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The precession and damping of a collinear magnetization displaced from its equilibrium are well
described by the Landau-Lifshitz-Gilbert equation. The theoretical and experimental complexity of
noncollinear magnetizations is such that it is not known how the damping is modified by the
noncollinearity. We use first-principles scattering theory to investigate transverse domain walls (DWs)
of the important ferromagnetic alloy Ni80Fe20 and show that the damping depends not only on the
magnetization texture but also on the specific dynamic modes of Bloch and Néel DWs in ways that were
not theoretically predicted. Even in the highly disordered Ni80Fe20 alloy, the damping is found to be
remarkably nonlocal.
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Introduction.—The key common ingredient in various
proposed nanoscale spintronics devices involving magnetic
droplet solitons [1], Skyrmions [2,3], or magnetic domain
walls (DWs) [4,5], is a noncollinear magnetization that can
be manipulated using current-induced torques (CITs) [6].
Different microscopic mechanisms have been proposed for
the CIT including spin transfer [7,8], spin-orbit interaction
with broken inversion symmetry in the bulk or at interfaces
[9–11], the spin-Hall effect [12], or proximity-induced
anisotropic magnetic properties in adjacent normal metals
[13]. Their contributions are hotly debated but can only be
disentangled if the Gilbert damping torque is accurately
known. This is not the case [14]. Theoretical work [15–19]
suggesting that noncollinearity can modify the Gilbert
damping due to the absorption of the pumped spin current
by the adjacent precessing magnetization has stimulated
experimental efforts to confirm this quantitatively [14,20].
In this Letter, we use first-principles scattering calculations
to show that the Gilbert damping in a noncollinear alloy can
be significantly enhanced depending on the particular
precession modes and surprisingly, that even in a highly
disordered alloy like Ni80Fe20, the nonlocal character of
the damping is very substantial. Our findings are important
for understanding field- and/or current-driven noncollinear
magnetization dynamics and for designing new spintronics
devices.
Gilbert damping in Ni80Fe20 DWs.—Gilbert damping is

in general described by a symmetric 3 × 3 tensor. For a
substitutional, cubic binary alloy like Permalloy, Ni80Fe20,
this tensor is essentially diagonal and isotropic and reduces
to scalar form when the magnetization is collinear. A value
of this dimensionless scalar calculated from first principles,
αcoll ¼ 0.0046, is in good agreement with values extracted

from room-temperature experiments that range between
0.004 and 0.009 [21]. In a one-dimensional (1D) transverse
DW, the Gilbert damping tensor is still diagonal but, as a
consequence of the lowered symmetry [22], it contains
two unequal components. The magnetization in static Néel
or Bloch DWs lies inside well-defined planes that are
illustrated in Fig. 1. An angle θ represents the in-plane
rotation with respect to the magnetization in the left domain
and it varies from 0 to π through a 180° DW. If the plane
changes in time, as it does when the magnetization
precesses, an angle ϕ can be used to describe its rotation.
We define an out-of-plane damping component αo corre-
sponding to variation in ϕ, and an in-plane component αi
corresponding to time-dependent θ. Rigid translation of
the DW, i.e., making the DW center rw vary in time, is a
specific example of the latter.
For Walker-profile DWs [23], an effective (dimension-

less) in-plane (αeffi ) and out-of-plane damping (αeffo ) can be
calculated in terms of the scattering matrix S of the system
using the scattering theory of magnetization dissipation
[24,25]. Both calculated values are plotted in Fig. 1(c) as a
function of the inverse DW width 1=λw for Néel and Bloch
DWs. Results with the spin-orbit coupling (SOC) artifi-
cially switched off are shown for comparison; because spin
space is then decoupled from real space, the results for the
two DW profiles are identical and both αeffi and αeffo vanish
in the large λw limit confirming that SOC is the origin of
intrinsic Gilbert damping for collinear magnetization.
With SOC switched on, Néel and Bloch DWs have
identical values within the numerical accuracy, reflecting
the negligibly small magnetocrystalline anisotropy in
Permalloy. Both αeffi and αeffo approach the collinear value
αcoll [21], shown as a green dot in the figure, in the wide
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DW limit. For finite widths, they exhibit a quadratic and a
predominantly linear dependence on 1=ðπλwÞ, respectively,
both with and without SOC; for large values of λw, there is a
hint of nonlinearity in αeffo ð1=λwÞ. However, phenomeno-
logical theories [15–17] predict that αeffi should be inde-
pendent of λw and equal to αcoll while αeffo should be a
quadratic function of the magnetization gradient. Neither of
these predicted behaviors is observed in Fig. 1(c), indicat-
ing that existing theoretical models of texture-enhanced
Gilbert damping need to be reexamined.
The αeff shown in Fig. 1(c) is an effective damping

