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In rllir:lcentrifu~snli,,n. thus concentration gradient of mono-disperse sam- 

plw ol)tnined by sctlimcntalion vclocii,v exprrinwnts is described II! 
C;c<trnti:r’s v(luation \vhich holds scvvml ~x~~~rc~tcw including the sedi- 
mentntion ;~nti diff\lsion c*otrstanls. 0111~1 (tlr’sv two const:rnts art: known, 
1 tw molrculnr weight follo\v. Y f~,orn thr> S\-cdl wp c,clll:tlion. .1 Iwst squares 
method 113s been drvclo~wd to tlrriv13 t.)w t,ransporl constants from the 
rr~frwtivr~ intlrs gradient, curves. TIIP m~~thotl c.mldo~-s :L n~athcmstical model 
Ixrsed on Gehaiin’s theory. A main fr,atur(t of t hc nlotlcl is the application 
of two sets of intcrmedinttv pxramvtr~rs vi:1 wtlictl 0~~~ transllort coefficients 
are muc~h wsirr calcutntrtl ttlnn along a dirl,ct wvay. It’urthermorc some 
difficult IO olrserw qunnt.il irs cxlcel out. The squxrt residur~s zre minimised 
nllmerivnll!-. Ttlv ~jotc~nl ial errors inrro~llIrcd b,x- this numericnl minimalisa- 
tion :~w stlown to bc, unilnporlnnt compatwl to the un:rroidnt>le experimental 
(xrrorz. 
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Gchatia’s may are obvious: the time ~lceded for a velocity run is much 
smaller than the t,ime ncccssarp for equilibrium or approach to equilib- 
riunl runs. Furthermore, the usual methods yield only Al, not S and 1) 
separately. 

The disadvantages, how-ever, which have limited the practical use, 
are twofold. Firstly, C:ehatia’s method requires a few experimentally 
difficult to observe parameters such as the initial time (t,,,) , the initial 
position of t,he phase boundary ( r,, 1. Secondly, the arithmetical analysis 
necessary to obtain S and I) is very cumberdomc~. 

In this article a least squares mctliotl is dwcribcd, employing a model 
that, has bcxen derived from (khatiu’s theory (1 1. By means of two 
parameter transformations the determinntiou of I .,) and f,, can be bypassed. 
-4 scheme for automatetl data handling facilitates the execution of the 
tedious calculat~ions considerably. 

The theory of sedimentation velocity expcrimenta has been cliscusscd 
extensively in the literature [(+chatia (I’), Fujita (4)]. The results of 
Gehatia’s analysis will be used as a starting point for t,he development 
of a mode1 relating 8, n and AI to the measurable variables, i.e., refrac- 
tive index gradient, versus time and radial distance. This section describes 
the development of the model, while See. III clcals with the application 
of the model to the data processing. 

The sedimentation velocity cxpcrimcnt is assumed to satisfy the con- 
ditions listed below: 

a. Initially the liquid mixture consists of two pliascs of tlirt same 

solute and sokent with tlifierciit concentratioiw of the solute and sq)a- 
rated by an indcfinitcly sharp intcrfacc (stelwlistribution) 

b. The solute and the solvent arc both mono-diqwrec nonelc~trolytcs 
and completely miscible. 

r. The mixtuw has :a negligible compwibility ant1 show no \-iqcous 
effects or convection during ultracentrifugation. 

d. Thr tempc~rxturc is constant. The angular velocity is increased 
rapidly to the d&w1 Icvcl and remains constant till the twl of the 
experiment 

e. During the experiment the concentration profile must. not be af- 
fected by the prwcncc of the tangential walls (bottom and meniscus). 

f. A sector cell is used. 
g. The rcfractiw index depclndd linc~nrly on thp concrntration of the 

solute. 



II. The t~rxnsport coefficients of the solute arc virtually indelmdent~ 
of t,he ~onrcntration in the range occurring in the systmcni. thus S and I) 
nre inclrpcnclent~ of concentration. 

i. The gr:tclitwt of tllcl refrnctiw intlcs is regirberetl 2,s n function of 
time and radial clistanw. 

