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Abstract 

Schreuder, J.A.M., Combinatorial aspects of construction of competition Dutch Professional 
Football Leagues, Discrete Applied Mathematics 35 (1992) 301-312. 

Competitions are defined as a set of meetings between a number of clubs at preset dates under 
preset rules. Such a problem can be divided in two subproblems: firstly developing a Home-Away 
schedule with oriented egde-colourings of complete graphs and secondly assigning the clubs to 
the Home-Away patterns with a clustering algorithm. 

Theoretical and real worid aspects will be demonstrated by the construction of the Dutch Pro- 
fessional Football (US: soccer) Leagues. 

Keywords. Timetable, schedule, combinatorics, sport. 

The KNVB (Royal Dutch Footb;dEI Association) is responsible for the construction 
of the timetables for the professional football leagues in the Netherlands (see Table 
1). In view of the increasing number of requirements which those timetables have 
to obey, the KNVB requested the Faculty of Applied Mathematics of the University 
of Twente to support them with the construction of the timetables (Huijbregts and 
Rijkhoek [6]). The research is carried out by Jan Schreuder (modellillg and pro 
gramming) and Jan Telgen (management aspects). 

The timetable of the competition is not an isolated occurence. With the construc- 
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Table 1: Names clubs 

Top-league 

PSV PSV 
AJX Ajax 
TWT FC Twente 
FEY Feyenoord 
RJC Roda JC 
GNG FC Groningen 
BDB BVV Den Bosch 
FTS Fortuna Sittard 
VGL FC Volendam 
HRL Haarlem 
RKC RKC 
SPA Sparta R. 
UTR FC Utrecht 
MVV MVV 
WI1 ‘Willem II 
VTS Vitesse 
DHG FC Den Haag 
NEC NEC 

First-league 

Pet PEC Zwolle 
vvv vvv 
Vnd Veendam 
Exe Excelsior 
AZ AZ 
Hrv SC Heerenveen 
Nat NAC 
svv svv 
Gae GA Eagles 
Gfs De Graafschap 
Cam Cambuur 
Hrc SC Heracles’74 
Ehv Eindhoven 
Ds9 DS’79 
Tel Telstar 
He1 Helmond Sport 
Rbc RBC 
Emn Emmen 
Wag Wageningen 

tion we have to take into account the requirements of the different parties involved 
like municipalities, police, railways, FIFA (International Football Federation), the 
clubs and press (especially television). 

One of the starting points with the development of the competition timetables is 
that it could not be carried out by a once and for all established computerprogram. 
The reasons are that the construction of the timetable is only needed once a year 
and it has to be adjusted every year in view of the fast changes in the environment 
of football. A computerprogram in itself, however, can offer important support 
with the construction. 

The main objective of our approach is that the final timetable to use is chosen 
based upon such norms and qualifications, that the interests of all parties involved 
can be handled in a balanced way by the KNVB. 

In this paper we will discuss the construction of the Dutch Professional Football 
Leagues, as executed in 1989/90. The top-league consists of 18 clubs and 126 re- 
quirements (after selection!) have to be considered. The emphasis is on the way the 
combinatorial aspects are taken into account. 

Problem 

A timetable or roster consists of a set of meetings (or resources) assigned to time 
periods. The well-known term scheduling is, certainly in literature, reserved for 
assigning jobs/activities to machines. 
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A timetable of a sportscompetition consists of a set of fixed dates or rounds. In 
each round each club plays one match: either at home or away or is free (odd 
number of clubs). in such a competition all clubs meet each other twice: one home 
match and one away match: one match in the first half of the competition and the 

1. 

2. 

3. 

i-J GNG 

0 Ds7 

6. 

0 TUT 

T a Hrc 

--t--t T not home together - not away together g topclubs 

direction indicates who asks __t_ (railways) no mutual matches 
first four or last 
two rounds 

Fig. 1. Mutual relations clubs 1989/90. 
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other in the second half. Once the first hal: of a competition is scheduled, the second 
half is fixed and consists of the complement of the first half. Only rounds can be 
exchanged, not single matches [l 1,15,16] without disturbing the optimal alternating 
pattern of home and away matches for the clubs. 

The dates for the matches are fixed bv KNVB taking into account the already 
established international matches and t~ssible European Cup matches. Based on 
these dates we have to decide per round which clubs would meet ea.ch other and 
which one of each pair plays at home. 

The requirements of all parties involved are now-a-days so complex and often in 
conflict that all possible timetables - for n clubs O(n l (n - I)!) - have to be con- 
sidered. These requirements can be divided in the following three categories. 

