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ABSTRACT 
 
Mesh refinement procedures for the solution of three dimensional problems are described. The computational 
domain is represented by an assembly of tetrahedral elements and the mesh refinement is acheived by the bisection 
and Rivara methods using an explicit mesh density function coupled with an automatic 3D mesh generator. 
A couple of benchmark examples is used to compare the performance of  both refinement methods in terms of mesh 
and size qualities, number of generated elements and CPU time consumed. 
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1. INTRODUCTION 

 
 
 
The finite element (FE) method has proved to be a very useful tool in numerical analysis. However, a 
major difficulty has been the assessement of discretisation errors and the design of suitable meshes. 
Some recent developments have helped to improve this situation. For example, Zienkiewicz and Zhu [1] 
have introduced a successful adaptive mesh refinement (AMR) strategy based on a simple errror 
estimation which is reasonably accurate and which can be easily implemented in existing FE codes. It 
can thus be combined with a full adaptive refinement process or, simply, provide guidance for mesh 
design which allows the user to reach predetermined standards of accuracy. 
 
To achieve a given accuracy with the least effort, mesh generation procedures are essential. Indeed, in an 
Adaptive Mesh Refinement context, these should be capable of designing a mesh from the specification 
of an element size distribution. However, limitations in the availability of robust, versatile and efficient 
3D mesh generators have hindred the extension of 2D AMR procedures [1-5] to the 3D case [6-14].  
 
In recent publications [7,8], as a contribution to this subject, we have presented an adaptive 3D mesh 
refinement procedure using the bisection method rather than a remeshing procedure. This choice is 
justified by the prohibitive cost of a remeshing process. Moreover, the refinement algorithms have 
proved to be efficient and cost effective in practice. 
 
In general, the refinement procedures have to overcome three major difficulties. They should be able to  
• produce meshes of a desired density, 
• generate conforming elements of good quality, and 
• avoid the generation of an excessive number of elements (nodes). 
 
It is on these bases that the bisection algorithm and a 3D version of Rivara algorithm are compared in the 
present work in a mesh refinement process. 
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First, an overview of the mesh generator used is presented. The bisection and Rivara algorithms are 
presented in Section 3. The quality issues are then discussed and a couple of benchmark examples given. 
 

 
2.  MESH GENERATION 

 
Various methods of mesh generation are in existence [15-17]. While there are a large number of 2D 
mesh generators, 3D mesh generators are scarce. 
Due to the complexities associated with generating 3D meshes, much work has been devoted to the 
automation of the procedure [18-24]. 
In an adaptive mesh refinement context, in which a refinement or a remeshing procedure is used 
iteratively until the estimated error reaches a user specified value, the problem is further complicated. 
 
In the present work a fully automatic 3D mesh generator called XMAILLE [18] is used. 
XMAILLE utilises Constructive Solid Graph as the representation scheme of objects to be meshed. 
The geometry of the computational domain is described using a volumetric modeler which uses a library 
of volumetric primitives. 
 
Each volumetric primitive is meshed with valid finite elements. Continuity between primitives is 
achieved via neighbourhood relations. 
The mesh generator takes as input the geometry and the associated meshing model of the geometric 
primitives and proceeds by boolean operations between elements 1. 
XMAILLE is used to generate initial meshes. The subsequent mesh refinement procedure is next 
presented. 
 
 

3.  MESH REFINEMENT 
 
In this section, a couple of subdivision algorithms based on the bisection and Rivara methods [25-30], 
are presented. Other related problems are also discussed. 
 
3.1 3D Bisection algorithm 
 
A typical 3D bisection subdivision strategy is based on the following algorithm :  
 
1. Initialise the refinement information and determine the set  tE  of elements to be refined. 

2. Sort elements in tE  on the basis of their longest edge length. 

3. Bisect elements in tE  and insert the newly created elements (if to be refined) in a set rE . 

4. If rE is empty stop. Else tE ← rE , rE ← ∅ and go to 2. 
 
The initialisation routine (Step 1) consists in reading the refinement information for each element. All 
elements to be refined according to the error estimator are inserted in a set tE . These are, henceforth, 
sorted on the basis of their longest edge length (Step 2), which, to some extent, avoids the deterioration 
of the quality of the resulting  mesh. In Step 3, it is necessary after bisecting each element in tE , to 
propagate the bisection to the neighbouring elements for conformity reason. 
 
3.2 3D Rivara algorithm [26] 
 

                                                           
1 Details of the method used in XMAILLE and some examples to illustrate its potential can be found in 
reference 18. 
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A typical 3D Rivara subdivision strategy is based on the following algorithm :  
 
1. Initialise the refinement information and determine the set tE  of elements to be refined. 

2. Sort the elements in tE  on the basis of their longest edge length. 

3. Bisect elements in tE  and insert the newly created elements (if to be refined) in a set rE . Mark all 
non-conforming elements generated in this way. 