constant because the magnetization gradient dθ=dz of a
Walker-profile DW is inhomogeneous. Our aim in the
following is to understand the physical mechanisms of
texture-enhanced Gilbert damping with a view to determin-
ing how the local damping depends on the magnetization
gradient, as well as the corresponding parameters for
Permalloy, and finally to express these in a form suitable
for use in micromagnetic simulations.
In-plane damping αi.—To get a clearer picture of how the

in-plane damping depends on the gradient, we calculate the

energy pumping Er ≡ Tr½ð∂S=∂rsÞð∂S†=∂rsÞ� for a finite
length L of a Bloch-DW-type spin spiral (SS) centered at rs.
In this SS segment (SSS), dθ=dz is constant except at the
ends. Figure 2(b) shows the results calculated without
SOC for a single Permalloy SSS with dθ=dz ¼ 6° per
atomic layer; Fig. 1(c) showed that SOC does not influence
the quadratic behavior essentially. Er is seen to be
independent of L indicating there is no dissipation when
dθ=dz is constant in the absence of SOC. In this case, the
only contribution arises from the ends of the SSS where
dθ=dz changes abruptly; see Fig. 2(a). If we replace the
step function of dθ=dz by a Fermi-like function with a
smearing width equal to one atomic layer, Er decreases
significantly (green squares). For multiple SSSs separated
by collinear magnetization, we find that Er is proportional
to the number of segments; see Fig. 2(c).
What remains is to understand the physical origin of

the damping at the ends of the SSSs. Rigid translation of
a SSS or of a DW allows for a dissipative spin current
js00 ∼ −m × ∂z∂tm that breaks time-reversal symmetry [19].
The divergence of js00 gives rise to a local dissipative torque,
whose transverse component is the enhancement of the
in-plane Gilbert damping from the magnetization texture
mðrÞ. After straightforward algebra, we obtain the texture-
enhanced in-plane damping torque

α00½ðm · ∂z∂tmÞm × ∂zm −m × ∂2
z∂tm�; ð1Þ

where α00 is a material parameter with dimensions of length
squared. In 1D SSSs or DWs, Eq. (1) leads to the local
energy dissipation rate _EðrÞ ¼ ðα00Ms=γÞ∂tθ∂tðd2θ=dz2Þ
[25], where Ms is the saturation magnetization and γ ¼
gμB=ℏ is the gyromagnetic ratio expressed in terms of the
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FIG. 2 (color online). (a) Sketch of the magnetization gradient
for two SSSs separated by collinear magnetization with (green,
dashed line) and without (red, solid line) a broadening of the
magnetization gradient at the ends of the SSSs. The length of
each segment is L. (b) Calculated energy pumping Er as a
function of L for a single Permalloy Bloch-DW-type SSS without
SOC. The upper horizontal axis shows the total winding angle
of the SSS. (c) Calculated energy pumping Er without SOC as
a function of the number of SSSs that are separated by a stretch
of collinear magnetization.

FIG. 1 (color online). Sketch of Néel (a) and Bloch (b) DWs. (c)
Calculated effective Gilbert damping parameters for Permalloy
DWs (Néel, black lines; Bloch, red lines) as a function of the
inverse of the DW width λw. Without spin-orbit coupling,
calculations for the two DW types yield the same results (blue
lines). The green dot represents the value of Gilbert damping
calculated for collinear Permalloy. For each value of λw, we
typically consider eight different disorder configurations and the
error bars are a measure of the spread of the results.
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Landé g factor and the Bohr magneton μB. This result
shows explicitly that the in-plane damping enhancement
is related to finite d2θ=dz2. Using the calculated data
in Fig. 1(c), we extract a value for the coefficient α00 ¼
0.016 nm2 that is independent of specific textures
mðrÞ [25].
Out-of-plane damping αo.—We begin our analysis of the

out-of-plane damping with a simple two-band free-electron
DW model [25]. Because the linearity of the damping
enhancement does not depend on SOC, we examine the
SOC free case for which there is no difference between
Néel and Bloch DW profiles and we use Néel DWs in the
following. Without disorder, we can use the known ϕ
dependence of the scattering matrix for this model [31] to
obtain αeffo analytically,