I-I:t\Gng slwcificcl tlic cspcriincntnl conditions, the equation of t(kic con- 
wnt,mtioil grnclient. of the solute ns tlcwlopecl hy (:ehntin cm h in- 
trodllcccl: 

n-here : 
I radius (tlic clistmce to the center of rotation) 
T time clnpstd since die beginning of the experiment = 1 - fo; f is 

t,hr time wit11 an :irbitrary origin; to is the t~inir at the st,:brt of the 

experiment 
initial positiofi of the int,rrf:lcc 
position of the httoni 
coricrrhxt~ion of the solute 
initial conccntr;ition tliffrwncr between hotmli plinses 

(1.1‘) 

=f 
IlC')PP") = 

k%, 
(ppo)'k+'l[li!(X. + l)!]. 

(Fkwel function of tmlle first kind :irid the first order.) 

bkplation (1) ~:tii Iw sinq~lifictl considernl~ly if tlic molecules of the 
solute :tr(’ riot t,oo stnnll tlrid tllc clurntiori of the experiment is relatively 
short. l.Tnder these circunietaticw the influence of the 1)ottoni on the 
ronc.entr:ttioii profile v:tn lx neglwted [set ( 11 1 : 
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po e-pu* . I, (2ppo) >> pb e-pa2 . 11 (“/Jpb). (2) 

In the second place, the argument (2ppO) is normally large enough (2pm > 
4 X 10’) to approximate I, (2pp,) by the first, t,erm of an appropriate 
asymptot’ic power expansion series [see (7)) Sec. 9.71 : 

11(2ppo) is: [e2PPo/(-hppo)‘ie] 1 - && - . 
( 

. 
) 

Substitution of the simplificat.ions (2) and (3) into Eq. (1) gives: 

(4 

C-2) 

The next step is to replace the concentration gradient by the refrac- 
tive index gradient. The height h(r,~) of a recorded sedimentation curve 
depends linearly on the concentration gradient: 

where 

G, radial magnification factor ; d, radial distance of a point of a re- 
corded curve with respect to a reference line; ~1, position of reference lint; 
An, initial difference of refractive indices of the phases; F, vertical mag- 
nification factor. Eliminating the concentration gradient and replacing 
x 1P and pO in Eq. (4) by the right sides of (1.1) to (1.3) gives t’hc follow- 
ing equation: 

T~~~sfor~~ntions. Equat’ion (6) can bc used as a modc~l in the computa- 
tion of /3 and D assuming the refractive index gradient is measured as 
a function of radial distance and time. The quantities r,), A?Z and F must 
also be detcrmincd. However, in doing so two difficulties arise. Firstly, 
Eq. (6) has not a suitable form to calculate /3 and 1) easily. Secondly, 
an accurate experimental dctcrmination of rO and T is hardly possible due 
to some unavoida~blc mixing near thch inkrface as the start and to an 
uncertainty with respect to thr exact, moment of intcrfnre formation. 
These difficult,ics can be solved by means of two transformations. The 
first one dissolves the necessity of measuring Y,,, F and AR. The second 
transformation allows the use of an arbitrary origin of the time axis 
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11-y the introduction of a rvfcrcnce tin-x rv to IN& sc~lwted 1)~ the in- 
vertigator. 