 
4. Make conforming all non-conforming elements created in step 3. 
5. If rE  is empty stop. Else tE ← rE , rE ← ∅ and go to 2. 
 
The first and second steps are analogous to those of the bisection method. In step 3, contrary to the 
bisection method, elements in tE  are bisected with no propagation to neighbour elements sharing the 
edge of subdivision. However the non-conforming elements generated in this way are marked in Step 3 
and made conforming in Step 4. 
 
Obviously, the difference between the bisection and Rivara algorithms, is the added effort in the later 
method in marking and treating the non-conforming elements created during the bisection process. 
This process is complex in terms of data management and is beyond the scope of the present paper. This 
will be presented in a forthcoming publication. 
 
Before proceeding further, we make the following additional comments 
 
Refinement information  The subdivision data for the newly created elements is updated by an 
interpolation in which each refinement parameter is weighted by the volume of the element to give a 
refinement density which, in turn, is assigned to each node by averaging the refinement densities of the 
elements surrounding every node. 
 
Sorting of elements  Elements to be refined are sorted on the basis of their longest edge length. The first 
element in the sorted list is the element with the longest edge length and is the first candidate for 
subdivision. 
However, it is found that when the mesh to be refined is not of good quality, the ratio : radius of 
inscribed sphere over the longest edge length is better indicated for the sorting process. 
 
Edge of subdivision  It should be noted that the choice of the longest edge may not be unique. In this 
case, a random selection is not indicated and another criterion based on the exploration of the 
surrounding elements of each long edge is introduced. The edge with the minimum incident elements not 
to be refined is selected. This criterion ensures that a minimum number of unnecessary elements are 
generated in order to maintain the conformity of the mesh. 
Finally we note that, in some other cases, edges on the boundary of  the domain are to be privileged. 
 
Evaluation of boundary nodes  Boundary nodes may be evaluated on the geometry of the model that is 
driven by the volumetric modeler. After a subdivision iteration, a request to the modeler allows the 
projection of the boundary nodes of the mesh onto the supporting geometry. 
The model that is driven by the modeler is a Constructive Solid Graph in which the volumetrique 
primitives are referenced by numbers. The projection on the boundaries necessitates a referencing 
mechanism that establishes a link between the boundary nodes and their geometric support. A node may 
reference a geometric entity or more if it is at an intersection. 
We note that the projection may cause the problem of inverted elements with negative volumes. To avoid 
this problem it is recommended to adequately refine the surfaces. 
 
Nodes repositionning  Elements with poor aspects ratios are smoothed by the polyhedron that encloses a 
newly created internal node. A relaxation based method is used to move the newly created node to the 
centroid of the surrounding polyhedron if the new node is in the interior. 
 
Attributes heritage  The topological entities (elements, edges, vertices) do refer to attributes or 
properties (elements size, boundary conditions, material properties, loading, etc). The refinement process 
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maintains each information using a heritage mechanism. The properties are implemented in the form of 
sets. A topological entity that inherits a property is inserted in a set that bears the same name as that 
property. The heritage consists in analysing the properties of each created entity that is affected by the 
subdivision of an element and depending on their nature they will or will not be affected to the newly 
created entities. 

 
 

4.  MESH QUALITY 
 
To characterise a tetrahedron shape and detect the presence of some common configuration of poorly 
shaped tetrahedra e.g. thin, wedge like, flat and sliver elements, researchers have proposed various 
measures 2. For example, Cavendish et al  [31] characterise a tetrahedron by the ratio of the inscribed 
sphere radius r  to the circumscribed sphere radius R  

                                                                  
R
r.3=β                                                                                (1) 

Baker [32] proposed the combined use of the ratios inscribed sphere radius r  to maximum edge 
length MaxL , maximum edge length MaxL  to circumscribed sphere radius R  and minimum edge length 

MinL  to maximum edge length MaxL  
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Cougny et al [33] used the four composing facet areas )4,1( =iAi  and the tetrahedron volume V  to 
define the following normalised aspect ratio 
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Dannenlogue and Tanguy [34] found that the ratio involving the average edge length of the six 
composing edges AvrL  and the tetrahedron volume V suffices to characterise a tetrahedron 

3479670.8
AvrL
V

=α                                                          (4) 

An extension of this measure, in which the average edge length is replaced by the root mean square of 
the edge lengths RMSL , has recently been proposed by Parthasarathy et al [35] 
 

                                                      34779670.8
RMSL
V

=γ                                                     (5) 

 
For a given element, the number of basic compuations is minimum for measures γατ ,,  and maximum 
for β . 

