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In ultracentrifugation, the concentration gradient of mono-disperse =um-
ples obtained by sedimentation veloeity experiments is described by
Gehatia’s equation which holds several parameters including the sedi-
mentarion and diffusion constants. Once these two constants are known,
the molecular weight follows from the Svedherg cquation. A least squares
nmethod has been developed to derive the transport constants from the
refractive index gradient curves. The method employs @ mathematical model
hased on Gehatia’s theorv. A main feature of the model is the application
of two sets of intermediate parameters via which the transport coefficients
are much easier calculated than along a dircet way. Furthermorc some
difficult to observe quantities cancel out. The square residues are minimised
numerically. The potential errors introduced by this numerical minimalisa-
tion are shown to be unimportant compared to the unavoidahle experimental
CITOIS,

[. INTRODUCTION

AMoleeular weight determination of proteins by means of ultracentrif-
ugation usually proceeds via equilibrium sedimentation or the approach
to equilibrium method according to Archibald. Sedimentation veloecity
experiments are mostly analyzed using Svedberg's method, yielding
sedimentation cocfficients S.

Gehatia (1), Gehatia and Hubner {(2), (3) however, has provided
methods to derive both S and the diffusion constant ) and thus the
molecular weight 3, from a single sedimentation veloeity run on mono-
disperse samples. The advantages of obtaining molecular weights in
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Giehatia’s way arc obvious: the time nceded for a veloeity run is much
smaller than the time neccssary for equilibrium or approach to equilib-
rium runs. Furthermore, the usual methods yvield only M, not S and D
separately.

The disadvantages, however, which have limited the practical use,
are twofold. Firstly, Gehatia's method requires a few experimentally
difficult to observe parameters such as the initial time (£), the initial
position of the phase boundary (r,). Sceondly, the arithmetical analysis
necessary to obtain S and ) is very cumbersome.

In this article a least squares method 1s deseribed, employmng a model
that has been derived from Gehatia's theory (1), By means of two
parameter transformations the determination of r, and #, can be bypassed.
A scheme for automated data handling facilitates the execution of the
tedious ealculations considerably.

II. THEORY

The theory of sedimentation velocity experiments has been discussed
extensively in the literature [Gehatia (1), Fujita (4)]. The results of
Gehatia’s analysis will be used as a starting point for the development
of a model relating S, 1) and M to the measurable variables, i.e., refrae-
tive index gradient versus time and radial distance. This seetion deseribes
the development of the model, while Sec. III deals with the application
of the model to the data processing.

The sedimentation velocity experiment iz assumed to satisfy the con-
ditions listed helow:

a. Initially the liquid mixture consists of two phases of the same
solute and solvent with different concentrations of the solute and sepa-
rated by an indefinitely sharp interface (step-distribution).

b. The =olute and the solvent are both mono-disperse noneleetrolytes
and completely miseible.

¢. The mixture has a negligible compressibility and shows no viscous
effects or convection during ultracentrifugation.

d. The temperature iz eonstant. The angular velocity is inecreased
rapidly to the desired level and remains constant till the end of the
experiment.

e. During the experiment the concentration profile must not be af-
fected by the presence of the tangential walls (bottom and meniscus).

f. A sector cell 1s used.

g. The refractive index depends lincarly on the eoncentration of the
solute.
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h. The transport cocfficients of the solute are virtually independent
of the concentration in the range occurring in the svstem, thus 8 and D
are independent of concentration.

i, The gradient of the refractive index ix registered as a function of
time and radial distance.

Having specified the experimental conditions, the equation of the con-
centration gradient of the solute as developed by Gehatia can he in-
troduced:

ae(r, 1) 2. Ac-e e

T = *’W’ : (87%2 : Il(zppni) " Pe — ent I1(_zpph) ' Pb) (1)
where:

r radius (the distance to the center of rotation)

T time elapsed since the beginning of the experiment = { — #; ¢ is
the time with an arbitrary origin; f, i= the time at the start of the
experiment

o initial position of the interface

r, poxition of the bhottom

¢ concentration of the solute

Ac initial coneentration difference between both phases

A =28r=2-8N-u -7, (1.1)

w 1% the angular velocity.

