410–428, 2012.

[8] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann, 1988.

[9] Justin Salez and Devavrat Shah. Belief propagation: An asymptotically optimal algorithm
for the random assignment problem. Math. Oper. Res., 34(2):468–480, 2009.

[10] Sujay Sanghavi, Dmitry M. Malioutov, and Alan S. Willsky. Belief propagation and LP
relaxation for weighted matching in general graphs. IEEE Transactions on Information
Theory, 57(4):2203–2212, 2011.

[11] Sujay Sanghavi and Devavrat Shah. Tightness of LP via max-product belief propagation.
Technical Report 0508097v2 [cs.DS], arXiv, 2008.

[12] Sujay Sanghavi, Devavrat Shah, and Alan S. Willsky. Message passing for maximum
weight independent set. IEEE Transactions on Information Theory, 55(11):4822 –4834,
2009.

[13] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24
of Algorithms and Combinatorics. Springer, 2003.

[14] Marshall F. Tappen and William T. Freeman. Comparison of graph cuts with belief propa-
gation for stereo, using identical MRF parameters. In Proc. of the 9th IEEE International
Conference on Computer Vision (ICCV 2003), pages 900–907. IEEE Computer Society,
2003.

[15] Yair Weiss. Correctness of local probability propagation in graphical models with loops.
Neural Computation, 12(1):1–41, 2000.

[16] Chen Yanover and Yair Weiss. Approximate inference and protein-folding. In Suzanna
Becker, Sebastian Thrun, and Klaus Obermayer, editors, Advances in Neural Information
Processing Systems (NIPS 2002), pages 84–86. MIT Press, 2002.

18

[17] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Understanding belief propa-
gation and its generalizations. In Gerhard Lakemeyer and Bernhard Nebel, editors, Ex-
ploring Artificial Intelligence in the New Millennium, chapter 8, pages 239–269. Morgan
Kaufmann, 2003.

19