 
In addition to shape quality measures,  in a refinement process, a size criterion is also introduced. The 
size criterion is defined as the ratio between the actual size L  (mean edge length) of a given element  i  
and the desired size L  and is given by 

LL /=ϕ                                                                (6) 
 

                                                           
2 Scaled to be 1 for an equilateral tetrahedron. 
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In order to a have a fairly good picture of the mesh quality the Minimum, Mean and Maximum qualities  
are introduced  
 

     
Ni1 

     QMinQ iMin

≤≤
= )(

                  ∑
=

=
N

i
iMean Q

N
Q

1

1
                           )( iMax QMaxQ =            (7)                  

where N is the number of tetrahedra and iQ   is the quality measure of the  ith  tetrahedron. 
 
It should be stressed that, in an Adaptive Mesh Refinement context,  the existence of badly shaped 
elements should be related to the estimated error for those elements. Obviously, a badly shaped element 
with a large estimated error (i.e. in a critical region) is more damaging than a badly shaped element with 
a small estimated error. Therefore, a badly shaped element should be considered as critical  if its 
estimated error is larger than the mean estimated error for the mesh under consideration. 
 
 

5.  NUMERICAL EXAMPLES 
 
 

To illustrate the numerical performance of the refinement strategies used in this work a couple of 
benchmark examples are now considered. These are compared in terms of number and quality of 
generated elements and total CPU time consumed  (exclusive of mesh quality assessment - For fair 
comparison purpose, the quality evaluator acts as a separate routine). 
 
The quality measure of the resulting meshes is evaluated with respect to the MaxLr /  and MaxMin LL /  
criteria. We shall consider, as is commonly accepted, that a given mesh is of good shape quality if there 
exist no elements in the following ranges : MaxLr /  < 0.4 and MaxMin LL / < 0.3 or MaxLr /  < 0.2. The 
minimum values of both criteria are also used for comparison purpose. 
We  shall also consider a mesh to be of good size quality if  the ratio LL /  lays in the interval [2/3,3/2] 
[37]. 
 
 
5.1 Example 1 :  Uniform mesh refinement of a cube 

 
We first consider the uniform refinement of a cube. The initial mesh quality is presented in Table 1. A 
desired element size of 10 is given. The resulting mesh shape and size qualities are presented in Tale 2. 
 

 Rr /  MaxLr /  3/ AvrLV  MaxMin LL /  

Min 0.508666 0.508666 0.601921 0.577350 
Mean 0.564057 0.608834 0.703934 0.620602 
Max 0.597717 0.732051 0.803509 0.707107 

 
Table 1. Initial mesh quality. 

 
This example clearly shows that the use of the bisection method without sorting considerably deteriorates 
the quality of the final mesh (almost 9% of the elements are in the range MaxLr /  < 0.4 and 

approximatly 4% in the range MaxMin LL /  < 0.3).  
The analysis of the results also shows that the mesh generated by the Rivara algorithm (with or without 
sorting) is of a better quality as there are no elements in the range MaxLr /  < 0.4 and MaxMin LL /  < 0.3. 
Nevertheless, the mesh generated using the bisection method with sorting remains acceptable as all 
generated elements quality is in the range MaxLr /  > 0.2. 

With respect  to the 2/3 < LL / < 3/2 criterion for mesh size control, it is seen that both algoritms 
generate elements of the desired mesh size distribution. The range of the LL /  values is, as expected, 
more restrained when Rivara algorithm is used.  
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Finally we note that, the simple bisection generates more nodes than the other algorithms because of  the 
important number of bisections it operates. 
 
 
 

 Bisection Bisection + Sorting Rivara3D Rivara3D + Sorting 
Iterations 7 7 7 7 
Elements 3936 3515 3517 3519 
Nodes 933 842 841 841 

MaxLr / Min 0.0499186 0.313694 0.400783 0.400783 

MaxLr / Mean 0.572655 0.601893 0.60431 0.604619 

MaxLr / Max 1 1 1 1 

MaxMin LL /  Min 0.188982 0.288675 0.408248 0.408248 

MaxMin LL /  Mean 0.535242 0.564946 0.564194 0.564023 

MaxMin LL /  Max 1 1 1 1 

LL / Min 0.873464 0.956832 1.10485 1.10485 

LL /  Mean 1.22086 1.24317 1.24097 1.24052 

LL /  Max 1.46158 1.35316 1.35316 1.35316 

MaxLr /  < 0.4% 8.86 0.28 0 0 

MaxLr /  < 0.2% 1.57 0 0 0 

MaxMin LL /  < 0.3% 3.88 0.08 0 0 

2/3 < % ( LL / ) < 3/2 100 100 100 100 

CPU (s) 140 131 145 150 
 

Table 2. Uniform Refinement of a cube : Results summary. 
 