@ = ((1)\ _ 1)”/)\'
P = ,.’/(41)0{7.)1/2‘ .
Py = reM?/ (1Dar)t?, 1
oy = reeM2 (4Dar)V2,
I.(2ppa) = V (ppo) /[ + 1)1,

k=0

(Bessel function of the first kind and the first order.)

In the original dertvation of Eq. (1) the mitial coucentration of the
solute in one of the phases was equal to zero. In App. A it 1s proved that
Fq. (1) 15 also valid in the more general case of an arbitrary concentra-
ton difference hetween the phasces,

Equation (1) can be simplified considerably if the molecules of the
solute are not too small and the duration of the experiment is relatively
short. Under these circumstances the influence of the bottom on the
concentration profile can be neglected [see (11]:
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po - e~ - In(2ppo) >> py - €77 - T1(2pps). (2)

In the second place, the argument (2pp,) is normally large enough (2ppe >
4 X 10°) to approximate I, (2pp,) by the first term of an appropriate
asymptotic power expansion series [see (7), Sec. 9.7]:

o P 3 .
$1(2ppo) == [e*##s/ (d7ppy)'/?] - (1 T ) (3)
10»0/30
Substitution of the simplifications (2} and (3) into Eq. (1) gives:
ac(r’ T) = _’—AC ) G‘A e—(Pu"Pﬂ (@)1/2. (4)
ar (drDar)'? P

The next step is to replace the concentration gradient by the refrae-
tive index gradient. The height h(r;r) of a recorded sedimentation curve
depends linearly on the concentration gradient:

An de(r, 1)
Len T

hid,7) = hir,7) = F v or

(5)

where

r=0-d+ rg;

@, radial magnification factor; d, radial distance of a point of a re-
corded curve with respect to a reference line; r;, position of reference line;
An, initial difference of refractive indices of the phases; F, vertical mag-
nification factor. Eliminating the concentration gradient and replacing
A, p and po in Eq. (4) by the right sides of (1.1) to (1.3) gives the follow-
ing equation:

F-An %7 ) (r — roefr)? reefT\1/2 .
M) :WT)aW[—W]( : > - ®

Transformations. Equation (6) can be used as a model in the computa-
tion of B and D assuming the refractive index gradient 1s measured as
a function of radial distance and time. The quantities r,, An and F must
also be determinced. However, in doing so two difficulties arise. Firstly,
Kq. (6) has not a suitable form to calculate g and D easily. Secondly,
an aceurate experimental determination of r, and = is hardly possible due
to some unavoidable mixing ncar the interface as the start and to an
uncertainty with respeet to the exact moment of interface formation.
These difficulties can be solved by means of two transformations. The
first one dissolves the necessity of measuring r,, ¥ and An. The second
transformation allows the use of an arbitrary origin of the time axis
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by the introduction of a reference time -, to he selected by the in-
vestigator.

The first transformation replaces 8, D, F, An, r, and = by a new set
of time-dependent parameters mg, my, and m. (shortly the vector m):

mo = F - An v/ (2m)12 my > 0, (7.1)
my = re exp(Br) my > 0, (7.2)
my = 2Dar my > 0. (7.3)

The parameters »e, and m., are related to the reduced moments of the
concentration gradient with respect to the radius:

m; = (avl.)l/z

me = (77‘4 _ 11—‘22)/2@(_}2,

where w; is a reduced moment of order 7 [see (1) for the definition].
Application of the first transformation to Eq. (6) yields:

h(rim) = mg - a2 - expl— (r — m)¥/2ms| - [/ (my - 7)) (S)

The variables A(r; m) and r arc measurable quantities from which the
parameter vector m can be derived.

The sceond transformation relates the components of the m vector to
the transport cocfficients via a new set of parameters. As the components
of m are time dependent a subscript 7 is attached to refer to diserete tine
7;. The subseript r indiecates the reference time and its corresponding
parameter values, m, , and me..,.

Z(I,i =T — Try (9.1)

Zy= 2874, = Inlmy /m,)* (9.2)
Z1 ,

Lo = 2D7Z, = ((,zl.L_ 1) (M, B, eF). (9.3)

The time derivatives of Z, and Z, are independent of the time and are
equal to the transport coeflicients times a factor two.