(1) Commercial aspects. Clubs which are located so close together that they share 
the same fans, like to play their home matches in different rounds. Also, other 
events which attract the same kind of public should be avoided such that the club 
plays an away match on that date. 

(2) Sportive aspects. A club promoted to the top league plays the first match at 
home. Schedules should have an optimal alternating ordering of the home and away 
matches for each club. Before each round, all clubs should have played the same 
number of matches. 

(3) Organisational. One of the most important requirements nowadays is based 
upon the behaviour the hooligans under the fans, e.g. clubs with those fans are not 
allowed to play away matches during the week [6]. 
Examples of relations between the clubs are given in Fig. 1. The ordering of the re- 
quirements is not fixed and changes from year to year. 

The basic requirement of a competition is that it must be fair, i.e., all the parties 
involved have the feeling the above requirements are met in a balanced way and their 
wishes are taken seriously. 

Mathematical formulation and representation 

A mathematical formulation of the problem is the following [ 1 I]. 
For an even number 2n of clubs, let i and j denote the index for the clubs, and 

t (= 2n - 1) denote the index for the rounds. Let xijt a zero-one variable with value 
one if club i plays at home against climb j in round t, and value zero otherwise. Deter- 
mine X= [x,J as a zero-one matrix with n l (2n - 1) one’s. Then, X is a competition 
if and only if 

2n 

C (Xiir+xji~)= 1 vj, t 
i=l 

and 
Zn-1 

C txdl+Xji[)= 1 Vj#i. 
f=l 
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IS’ Rc’UND 2”d ROUND 
1 =2 2 +3 
7 “3 1 +4 
6 “4 7 -5 
5 free 6 free 

Hamiltonial path: 6*4+1 *2-+3 *7+5 

Fig. 2. Associated graph competition seven clubs. 

(1) One of each pair per round plays at home. 
(2) Each club plays one match against all opponents. 
This formulation, however, cannot be used to solve the problem in real time. The 

value is to use it as a test for the correctness of any proposition for constructing a 
timetable (validation). Based upon this, the link between competitions and edge- 
colourings of complete graphs can be made (see Fig. 2). The vertices of such an 
associated graph represent the clubs, the edges represent the matches of the first half 
(or second) of the competition. The different rounds are represented by colouring 
the edges (one colour per round). The orientation of the edges (direction) points out 
which of the two clubs incident with such an edge plays at home. We used Kzn_ ], 

the complete graph on 2n - 1 vertices, which represents the first half of the competi- 
tion for an odd number of clubs. 

Analysis 

As already mentioned in the problem section, the construction of the timetable 
is NP-hard. Therefore we divide it into the following two subproblems in order to 
find an approximate solution as good as possible. This approach is illustrated for 
six clubs in Fig. 3. 
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Firstly, we develop a basis schedule in which the Home-Away pattern (HAP) is 
fixed. The HAP is represented in Fig. 3(a), where in each row i the opponents in 
the different rounds of a club i are given and a + sign denotes a home match for 
i. For example, HR3,4 = -1 means that the club which gets HAP3 plays in the 
fourth round away against the club with HAP1 . 

Secondly, we assign the clubs to the HAP’s such that as much as possible re- 
quirements are fulfilled given their mutual weights. This assignment is represented 
in Fig. 3(b), where the capital letters denote the real clubs with their mutual relations 
and require.ments to fulfill. In Fig. 3(c) the competition timetable is given as a com- 
bination of Fig. 3(a) and 3(b). 

The basis schedule (HAP) is developed by determining an oriented edge-colouring 
of &“-I. The object is to find such a schedule that the number of breaks - two 
home matches or two away matches in succeeding rounds - is minimum. 

The construction of a HAP is based on the following constructive theorem [12]. 

Theorem. The HAP of an odd number of clubs contains no breaks. The HAP of 
an even number of clubs, however, contains 2n - 2 breaks. 

The following starting points are essential for the construction of the HAP’s. 
Start with an odd number of nodes: 2n - 1. Put these nodes in the form of a 

(2n - 1)-gon (as on a circle with equal distances between neighbours). According to 
familiar topological properties, Kzn_ 1 can be partitioned in 2n - 1 partial sub- 
graphs G such that each G consists of one boundary edge and its parallels (see Fig. 
2). Those graphs G have no edge in common. Also known is that Kzn_] can be 
coloured with 2n - 1 colours (chromatic number x). If we assign to each G a dif- 
ferent colour, then G represents the pairings of one round. The node which is not 
incident with an edge of G is called a free node and represents the club which has 
no match in that round. 