The first’ transformation replaccs p, II, F, An, I’(, and 7 by a new Set 
of time-clepcndent psr:~meters wn, wzl and v12 (shortly the vector m) : 

m,, = F . ar, . $/(~L’T)~‘” 7)lu > 0, (7.1) 

1111 = I’IJ c%p(pT) 1121 > 0, ii.?) 

ntz = WffT 1712 > 0. ii.3) 

The pnrametcrs ~1.~ and I+ arc related to the reduced momenk of the 
concent,ration grnclient with respect to the radius: 

where Wi is a reduced moment of order i [see (1:) for the definition 1. 
hpplication of the first transformation t,o Eq. (6, yields: 

The scconrl transformation relates the romponrnts of the m vector to 
the transport cocificients via a ncx set of pnrxmekrs. As the roni~~onents 
of m are time depentlwt a subscript i is nttnclictl to refer to clkcretc time 
Ti. The suhscript8 1’ intlicntes the rct’creure time and its corresponding 
pnr:mleter ~:~lucs;. III ,.r :iild v~,,,. 

z,,.z = T( - TTr, (9.1) 
z,.; = L’/ru(,,, = Illi/rl,,,./m,,,)” (!,.2) 

(!J.3) 

The t.imc d~~rixttives of Z, and Z, are independent of the time and are 
equal to the tr:lusport, coefiAents times n factor two. 

The original prol)l~n to deduce /!I and D from the esperimcntal (data 
has Iwcti rcparatc(l in tuw suhproblr~me: 

a. Determination of m; from the cxlx~rimcntnl data. 
1). Coml)utntion of Z, and Z, and their time clerivatires. after select- 

ing a reference time :md a corrwpontling m vector. Both .sulyvohlcms 
(‘a11 he sol\-cd by the methoil of least squares a:: described in Sect. III. 

Once the transport coefficients arc knotvn, the molecular n-eight of the 
solute follow immediately from the Svedlwrg equation (5) : 
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x = 
KTS a In ffl 

( ) (1 - p~l)lj a ID ~1 T’ 

p/CL+ 
gas constant 
absolute temperature 
average derlsity of the solution 
partial volume of t’he solute 
activity of the solute both expressed in gmoles/cma 
concentration of the solute or g/cm3 

(10) 

The Eqs. (71, (8), (9) and (10) form the model to be applied to the 
data processing. 

III. METHOD OF LEAST SQUARES 

1. Derivation of the m vector 

During an experiment a certain number of refractive index gradient 
curves are registered. Each curw must be represented numerically, 
which can be done by measuring the moment of recording t, the radial 
magnification factor G and the coordinates of at least three points on 
a curve: the height y with respect to the base line and the radial 
distance d relative to a reference line. The product of G and d added to 
the distance rz between the reference line and the center of rotat’ion, is 
the actual distance r of :I. point on a curve to the axis of rot’ation. It 
is convenient to select the points radially equidistant. The zero time may 
be chosen arbitrarily. Then t,he outcome of an experiment is given by 
the following set of data: 

b/k, rk),, f, k=l,. . . , Ki (Ki 3 3) 

i= i, . . . ,I. 

The subscript k refers to a selected point; the subscript i refers to a 
curve. These data suffice to determine a m vector for each curve. As 
the derivation is identical for each curve, the suffix i will he deleted from 
now 011. 

The connection bet’ween the experimental data and the theoretical 
model is made by relating the experimental height l/l< to the predicted 
height h(~h; m) is given by Eq. 18) : 

yk. = h (rn ; m) + tk 1; = 1. . . . , h7. ill) 

The residue cL accounts for the discrepancy between the model and 
reality. In order to find the closest fit of the model to the experimental 
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Il:tt:i tlrc sum of square residue, q is tninittkcl hy wljnsting the vector m. 
The sum of square residttcs inhbr. PSR ) retldr: 
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(14.1) 

The variable Q (vL~, VL,) is a positive, continuous, twice differentiable 
scalar function of ~1~ and We, defined for ~2, > 0 and ‘)tll > 0. The vari- 
able mO” is also a function of m, and ‘~1~. Equation (14.1) is the ob- 
jec,tive fun&on of the SEARCH routine. Appendix B describes the 
various activities of this module. 

At the end of the optimnlisation the routine produces the minimised 
sum of square residues (Q min) and the optimal values of ‘WL~ and 17~~. The 
corresponding value of ‘r)bn ” is calculated via (14.2). Finally a new param- 
eter /TL:, is introduced representing the average scatter of the experi- 
mental points along the optimal curve: 

m3 = [Q min,/K (~n~*)~\~~~. (1~) 

The division by the square of v~L,, * is necessary to eliminate the influence 
of the vertical scaling factor. 