The original problem to deduce g and D from the experimental data
has been separated in two subproblems:

a. Determination of m; from the cxperimental data.

b. Computation of Z, and Z. and their time derivatives, after select-
ing a reference time and a corresponding m vector. Both subproblems
can be solved by the method of least squares as described in Sect. ITL.

Once the transport cocfficients are known, the molecular weight of the
solute follows immediately from the Svedberg equation (5):
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RTS Jd1n al
M= (1 — pr1)D (8 In cl)T’ (10)
where

S B/ w?
R gas constant
T absolute temperature
e average density of the solution
on partial volume of the solute
a activity of the solute } both expressed in gmoles/cm?
e concentration of the solute or g/cm?

The Eqs. (7), (8), (9) and (10) form the model to be applied to the
data processing,

III. METHOD OF LEAST SQUARES

1. Dertvation of the m vector

During an experiment a certain number of refractive index gradient
curves are registered. Each curve must be represented numerically,
which ean be done by measuring the moment of recording ¢, the radial
magnification factor G and the coordinates of at least threc points on
a curve: the height y with respect to the base line and the radial
distance d relative to a reference line. The product of ¢ and d added to
the distance »; between the reference line and the center of rotation, is
the actual distance r of a point on a curve to the axis of rotation. It
1s convenient to select the points radially equidistant. The zero time may
be chosen arbitrarily. Then the outecome of an experiment is given by
the following set of data:

ey ri)a e k=1,... K; (K;2>3)
=4 ..., 1

The subscript & refers to a selected point; the subseript i refers to a
curve. These data suffice to determine a m vector for each curve. As
the derivation is identical for each curve, the suffix 7 will be deleted from
NOwW on.

The connection between the experimental data and the theoretical
model is made by relating the experimental height y; to the predicted
height, A (r.;m) is given by Eq. (8):

Yo = h(ri;m) 4+ e k=1 ...,K. (1n

The residue ¢ accounts for the discrepancy between the model and
reality. In order to find the closest fit of the model to the experimental
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data the sum of square residues is minimised by adjusting the vector m.
The sum of square residues (abbr. 8SR) reads:

—

(yr — h(rg;m))2 (12)

K
Qm) = Y =

~t
k=1 b=

1

() is u positive continuous, twice differentiable scalar function of m,
defined on V, ie., wmy, > 0, m, > 0, m, > 0. A local minimum cxiste at m"
eV when the following conditions are satisfied at m = m":
() Q) (m)

am
(2) The matrix of second order derivatives of @ with respect to m ix
positive definite.

=0 j=0/122 (13.1)

An analytical approach to the solution of (13.1} is not very promising
due to the nonlinear occurrence of the parameters n, and m, in the ex-
pression of Airg; m)y. Applieation of 113.1) yiclds synumetrical expressions
after rome substitutions:

[ el

gr s h(rgim) - ()7 = E (hivg;m))* - (r)r = 00120 (13.2)

=1 k=1

During the operations the quantity h(r;m) has been temporarily re-
placed by the right side of KEq. 18). This sct of equations iz not casily
solvable either. This problem however, mimmising a funetion of three
rariables, can be hundled numerically by assuming the SSR to be an
unimodal funetion on 17 and the matrix of sccond order derivatives is
positive definite at the minhimum.® Numerical optimalisation techniques
Te.e., direet elimbing routines, sce (61 Chap. 7] deal with this elass
of problems sucecessfully.

A simple but effeetive routine called SEARCH has been developed.
The SSR ix minimised by means of a scriex of explorations in a subset
of V. The search to a minimum can be made more efficient by reducing
the dimension of the SSR. The vector component i, being a linear param-
cter in Fq. {8) can he chiminated from Eq. (121 by means of condition
(13.17, case j = 0. This yields:

*We are not able 1o prove these assumptions. No experimental evidence has heen
found to distrust the validity of the unimodality of the SSR. Nevertheless this
point should he kept in mind when inspeeting the numerieal results. A theoretical
analyvsis of the properties of the matrix of the second order devivatives docs not
produce very much as the ealeulations become very complicated.
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K
Q(my, ms) = E (yr — flre; may, mg) - mg")%, (14.1)
K=1
where
Slri; my, mg) = hirg; m)/mg,
and
K K
me = El gy s e, ms) [ 21 (frp; my, m)z)2. (14.2)
p= p=

The variable @ (m,, m,) is a positive, continuous, twice differentiable
scalar function of m, and m., defined for m, > 0 and m., > 0. The vari-
able m,* is also a function of m, and m.. Equation (14.1) is the ob-
jective funection of the SEARCH routine. Appendix B deseribes the
various activities of this module.