αeffo ¼ gμB
4πAMsλw

X

k∥

ðjrk∥
↑↓j2 þ jrk∥

↓↑j2 þ jtk∥
↑↓j2 þ jtk∥

↓↑j2Þ

≈
gμB

4πAMsλw

h
e2

GSh; ð2Þ

where A is the cross sectional area and the convention used
for the reflection (r) and transmission (t) probability

amplitudes is shown in Fig. 3(a). Note that jtk∥
↑↓j2 and

jtk∥
↓↑j2 are of the order of unity and much larger than the

other two terms between the brackets unless the exchange
splitting is very large and the DW width very small. It is
then a good approximation to replace the quantities in
brackets by the number of propagating modes at k∥ to
obtain the second line of Eq. (2), where GSh is the Sharvin
conductance that only depends on the free-electron density.
Equation (2) shows analytically that αeffo is proportional to
1=λw in the ballistic regime. This is reproduced by the
results of numerical calculations for ideal free-electron
DWs shown as black circles in Fig. 3(b).
Introducing site disorder [32] into the free-electron

model results in a finite resistivity. The out-of-plane
damping calculated for disordered free-electron DWs
exhibits a transition as a function of its width. For narrow
DWs (ballistic limit), αeffo is inversely proportional to λw
and the green, red, and blue circles in Fig. 3(b) tend to
become parallel to the violet line for small values of λw.
If λw is sufficiently large, αeffo becomes proportional to λ−2w
in agreement with phenomenological predictions [15–17]
where the diffusive limit is assumed. This demonstrates the
different behavior of αeffo in these two regimes.
We can construct an expression that describes both the

ballistic and diffusive regimes by introducing an explicit
spatial correlation in the nonlocal form of the out-of-plane
Gilbert damping tensor that was derived using the
fluctuation-dissipation theorem [15]

½αo�ijðr; r0Þ ¼ αcollδijδðr − r0Þ þ α0Dðr; r0; l0Þ
× ½mðrÞ × ∂zmðrÞ�i½mðr0Þ × ∂z0mðr0Þ�j: ð3Þ

Here α0 is a material parameter with dimensions of length
squared and D is a correlation function with an effective
correlation length l0. In practice, we use Dðr; r0; l0Þ ¼
ð1= ffiffiffi

π
p

Al0Þe−ðz−z0Þ2=l20 , which reduces to δðr − r0Þ in the
diffusive limit (l0 ≪ λw) and reproduces earlier results
[15–17]. In the ballistic limit, both α0 and l0 are infinite,
but the product α0Dðr; r0; l0Þ ¼ α0=ð ffiffiffi

π
p

Al0Þ is finite and
related to the Sharvin conductance of the system [33],
consistent with Eq. (2). We then fit the calculated values
of αeffo shown in Fig. 3(b) using Eq. (3) [25]. With the
parameters α0 and l0 listed in Table I, the fit is seen to be
excellent over the whole range of λw. The out-of-plane
damping enhancement arises from the pumped spin current
js0 ∼ ∂tm × ∂zm in a magnetization texture [15,17], where
the magnitude of j0s is related to the conductivity [15].
This is the reason why α0 is larger in a system with a lower
resistivity in Table I. l0 is a measure of how far the pumped
transverse spin current can propagate before being
absorbed by the local magnetization. It is worth distin-
guishing the relevant characteristic lengths in microscopic
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FIG. 3 (color online). (a) Illustration of electronic transport in a
two-band, free-electron DW. The global quantization axis of the
system is defined by the majority- and minority-spin states in the
left domain. (b) Calculated αeffo for two-band free-electron DWs
as a function of 1=ðπλwÞ on a log-log scale. The black circles
show the calculated results for the clean DWs, which are in
perfect agreement with the analytical model Eq. (2), shown as a
dashed violet line. When disorder (characterized by the resistivity
ρ calculated for the corresponding collinear magnetization) is
introduced, αeffo shows a transition from a linear dependence on
1=λw for narrow DWs to a quadratic behaviour for wide DWs.
The solid lines are fits using Eq. (3). The dashed orange lines
illustrate quadratic behavior.
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spin transport that define the diffusive regimes for different
transport processes. The mean free path lm is the length
scale for diffusive charge transport. The spin-flip diffusion
length lsf characterizes the length scale for diffusive
transport of a longitudinal spin current, and l0 is the
corresponding length scale for transverse spin currents.
Only when the system size is larger than the corresponding
characteristic length can transport be described in a local
approximation.
We can use Eq. (3) to fit the calculated αeffo shown in