The procedure as described in this part of the section has to be re- 
peated for each curve. The obtained set of m vectors, mi, i = 1, . , 
I will be used to derive the transport coefficients. 

2. Complstation of S and 1) 

The second transformation (91 establishes the relation between the 
transport coefficients and component,s of the m; vectors. Firstly, the 2 
values are calculated. This calculation requires the reference parameters 
m,,, and mx,l-. The parameters of the curve having the smallest scat,ter 
(i.e., the smallest III:: value of all curves) arc taken as references. 
The factors Z,.; and Z2.i (i = 1, . . , I) follow straight forward from 
Eq. (91. Then the time tfcrivatives of the scriea .Z’,,i (equal to 2&Z) and 
Z,.; (equal to 2Di can be calculated by the method of weight,cd least 
squares. Only one calcuhtion xvi11 tJe given becaUSc the deriVatiOns are 

iclentiral in both casts. 
Owing to the second transformation a linear relationship between 

a Z factor and the expci-imenM time f is int.roduced: 
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ilfi) 

u-11 ere 
%, represents citltcr %t,, or Z2,( 
1: = Y.&J? = Z/3 iii case of s~~clinletit~:tt,iott 
H = 20 in c:tsc of difiusioti 
A is :I cluatitity depending on the origin of tlte t,ime axis 
Pi is :I deviation due to the :tpprosimatt~ tt:tture of tlte model and to 

possible errors in the computed % v:dues 

The syttllrol 1(‘i clenotes :I wiglit f:tctor. The weight fwtors n-ill lx> ttwcl to 

suppress the contribution of tltosc uhnervntions showing rclativcly much 
scnt,t,er. Therefore :I (rather arbitrary) inverse relation hctween the wight 
factors and the scatter factors is npplicd: 

(IS) 

The parnmcters A :mtl B can I)e dwiwcl by minimking K Cd, B). -L\p- 
I)licntion of the necessary conclitions for the cxistrncca of I minimum 
( 4” B” 1 \-ieltl<: I 2 . L 

A0 = ;s _ jy f Cl!)) 
PI” = (22 - 2 . t,/S, (‘20) 

\Vllt!tY 
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It, is easy to prow that the matrix of ~wontl order derivntiws is definite 
positive in (A”. F’l. Furtlierinorc, it shoultl lw notecl that X, 8” and 
R (A”, PI arc in\-xrinnt to uniform translations of the time axis. 

The .s:mple error of B” is given by the formulae [see (8) ] : 

u(uoj = [Rcao, fq/LY(I - qy I > L’ 

0 I = 0. (21) = 

As soon as both transport coefficients are known the molecular weight 

IV. APPLI(‘ATIONS AiX’D DISCFSSION 

In order to test tlicb lwrformancc of the nunwrical solution method three 
sets of artificial “cslx~rimc~ntal data” have hw~ gencratcd :riitl proc- 
esserl.” These clnta cm1 lw consitlcrctl as being r:miplccl from artificially 
construct,ed curves. The first test dealt nith curves satisfying the model 
(the Eqs. (8) and ( 101 1 exactly. In the second test the curves of the 
first case were shifted upward n-it11 rcspt’ct to the base line (about ,55/r 
of the maximum height ). This ‘test accounts for those situations in which 
the licight, of a curw has :I systematic tlcviation due to an uncertainty in 
the position of either the lbasc line or the curve. In the third test the 
right ,sides of t,hc curves have been omitted in order to check t,he senai- 
tivity of the method to incomplete data. Table 1 lists the input. values 
of the m vectors from which the curves hnw been constructed and the 
output values of the m Twtore as dcrivcd by the SEARCH routine. 
Component v1, is well reproduced and not wry sensitive to inaccurate 
data. Component ~1, i- b also well reproduced in the first test case; in 
the other tests moderate systematic clwiations occur. In the second 
test the SEARCH tries to minimise the deviation from the model by 
making w, eysteninticallp greater than the original input, value. The 
abwwe of the right sides of the curves apparently causes a systematic 
underestimation of m,. The output vnlucs of wz,,, calculated according 
to (14.2), show a rat)her strong rorwlation with ~2~. Tlrc consistent 
offset produced in the first curve of each case is causrcl by the ver? 
sharply peaked curves (ratio of low& to highest value is 1.0 E - 141 and 
to the small number of specified coordinates (five 1. 