At the end of the optimalisation the routine produces the minimised
sum of square residues (@ min) and the optimal values of m; and m.. The
corresponding value of m,* is caleulated via (14.2). Finally a new param-
eter m; is introduced representing the average scatter of the experi-
mental points along the optimal curve:

my = [ min/K - (my*)?]V2 (15)

The division by the square of m.* is necessary to eliminate the influence
of the vertical secaling factor.

The procedure as described in this part of the section has to be re-
peated for each curve. The obtained sct of m veetors, m;, t =1, . . .,
I will be used to derive the transport coeflicients.

2. Computation of S and D

The second transformation (9) establishes the relation betwcen the
transport coefficients and components of the m; vectors. Firstly, the Z
values are calculated. This ealculation requires the reference parameters
My and m., The parameters of the curve having the smallest scatter
(i.e., the smallest m, value of all curves) arc taken as references.
The factors Z,; and Z,; (i =1, . . ., D follow straight forward from
Fq. (9}, Then the time derivatives of the series Z,; (equal to 285«%) and
Z.i (equal to 2D) can be caleulated by the method of weighted least
squares. Only one calculation will be given because the derivations are
identical in both cases.

Owing to the second transformation a linear relationship between
a Z factor and the experimental time ¢ is introduced:
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Zi=A+ Bl + p; r=1,....,1, (16)
where
Z represents either 7, ; or Z, ;
L = 280 = 28 in case of sedimentation
B = 2D 1n caxe of diffusion
A4 15 & quantity depending on the origin of the time axis
Wi 1= a deviation due to the approximate nature of the model und to

possible errors in the computed Z values

The sum of the weighted square residucs 1s given by':

I I
RA,BY = N wiont= Y ws-(Zi— A — Bt (17)
1él iL:II

The symbol w; denotes a weight factor. The weight factors will be used to
suppress the contribution of those observations showing relatively much
scatter. Therefore a (rather arbitrary) inverse relation between the weight
faectors and the scatter factors is applied:

4
wi=(U=msi/ Ym) /=1 T2 (18)
= |

7=

The parameters A and B can be derived by minimising R (4, B). Ap-
plication of the necessary conditions for the existence of a minimum
(A4°, B") yields:

A= Z — B [, (19)
B = (Zt— 7 -D)/N, (20)
where
N =B
I
7t = V wiZdy,
leed
=1
r
= 2’1 wit 2,
I
i N
t L w iy,
1=1
I
Z = E '(L‘,;Zi.

-
I
—
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It is easy to prove that the matrix of scecond order derivatives is definite
positive in (A" B"). Furthermore, it should he noted that N, B® and
R(A° B are invariant to uniform translations of the time axis.

The sample error of BY is given by the formulae [see (8)]:

a(BY = [R(A°, BY/NU — 2)]'* I1>2
=0 1=0.

As soon as both transport coeflicients are known the molecular weight
M can be caleulated via Kq. (10).

(21)

IV. APPLICATIONS AND DISCUSSION

In order to test the performance of the numerical solution method three
sets of artificial “experimental data”™ have been generated and proe-
essed.* These data can be considered as heing sampled from artificially
constructed curves, The first test dealt with curves satisfving the model
[the Eqs. (8) and (101] exactly. In the second test the curves of the
first case were shifted upward with respect to the base line (about 5%
of the maximum height). This test accounts for those situations in which
the height of a curve has a svstematie deviation due to an uncertainty in
the position of either the basce line or the eurve. In the third test the
right sides of the curves have been omitted in order to check the sensi-
tivity of the method to incomplete data. Table 1 lists the input values
of the m vectors from which the curves have been constructed and the
output values of the m vectors as derived by the SEARCH routine.
Component m, is well reproduced and not very sensitive to inaccurate
data. Component m. is also well reproduced in the first test case; in
the other tests moderate systematic deviations oceur. In the second
test the SEARCH tries to minimise the deviation from the model by
making m, systematicallv greater than the original input value. The
abgence of the right sides of the curves apparently causes a systematic
underestimation of m.. The output values of m,, ecaleulated according
to (14.2), show a rather strong correlation with m.. The consistent
offset produced in the first curve of each case is caused by the verv
sharply peaked curves (ratio of lowest to highest value is 1.0 E — 14} and
to the small number of specified coordinates (five).