In order to decide which one of each pair of nodes plays at home, all the edges 
have to be directed (orientation). This direction is carried out such that each two 

ROUND 
+ home 
- away 

HAP 12 3 4 5 

1 +2 -4 t-6 +3 -5 
2 -1 +3 -5 -6 +4 
3 +5 -2 +4 -1 +6 
4 +6 +1 -3 +5 -2 
5 -3 -6 +2 -4 +l 
6 -4 +5 -1 +-? -3 

HAP CLUB 
1-A 
6-B 
4-c 
5-D 
2-E 
3c, F 

+ home 

-C +B +F -D 
-A +E -F 

+B +A -F +D -E 

-F! +F -D -B +C 
-E +C -A +B 

6 7 8 9 10 

(a) (b) (cb 

Fig. 3. (a) A basis schedule for six clubs. (b) Assignment in view of requirements. (c) Comperition time- 

table combination of (a) and (b). 
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succeeding rounds (Gi and Gi+ 1) form a directed Hamiltonian path. This path con- 
sists alternatingly of the first and second round (the graph which consists of Gi and 
Gi+ 1 is bipartite). 

All the nodes have one in-going and one out-going edge (or arrow) except the start 
node (out-going) and the end node (in-going). When an in-going edge represents a 
home match (the out-going an away match), then there are no breaks in the second 
round Gi+ 1. So, the HAP of an odd number of breaks contains no breaks. 

For an even number of clubs, add a 2nth club which plays against the free node 
in each round. Give this 2n th club a HAP with no breaks. As each original free node 
has in-going edge in the proceeding round and an out-going in the succeeding round 
of the round when he is not playing, there are exactly 2n - 2 breaks (no break in 
the first round). 

Executing the construction in the above described way needs no backtracking. 
Each HAP has a complement [ 161. 

Properties of the HAP as applied to the competition timetable are given in Fig. 4. 
Important is that once the HAP’s are established, they may not be changed. This 

is due to the fact that the different leagues are related through their HAP’s. A club 
located in the neighbourhood of a club in a higher league wants to play a com- 
plementary HAP (see Fig. 4(a)) like HAP1 and HAP2 in Fig. 3(a). 

Assigning the clubs to HAP’s is a NP-hard problem based on the conflicting ob- 
jectives and the uncertainty of the mutual weights for the different requirements. 
In case of n clubs, the solution space of n! has to be evaluated. 

There are a lot of models available with which the assignment of clubs to given 
HAP’s can be formulated. 

A first formulation only allows requirements for individual clubs. Suppose, there 
are n clubs and, consequently, n HAP’s. Let i denote the index for the clubs and 
j denote the index for the HAP’s. Let x2 be a zero-one variable with value one if 
club i gets HAPi and value zero otherwise. Let cU be a weight function indicating 
the relative value of the assignment. For example, a club wants to play not at home 
at a certain daie, then only some HAP’s are allowed (see - sign in Fig. 3(a)) and 

(a) (b) 6) 

Fig. 4. (a) A and B no home matches together. (b) C and IE no home matches together with ID. (c) IF, 
G and IH no home matches together. 
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the importance is not the same for each club or date. Then, a competition timetable 
can be constructed with the following model. 

Maximise i i cij$j 9 (3) 
j=l j=] 

subject to i Xii= 1 Vj, 
i=l * 

n 

c (9 
j=l 

x0=' vi. 

Of course, each HAP should be assigned to exactly one club (4) and each club 
gets one HAP (5). 

This model would be sufficient and easy to solve, if the requirements could be 
restricted to preferences of clubs to HAP’s. But, quite common, combinations of 
clubs (see also Fig. 1) and HAP’s are important. For example, two closely located 
club.5 require complementary HAP’s. The model should be extended in the follow- 
ing way. 

Let i and j denote the index for the clubs, p and 4 denote the index for the HAP’s. 
Let & denote the number of home matches together if HAIP, and HAP, are com- 
bined and Xip a zero-one variable with value one if club i is assigned to HAP,. 
Then the following linear and quadratic model can be constructed. 

Maximise C C cipxip+ C C C C hpqxipxjq9 
i p i j P 4 

subject to C Xip = 1 VP9 (7) 

HAP 
1 
2 
3 
4 
5 
6 

Club 
F 
G 
M 
A 

c Xip = 1 Vi, 
P 

CLUSTER 
:G :F 

F :M iA 

c c c 

1 

1 

1 

111 

i 
ccc 
1 
1 
1 
1 

1 
1 

111 
111 

c c c +- weights 
‘I 

11 
1 
11 

=a one club 

1 

111 

I 

* one HAP 

111 

MIN G,.x 

S.T. Air = 1 

(6) 

(8) 

Fig. 5. Set partitioning. 
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C C hpqXipyJq 5 hm, Vi, p. 
j q 

(9) 

Like in the preceding model (7) and (8) assure: one club e one HAP. If hmii 
denotes the maximal number of allowed home matches together of club i and j, then 
(9) assures that this nulmber is not violated. 