The transport coefficients nml their dcvintcs are calculated from the 

“A tligitnl program 11:~ hem drvcloprd named DISEMO. The size of the com- 
pilrd program is about 9K; the rscrution time for the processing of the data of 
one esprrimrnt varies brtwcn 5 and 15 SW. He~~uc~sts for 3 listing of the source 
module and in sample input form should lx- nddrrssctl to: Polymer Chcmistrl 
Laboratory. Department of Chc~micd Engineering. Tmrntc University of Technology. 
Enwhedc. The Kethcrlnnds. 
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TABLE 2 
Input and Output Values of Physical Variablesa 

Physical quantity Input 1. Test 2. Test. 3. Test 

s (set-I) 2.4613 - 11 2.46E - 11 2.463 - I1 2.46s - 11 
u(S) (set-*) 4.7OK - 15 6.643 - 15 6.38E - 15 
D (mz/sec) l.OOB - 10 l.OOE - 10 1.03E - 10 0.98E 10 
a(D) (m*,‘sec) O.lt;E - I2 2.16): - 12 5.433 - 12 
M (kg/kmole) 2.195E + 0.5 2.2OOE + 05 2.13E + 05 2.23E + 0.5 

(1 Numerical values of the various constants used irl the test comput,ations: TO = 
4.OE - 02 Cm); w = 6.OSli: + 04 (rpm); p = 1.0 (g/k’); 0 = 0.75 (cm”,/g); 7’ = 298.15 
("Ii); (a III a Ia In c)~ = 0.9. 

output values of w1 and w3 as described in the second part of Sect. III. 
Table 2 lists the preassigned values and the reproduced values of the 
transport coefficients and the molecular weight. The values of the auxiliary 
physical quantities used in the computation of Ili are given in footnote a 
of Table 2. The sedimentation coefficient is not very sensitive to disturb- 
ances. Ewn in the worst cast (third test) tlic relative error remains 
smaller than O.lp/r. The cliffusion coefficient and its sample error are much 
more afYccted by the upsets. The systematic deviations of rr~~ in the 
ecconcl and third test case (see Table 1 ) propagate into the diffusion co- 
efficient, but the second transformation and t,hc weighted least squares 
method smooth the scatter to some extent. 

These tests with artificial “cxperilnerltnl” tlnta give an indication of 
the accurary of the method under various circumstances. But the simul- 
taneous effect of all sources of upsets, i.e., numerically, experimentally 
and inadequacies of the model can only be obscrretl from real experi- 
mental data. Table 3 lists the experimental conditions and the calculated 
m vectors including t.he normalized weight factors of a test wit,h a-chymo- 
t,rypsinogcn. Table 4 is a survey of the calculated transport coefficients, 
their sample errors and the molecular weight t,ogether with some cor- 
responding data from the litcraturc~. ‘I’hc~ answers obtained by the method 

of least squares are in satisfartory agreement with the data found in 
t,he lit,erature. The numeriral errors do not, prcwil over the experimental 
inacrurncies. There are some indications that the o\wall accuracy has 
been improved by applying this method. 

DIS(‘USSIOK 

The discussion will bc restricted to the presented method for data 
processing and the applicability of the model. The experimental pro- 

cedure itself is not, considered in the discussion because this procedure is 
common t’o each data processing method. 
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parameters. This only applies to the 2c.i factors as can be seen from 
(9.2) and (9.31 : 

d%, i . 
T is independent of Z1.,, 

d&j 
t/f 

has a dependency on Zi,, and Zs,r. 