The transport coefficients and their deviates are calculated from the

* A digital program has been developed named DISEMO. The size of the com-
piled program is about 9K the execution time for the processing of the data of
one experiment varles between 5 and 15 sec. Requests for a listing of the source
module and a sample input form should be addressed to: Polymer Chemistry
Laboratory, Department of Chemical Engincering, Twente University of Technology.
Enschede, The Netherlands.
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TABLE 2
Inputl and OQutput Values of Physical Variables®
Physical quantity Tuput 1. Test 2. Test 3. Test
S (sec™1) 2.46E — 11 4615 — 11 46E — 11 2.46K — 11

2. 2
a(8) (sec™) — 4. 79E — 15 6.64E — 15 6.38E — 15
D (m?/sec) 1.00E — 10 1.00E — 10 1.03E — 10 0.98E 10
a(D) (m?/sec) — 0.18E — 12 2.16E — 12 5.43E — 12
M (kg/kmole)  2.195E + 05 2 .200E 4 05 213K 4 05 2.23E + 05

« Numerical values of the various constants used in the test computations: ro =
40K — 02 (m); w = 6.09K + 04 (rpm);p = 1.0 (g/em?); 7 = 0.75 (em?/g);, T = 298.15
(°K); (0Ina/d1ne)y = 0.9.

output values of m, and m. as described in the second part of Sect. I1I.
Table 2 lists the preassigned values and the reproduced values of the
transport cocfficients and the molecular weight. The values of the auxiliary
physical quantities used in the computation of M are given in footnote a
of Table 2. The sedimentation coefficient is not very sensitive to disturb-
ances. Even in the worst case (third test) the relative error remains
smaller than 0.1%. The diffusion coefficient and its sample error are much
more affected by the upsets. The systematic deviations of m. in the
second and third test case (see Table 1) propagate into the diffusion co-
efficient, but the sccond transformation and the weighted least squares
method smooth the scatter to some extent.

These tests with artifieial *“cxperimental” data give an indication of
the accuracy of the method under various ecircumstances. But the simul-
taneous effcet of all sources of upsets, i.c., numerieally, experimentally
and inadequacies of the model ean only be observed from real experi-
mental data. Table 3 lists the experimental conditions and the calculated
m vectors including the normalized weight factors of a test with a-chymo-
trypsinogen. Table 4 is a survey of the calculated transport coefficients,
their sample errors and the molecular weight together with some cor-
responding data from the [3terature. The answers obtained by the method
of least squares are In satisfactory agreement with the data found in
the literature. The numerical errors do not prevail over the experimental
inaccuracies. There are some indications that the overall accuracy has
been improved by applying this method.

DISCUSSION

The discussion will be restricted to the presented method for data
processing and the applicability of the model. The experimental pro-
cedure itself is not considered in the discussion because this procedure is
common to each data processing method.
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Problems with the proposed method may arise at three stages:

a. In sampling data from the recorded curves.
b. When applyving the mathematical model outside 1tx validity range.
¢. During the numerieal operations.

The main difficulties in sampling data concern mainly the aecuracy
of the ordinates of the seleeted points along a curve. The precision can
become rather low, especially near the tails of a curve. It 12 recommended
to sample only at the top and the sides of a curve. The difference in
aceuraey of the various points could be compensated by assigning weight
factors. Ax no reliable method was known to convert the relative aceuracy
imto a welght factor, in our method all points have the same weight.

The most important violations of the assumptions underlving the
mathematical model are threefold. The purity and the mono-dispersity
of the solute 1 sometimes questionable. In that case the basie equations
of the model are strietly taken no longer applicable and maintaining
the model as the base of the method yields less reliable results. An
experimental investigation of these cffeets may elarify the quantitive
aspeets of this problem. The deviations from the assumed initial conecen-
tration distribution and the occurrence of boundary effeets are the
second and third source of errors. With inereasing run time the con-
sequences of the initial disturbances decrease while the boundary effects
become more Important. A compromise in run length must he found. This
sort. of model deviations hiowever are inherent to each model based on
(iehatia’s method.