Known from the literature (quadratic assignment [lo]) is that these kinds of 
models, even for small sizes (ns 17), are hard to solve. 

A nice and illustrative example for modelling all possible requirements is the set 
partitioning approach as presented in Fig. 5. 

Each club or combination of clubs (= cluster) is represented in the columns and 
the HAP’s in the rows. We put one in a column if a cluster uses the corresponding 
HAP. Of course, each scheme may only be used by one club. In or&r to assure that 
each club uses only one scheme we add a row for each club putting a one if the club 
belongs to the ciuster of that column. The order in which the requirements are ful- 
filled determines the composition of the clusters. 

In order to solve the described problem, two approaches in literature are worth 
mentioning. A representative for the level-by-level heuristics is branch-and-bound 
with columngeneration [9] and for the stochastic search methods simulated anneal- 
ing [7,8]. For our final approach we took the properties which uses the structural 
and feasible part from the level-by-level methods and the higher chance for finding 
a global solution from the stochastic search ones. 

Appmach 

AS pointed out in literature [3], the kind of problems as described here cannot 
be solved in real time with exact algorithms. Therefore, we settled for the following 
approach, see Fig. 6. 

The requirements are divided into hard ones - the constraints - and soft ones - 
the objective function - [2]. The requirements in between are alternately classified 
as hard or soft ones in order to determine the robustness of the found solutions. 
This division is prescribed by a national committee (commissie Waal) in which the 
municipalities, the po!ice and the railways are represented. 

Important here is that the classical concept of feasibility is excilanged for accept- 
able [14]. This means that the way of approaching the problem convinces people 
that the solution offered is the best one considering the circumstances. Feasibility 
viewed as how the requirements are fulfilled - some will be violated ! - is less impor- 
tant in real world applications. 

In order to reach for a solution, we firstly generate all possible combinations in 
an implicit way. We keep only those combinations which fulfill the hard demands. 
Of course, this generation have to take place in a constructive way. We actually built 
our solution space startin.g with partial solutions without violating the optimal solu- 
tion. We determine these solutions with the clusters which are described for the set- 
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partitioning approach in the model section. This (heuristic) way of approach is called 
construction and partitioning [ 171. 

The possibility to combine clusters in order to determine a solution while reducing 
the solution space, depends strongly on whether the clusters are disjunct or not. 

(A) No clubs in common: n =0. 
Reduction if clubs have at least one HAP in common. 

(B) Clubs in common: n #0. 
Reduction if 
(i) common clubs have not the same HAP; 

(ii) not-common clubs like (A). 
These rules and even more sophisticated are known for the satisfiability problem 

[4,131. 

CLUBS I 
CLUSTERING 

ALGORITHM 

ACCEPTABLE 

TIMETABLES 

weights assignments 

TIMETABLE 

COMPETITION 

Fig. 6. Applied approach. 
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The solution space for the example of Fig. 5 exists of cluster FAGM with respec- 
tively the HAP’s 2315, 2415 and 4615. 

Secondly we give a weight to all wishes in order of their importance. Of course, 
the mutual weight of the wishes is hard to establish. Not only is the given preference 
not unique (transitivity does not hold), but also the combination realized in the final 
solution determines the value of the wishes. 

Finally we calculate the score of each remaining combination (just keep the 5 
highest) and tbe frequency distribution of the wishes fulfilled. These results are 
presented to the football leagues. 

The approach described in this paper is applied to the construction of the time- 
table for the competition 1989190 of the top-league in Holland consisting of 18 
clubs. A total of 126 requirements are considered of which 80% is realized. For this 
4700 timetables are constructed (the reduced solution space) and then evaluated on 
an Olivetti-M24 PC (12 minutes). Of course, this construction is repeated several 
times in order to get some insight in the sensibility of the weights. 

Conclusion 

The construction of timetables for the Dutch Professional Football Leagues leads 
to an interesting problem with different theoretical and practical aspects which are 
strongly related. In view of fast changing circumstances of our society there are still 
a lot of aspects to be considered. 

More theoretical based is the ordering of the timetable, minimal lengths of same 
opponents, and equal opportunities for all clubs in the solution space of the 
demands. More practical is the division of the requirements in demands and wishes, 
and the weight of those wishes. Also the significance of recent developments like 
neural networks, simulated annealing, tabu search [5] and genetic generation could 
be taken into account. However, there is not always time and room for an extensive 
search for those solutions. What really counts is the way of approach, not the used 
techniques. 

Computerprograms can play an important part in realizing and supporting 
solutions. 
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