The investigated liroblems gave no indications that these points had 
a serious bearing on the results, but they should be ment,ionetl for sake 
of completeness. 

As st#ated above the definition of the curve weight factors is nn ar- 
bitrary choice, but, it provides a means to account for the relative 
accuracy of each curve. ,4 cliffcrent definition jvould product different 
numerical values for the weight fnct,ors. However, the selection of the 
reference curve is hardly affected by the definition. The influence of the 
value of the weight factors on the transport coefficients has been in- 
vestigated for the ‘a-chpmotrypsinogcll experiment. A repetition of the 
calculations with equal weights and the same reference curve yields: 
&’ = 2.59 S’ and I) = 0.903 X lo-” (nC/srcl. The differences Ivith the 
values in Table 4 are rather small amI can almost bc neglected wit’h 
respect to the saniple errors. 

The applicability of the method of least squares is not restricted to 
the model as presented in Sect,. IT. Under certain conditions (wry small 
sedimentation coefficient) the factor #N = (e’@ - 1)/2Pt bccome~ virtually 
equal to OIW and can be left out. In this Case the definition of Z2.i (9.31 
simplifies to Z,,i = I)?,,, - ws,,-. It is also possible to retain more terms 
of the power series cxpnnsion [we Eq. (3) .I. The transformations do 
not, change. 

It should bc noted that the method allow us to compare preclic%erl 
values of rn, f,, and F.LW wit,11 observed values. After the derivation of 
s and D the quantities r,, and t, ran be calculated from the definitions of 
VI,, and ~1,. Applying the definition of /110 yields the product of F-A~. This 
provides :I means to check for a possible discrepancy between model and 
rcnlity at tlits initial stage of an experiment. 

CONCI,TXSIONS 

In the description of the least squares method the matliemat.icnl aspects 
hare been more en~pl~asiscd than the expcrimcntal aides. Summnrising 
the features, the method requires neither the difficult to observe qunnti- 
ties r0 and f,, at the top or the ar(‘a of a refractive index gradient curve. 
hut uses sampled curve heights around the top. Apart from the transport 
constants anal the molecular weight, it producc~e also the same errors of 
the constants. The performanrc of the method with respect to the rc- 



producibility is good. ds far as the method has been tested on esperi- 
mrnt:11 scdimentntioti data, the results arch cwc~ouraging. Therefore, it 
III:L~ be ;tn useful tool for the processing of sc,rlittlcrtt:ltiot1 vcloci@ data 
of proteins. where S :~t11 D :~rc intlcpcntl~nt of the c~onceiitration. 

.ll’PKSDIS A : EQUATIOKS OF THE CONCENTHATION (:RAI)IES’I 

In this appendix it is show1 that. El. (1 ) of Sect. 11 is valid for :i 
tlvo-component system. initially consisting of two solutions wkh a con- 
centration difference. This includes 31~0 a two-com~~otient iystem initially 
n-ith n pure solvent, phase and 3 solution. 

The sedimentation process in nn infinite sector ~11 i.; dwc~rihed by the 
folloning set of equations: 

accr, 7) 1 d --[/+).!!:1:;1:?) -$ . r2 . cir, T) . 
ar r ar I 

(Al) 

Itriti:il couditions: 

f-(1., 0) = (‘(1 > 0 T=O 0 < r < r,, 

c(r, 0) = Cl 3 r-11 7=0 7.0 < r 
1301it~i:1ry conditions: 

(.(,. T) lnd !?@, ‘) . : ~ bot,h finite :md continuous for all 
ar 

r > 0 and all 7 > 0. 

The couwntrntion and the concentration gradient c:tn he calculnted from 
this bortn~lnry value problctn. 