The erueial points in the numerical operations are:

w. The effeetiveness of the optimalisation.

. The use of reference parameters in the sceond transformation.

¢. The rather arbitrary definition of the curve weight factors.

. The assumption that S and 1 are constant over the concentration
range employved.

The effectiveness of the optimalisation is an important faector as the
optinulisation results are the starting point for the following numerical
operations. The applied routine SEARCH works sufficiently accurately
and rapidly. but 1t is not essential for the method. Tt can he replaced by
any other routine according to the preference of the user.

The application of the reference parameters introduces the potential
danger of loss of numerical aceuracy hecause two numbers of the same
ovder of mugnitude are subtracted in the second transformation. Sceondly.
svstematie deviations mayv oceur due to incorrect valves of the reference
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parameters. This only applies to the Z,; factors as can be seen from
(9.2) and (9.3):

di;'; is independent of Z, ,,
([Zgyi ”
T has a dependency on Z;, and Z, ..

The investigated problems gave no indications that these points had
a serious bearing on the results, but they should be mentioned for sake
of completeness.

As stated above the definition of the curve weight factors iz an ar-
bitrary choice, but it provides a means to account for the relative
accuracy of each curve. A different definition would produce different
numerical values for the weight factors. However, the selection of the
reference curve is hardly affected by the definition. The influence of the
value of the weight factors on the transport coefficients has been in-
vestigated for the a-chymotrypsinogen experiment. A repetition of the
caleulations with equal weights and the same reference curve vields:
S=259 8 and D = 0903 X 10'* (m?*/scct. The differences with the
values in Table 4 are rather small and can almost he neglected with
respect to the sample errors.

The applicability of the method of least squares is not restricted to
the model as presented in Seet. 11. Under certain conditions (very small
sedimentation coefficient) the factor a = (e’ — 1) /2Bt becomes virtually
equal to one and can be left out. In this case the definition of Z.; (9.3)
simplifies to Z.; = ma.; — M., It is also possible to retain more terms
of the power series expansion [see Eq. (3)]. The transformations do
not change.

It should be noted that the method allows us to compare predicted
values of 7o, t, and F-An with observed values. After the derivation of
s and D the quantities r, and £, can be calculated from the definitions of
m, and m.. Applying the definition of m, yields the product of F-aAn. This
provides a means to check for a possible discrepancy between model and
reality at the initial stage of an experiment.

CONCIUSIONS

In the deseription of the least squares method the mathematieal aspects
have been more emphasised than the experimental sides. Summarising
the features, the method requires neither the difficult to chserve quanti-
ties 7, and ¢, at the top or the arca of a refractive index gradient curve,
but uses sampled curve heights around the top. Apart from the transport
constants and the molecular weight it produces also the same errors of
the constants. The performance of the method with respect to the re-
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producibility is good. As far as the method has been tested on experi-
mental sedimentation data, the results are encouraging. Thercfore, it
may be an useful tool for the processing of sedimentation veloeity data
of proteins, where S and D are independent of the concentration.

APPENDIX A: EQUATIONS OF THE CONCENTRATION GRADIENT

In this appendix it is shown that Kq. (1} of Seet. IT is valid for a
two-component system. initially consisting of two solutions with a con-
centration difference. This includes also a two-component system initially
with a pure solvent phase and a solution,

The sedimentation process in an infinite sector cell is deseribed by the
following set of equations:

ac((;‘; T _ %('()9_, |V,‘ D 9,‘:%}1'_1,). — B el T)]. (A.1)
Initial conditions:
e(r,0) = ¢y >0 =20 0<r<n
clr,0) =01 2 ¢ r=10 ro < 1

Boundary conditions:

e(r. 7y and QS%;A—T) both finite and continuous for all

r>0and alls > 0.

The concentration and the conecentration gradient can be caleulated from
this boundary value problem.

By means of a transformation of variables this houndary value problem
1= converted into a boundary problem that has already been solved
{Fujita (4. Chap. 2.5|. The transformation is very similar to the one
applied by Fujita when =olving the problem (A.1) in the case ¢, = 0.