Fig. 1 for Permalloy DWs. The results are shown in Fig. 4.
Since the values of αeffo we calculate for Néel and Bloch
DWs are nearly identical, we take their average for the SOC
case. Intuitively, we would expect the out-of-plane damp-
ing for a highly disordered alloy like Permalloy to be in the
diffusive regime corresponding to a short l0. But the fitted
values of l0 are remarkably large, as long as 28.3 nm
without SOC.With SOC, l0 is reduced to 13.1 nm implying
that nonlocal damping can play an important role in
nanoscale magnetization textures in Permalloy, whose
length scale in experiment is usually about 100 nm and
can be reduced to be even smaller than l0 by manipulating
the shape anisotropy of experimental samples [34,35].

As shown in Table I, l0 is positively correlated with the
conductivity. The large value of l0 and the low resistivity of
Permalloy can be qualitatively understood in terms of its
electronic structure and spin-dependent scattering. The Ni
and Fe potentials seen by majority-spin electrons around
the Fermi level in Permalloy are almost identical [25] so
that they are only very weakly scattered. The Ni and Fe
potentials seen by minority-spin electrons are however
quite different leading to strong scattering in transport.
The strongly asymmetric spin-dependent scattering can also
be seen in the resistivity of Permalloy calculated without
SOC, where ρ↓=ρ↑ > 200 [21,36]. As a result, conduction in
Permalloy is dominated by the weakly scattered majority-
spin electrons resulting in a low total resistivity and a large
value of l0. This short-circuit effect is only slightly reduced
by SOC-induced spin-flip scattering because the SOC in 3d
transition metals is in energy terms small compared to the
bandwidth and exchange splitting. Indeed, αeffo − αcoll calcu-
lated with SOC (the red curve in Fig. 4) shows a greater
curvature at large widths than without SOC but is still quite
different from the quadratic function characteristic of dif-
fusive behavior for the widest DWs we could study.
Both αeffi and αeffo originate from locally pumped spin

currents proportional to m × ∂tm. Because of the spatially
varying magnetization, the spin currents pumped to the left
and right do not cancel exactly and the net spin current
contains two components, j00s ∼ −m × ∂z∂tm [19] and j0s ∼∂tm × ∂zm [15,17]. For out-of-plane damping, ∂zm is
perpendicular to ∂tm so there is large enhancement due
to the lowest order derivative. For the rigid motion of a 1D
DW, ∂zm is parallel to ∂tm so that j0s vanishes. The
enhancement of in-plane damping arising from j00s due
to the higher-order spatial derivative of magnetization is
then smaller.
Conclusions.—We have discovered an anisotropic

texture-enhanced Gilbert damping in Permalloy DWs
using first-principles calculations. The findings are
expressed in a form [Eqs. (1) and (3)] suitable for
application to micromagnetic simulations of the dynamics
of magnetization textures. The nonlocal character of
the magnetization dissipation suggests that field- and/or
current-driven DWmotion, which is always assumed to be
in the diffusive limit, needs to be reexamined. The more
accurate form of the damping that we propose can be used
to deduce the CITs in magnetization textures where the
usual way to study them quantitatively is by comparing
experimental observations with simulations.
Current-driven DWs move with velocities that are propor-

tional to β=αwhere β is the nonadiabatic spin transfer torque
parameter. The order of magnitude spread in values of β
deduced for Permalloy from measurements of the velocities
of vortex DWs [37–40] may be a result of assuming that α is
a scalar constant. Our predictions can be tested by reexamin-
ing these studies using the expressions for α given in this
paper as input to micromagnetic calculations.

TABLE I. Fit parameters used to describe the damping shown
in Fig. 1 for Permalloy DWs and in Fig. 3 for free-electron DWs
with Eq. (3). The resistivity is determined for the corresponding
collinear magnetization.

System ρ (μΩ cm) α0 (nm2) l0 (nm)

Free electron 2.69 45.0 13.8
Free electron 24.8 1.96 4.50
Free electron 94.3 0.324 2.78

Py (ξSO ¼ 0) 0.504 23.1 28.3
Py (ξSO ≠ 0) 3.45 5.91 13.1
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FIG. 4 (color online). Calculated out-of-plane damping
αeffo − αcoll from Fig. 1 plotted as a function of 1=ðπλwÞ on a
log-log scale. The solid lines are fitted using Eq. (3). The dashed
violet and orange lines illustrate linear and quadratic behavior,
respectively.
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