13~ tnwtw oi :I transformation of variables this I)ormclnry valu(~ problem 
is cotr\-crtctl itit’ :t t~oundnry l~roblcm that has already ken solved 
1 Fttjit:t (4). Chap. 2.5 1. The tr:msformntion is Ivy similar to the one 
:~lq)licll t,y Frtjitn wtlctl .9)lvittg the problem (A.1 ) in the v:tsr c,, = 0. 

The clu:tlities p an11 pi, lt:~vc hren defined in Sect. 
The ncv boundary value problem rends: 

(‘4.2) 

II. 

aeix, X) a 
H 

dO(x, A) ---=-xc eix. h) 
)I 

. ax ax ax 
ltritkl cot~dition: 

eix, 0) = 0 X=0 x < 1, 
&x7 0) = 1 x = 0 x > 1. 

13ortti(l:tiy contlitiotw: Amilnr to tlioscb of (=\.l 1, 

1A.3) 
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Fujita (41 gives the solution of iA.3). Returning to the original vari- 
ables ;vicld!: an expression for c(p,X) : 

c(p, A) = cup-A + (Cl - co) c-x . [l - 2 . Joe0 y . cP-yo . I,(“-yp)dy (A.4) 1 
By putting cn equal to zero this equation becomes identical to the solu- 
tion given lp Fujita (41, (khatia and Katchalski (12) in the case 
C” = 0. 

Evaluation of the right side of (9.4) gives: 

c(p, X) = C”Ch + (Cl - c&A . 
I/ 

Co 2 . y . p-Y? . 
PO 

I”(“yp)fly 1. (A.5) 

Assuming the presence of the bottom tloe:: not’ pet affect the wdimentn- 
tion process. the upper houndnry of the integral can be replaced 1,~ p, 
(tlefinctl in Sect. II) : 

c(p, A) = C”@ + (Cl - r”)e 
I/ 

ph 2 . y c,-P~-y” . 
P” I”(Pyp,fly]. (A.6) 

The derivative of this equation with respect to I’ gives Eq. I 1) of Sect. II. 
Gehntia (1) proves this nescrtion in the care cc, = 0. As the calculations 
m-e almost iflentical for co > 0 the derivation is not reprated here. 

APPEKDIS B: SEARCH ROUTINE 

The iSARCH routine rninimises the ohjectiw function T-dues by 
varying the independent, variables, m, and I)/,. The rnoclule has three 
main parts: (a.1 initiation; it)) explorations; (c 1 termination. 

The first section establishes the starting point for the first c~xplor:~- 
tion ( M,“, mZs) and the initial st,ep sizrs (Am,. 1~7~). The qtlnntities 
w,” ant1 my’ are drrived from Eq. (8 1 for which purpose the left ui(lr 
has heen put equal to the cxpcrirnentnl height yh. After some re:trr:lnge- 
rnents the following equations arc 0l)tained: 

Ar = r&.+1 - l‘k = )‘/; - l‘k--] i/i < K :trld /; even). 

hny thrw cquitlistnnt points suffice to calculate )I/ I\‘./; aId f/12”,/;. But ttw 

initial guess hecomes more accurate when this coinputntion is relw:~te(l 
for several sets of three points and the linear average ia t:ikcm nn~l 
al~pliecl to form the first tmsc point ( m ,I, 111;‘). The initial sky) size of m, 
has been set equal to AY, while Am, = 0.1 ~2,~. 

The second part controls the explorations. An exploration is clefin(yl 1)~ 
t,he actions listrcl helow: 



4 

I ml - 

Fm. 1. Example of consecutive explorations. 



156 GRIEVINK, HOUTERMAN, AND DE GROOT 

is explored. The sum of square residues is calculated in base point 0. 
Afterwards the points 1, 2, 3 and 4 follow. Suppose point 1 has the 
smallest sum, then point 1 becomes the second base point (II). Point 
6 is both third and fourth base point, assuming the step sizes have been 
reduced between the third and fourth exploration. 

The termination section declares the last explored base point to be 
the minimum. A message is given when the number of explorations cx- 
ceeds 50. 
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