A = 287,
€= 2D/Brd = 1/ pg?+ (1 — ™),
x = (r/r)? = (p/po)*, (A.2)
o) — e - =N
0(x, \) = ) = o
€1 — Co

The qualities p and p, have been defined in Seet. II.
The new boundary value problem reads:

M, N _ 9 ix, )
[ (e i e(x.x)>

8(x,0) =0 A=0 x < 1,
x, o) =1 A=0 x > 1.

N Ay

—_—

{(A.3)

Initial condition:

Boundary conditions: similar to those of (A.1).
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Fujita (4} gives the solution of (A.3). Returning to the original vari-
ables yiclds an expression for ¢(p,A):

clp, N) = coe™ + (e1 — o) - €7 [1 -2 Lm v e 10(27p)d7]- (A4)

By putting ¢, equal to zero this equation becomes identical to the solu-
tion given by Fujita (4), Gehatia and Katchalski (12) in the case
co = 0.

Evaluation of the right side of (A.4) gives:

clp, \) = coe™ + (o1 — co)e™ - [/w R i 10(27p)(17]- (A.5)

po
Asgsuming the presence of the bottom does not yet affect the sedimenta-
tion process, the upper boundary of the integral ean be replaced by p,
(defined in Seet. 11):
elp N = e (o = e | [T 2oy e Ly | (A)
el
The derivative of this equation with respect to r gives Eq. (1) of Scet. I1.
Gehatia (1) proves this assertion in the case ¢, = 0. As the caleulations
are almost identical for ¢, > 0 the derivation is not repeated here.

APPENDIX B: SEARCH ROUTINE

The SEARCH routine minimises the objective funection values by
varying the independent variables, m, and m.. The module has three
main parts: (a) initiation; (b) explorations; (¢) termination.

The first section establishes the starting point for the first explora-
tion (m,*, m.*) and the initial step sizes (Am,, Am.). The quantities
m,* and m.® are derived from Eq. (8) for which purpose the left side
has been put equal to the experimental height y,.. After some rearrange-
ments the following equations are ohtained:

me® = ArY/In(ye/ (e - ye)) + 0.5 In(r/ (regy - e ))], (B.1)
Mty = e 4 et InCyead/lir) + 0.5 In(riy o/ 1 D1/ (2 - Ar),  (B.2)
where
APF =Ty — T = P — T (k< K and £ even).

Any three equidistant points suffice to caleulate w,*; and m.*,. But the
initial guess hecomes more accurate when this computation is repeated
for several sets of three points and the linear average is taken and
applied to form the first base point (", 1m.*). The initial step size of m,
has been set equal to Ar, while Am, = 0.1 m.*.

The second part controls the explorations. An exploration is defined by
the actions listed below:



PROTEIN MOLECULAR WEIGHT COMPUTATION 155

a. Computation of the value of the objective function in a base point.

h. Computation of the coordinates and the value of the objective func-
tion in four points surrounding the basc point. If any of these points
coineides with a previously explored point then this point is skipped.

¢. The point with the lowest value of the objective function becomes
the next base point.

d. Evaluation:

Case 1: The new selected basc point coineides with the previous onc.
The step sizes are reduced proportional to the steepest slope found in
the last cxploration. However, when the number of explorations will
excecd 50 or when all step xizes arce alrcady smaller than 0.1% of the
aetual magnitude of the corresponding independent variables, then the
control 1s transferred to the termination scction. Otherwise a new
exploration starts.

(‘use 2: The new selected base point does not coineide with the previous
one. The scarch will be contimued unless the number of explorations
exceeds 50 (preventing excessive caleulations). When two consecutive
shifts of the base point in the same direetion oceur, the step size in that
dircetion 1= doubled.

Figure 1 gives a graphical representation of a few explorations.
The numbers assigned to the points indicate in which order the space

|
! 3
m,
12
3
n 6 10
I and T
13
am,
am,
2 0 . 1 5
I -1
a 7

m, =

Fie. 1. Example of consecutive explorations.
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is

explored. The sum of square residues is calculated in base point 0.

Afterwards the points 1, 2, 3 and 4 follow. Suppose point 1 has the
smallest, sum, then point 1 becomes the second base point (II}). Point
6 is both third and fourth base point, assuming the step sizes have been
reduced between the third and fourth exploration.

The termination section declares the last explored base point to be

the minimum. A message 1s given when the number of explorations ex-
ceeds 50.

o N

10.

11.
12.
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