5.2 Example 2 :  Mesh refinement of  a hollow cube 
 
As a second example, we consider the hollow cube shown in Figure 1.  
In this example the mesh density is given by the following explicit function  
 

)e(1 HhD(r) r/τ
0

−−+=                                                     (8) 
 

with  
2

0
2

0
2

0 )z(z)y(y)x(xr −+−+−=                                          (9) 

 
A corner of the cube is taken as the origine )( 000 z,y,x  of the mesh density function. This function 

allows us to describe a size that is close to Hh0 + as we move away from the origine and that tends to 

0h  as we get closer to it. The τ parameter allows us to tune the range of the variation of  D(r). A small 

value of τ means that we try to satisfy a mesh size of  0h  in the vicinity of the origin. 
 
The initial mesh quality is presented in Table 3. The results obtained for different refinement algorithms 
are presented in Table 4 and the final meshes displayed in Figure 2. 
The minimum quality values obtained for this example, show that Rivara algorithm is the one which 
produces the best quality refined meshes : the minimum values of  MaxLr /  and MaxMin LL /  are the 

largest and the number of elements in the range MaxLr /  < 0.4 is the smallest.  
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These results also demonstrate that the mesh produced by simple bisection cannot be used because of the 
presence of an important number of badly shaped elments (more than 12% in the range MaxLr /  < 0.4 

and nearly 4% in the range MaxMin LL /  < 0.3%).  
Once more the use of sorting in conjunction with Rivara algorithm does not improve the mesh quality 
but  rather slightly deteriorates it. 
 
The analysis of the results in terms of size quality, once again, shows that all tested algorithms have 
generated  almost all of the elements in the tolerance range [2/3,3/2]. Moreover, a scrutiny of Table 3, 
shows that when Riavara algorithm is used, the interval ])/(,)/[( MaxMin LLLL is more restrained than 
in the case of other algorithms. 

 
  Rr /  MaxLr /  3/ AvrLV  MaxMin LL /  

Min 0.508666 0.508666 0.601921 0.577350 
Mean 0.568254 0.604382 0.704405 0.612247 
Max 0.597717 0.732051 0.803509 0.707107 

 
Table 3. Quality of the initial mesh of the hollow cube. 

 
 Bisection Bisection + 

Sorting 
Rivara3D Rivara3D + Sorting 

Iterations 15 15 15 15 
Elements 11640 9917 10117 10168 
Nodes 2805 2435 2473 2482 

MaxLr /  Min 0.0555519 0.293179 0.359681 0.339459 

MaxLr /  Mean 0.545894 0.584374 0.5842 0.583953 

MaxLr /  Max 1 1 1 1 

MaxMin LL /  Min 0.0762493 0.25 0.353553 0.288675 

MaxMin LL /  Mean 0.514044 0.554054 0.556644 0.557701 

MaxMin LL /  Max 1 1 1 1 

LL / Min 0.50402 0.717876 0.800021 0.615981 

LL / Mean 1.20205 1.24002 1.23506 1.23271 

LL / Max 1.49821 1.49821 1.49821 1.49821 

MaxLr /  < 0.4% 12.6 1.62 1.12 1.27 

MaxLr /  < 0.2% 0.9 0 0 0 

MaxMin LL /  < 0.3% 3.89 0.18 0 0 

2/3  < % ( LL / ) < 3 /2 99.63 100 100 99.99 

CPU (s) 687 600 733 747 
 

Table 4. Mesh Refinement of  a hollow cube : Results summary. 
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Figure 1. Density function used in Example 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Refined meshes obtained in Example 2. 
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6. CONCLUSION 
 

 
A mesh refinement method for the solution of three dimensional problems is described. The mesh 
refinement is acheived using the bisection and Rivara algorithms using an explicit mesh density function 
coupled with an automatic 3D mesh generator. 
 
A couple of benchmark examples have been used to compare the performance of  both refinement 
algorithms in terms of mesh and size qualities, number of generated elements and CPU time consumed. 
 
It is found that the simple bisection algorithm generates elements of poor quality. When using such an 
algorithm, sorting has to be used to enhance the quality of the refined meshes. 
Although the size quality is acceptable, the bisection algorithm generates meshes with large number of 
elements and nodes. 
 
Rivara3D algorithm produces meshes of best quality. For both examples presented in this work and 
other benchmark tests we have carried out, the minimum values of the quality criteria are higher and the 
number of generated elements in the range MaxLr /  < 0.4% and MaxMin LL /  < 0.3% is the smallest. 

Moreover, in terms of size quality, when Rivara3D algorithm is used, the distribution of the ratio  LL /  
is restrained and a minumum (optimum) number of elements and nodes is acheived. 
  
Finally we note that the total cost (i.e. CPU time) for mesh refinement computations for all cases 
considered in this work is quite reasonable. 
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