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A B S T R A C T
Background: Constrained optimization methods are already widely
used in health care to solve problems that represent traditional
applications of operations research methods, such as choosing the
optimal location for new facilities or making the most efficient use of
operating room capacity. Objectives: In this paper we illustrate the
potential utility of these methods for finding optimal solutions to
problems in health care delivery and policy. To do so, we selected
three award-winning papers in health care delivery or policy develop-
ment, reflecting a range of optimization algorithms. Two of the three
papers are reviewed using the ISPOR Constrained Optimization Good
Practice Checklist, adapted from the framework presented in the
initial Optimization Task Force Report. The first case study illustrates
application of linear programming to determine the optimal mix of
screening and vaccination strategies for the prevention of cervical
cancer. The second case illustrates application of the Markov Decision
Process to find the optimal strategy for treating type 2 diabetes
patients for hypercholesterolemia using statins. The third paper
(described in Appendix 1) is used as an educational tool. The goal is
to describe the characteristics of a radiation therapy optimization
problem and then invite the reader to formulate the mathematical
model for solving it. This example is particularly interesting because it
lends itself to a range of possible models, including linear, nonlinear,
and mixed-integer programming formulations. From the case studies
presented, we hope the reader will develop an appreciation for the
wide range of problem types that can be addressed with constrained
optimization methods, as well as the variety of methods available.
Conclusions: Constrained optimization methods are informative in
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providing insights to decision makers about optimal target solutions
and the magnitude of the loss of benefit or increased costs associated
with the ultimate clinical decision or policy choice. Failing to identify
a mathematically superior or optimal solution represents a missed
opportunity to improve economic efficiency in the delivery of care and
clinical outcomes for patients. The ISPOR Optimization Methods
Emerging Good Practices Task Force’s first report provided an intro-
duction to constrained optimization methods to solve important
clinical and health policy problems. This report also outlined the
relationship of constrained optimization methods relative to tradi-
tional health economic modeling, graphically illustrated a simple
formulation, and identified some of the major variants of constrained
optimization models, such as linear programming, dynamic program-
ming, integer programming, and stochastic programming. The second
report illustrates the application of constrained optimization methods
in health care decision making using three case studies. The studies
focus on determining optimal screening and vaccination strategies for
cervical cancer, optimal statin start times for diabetes, and an educa-
tional case to invite the reader to formulate radiation therapy
optimization problems. These illustrate a wide range of problem types
that can be addressed with constrained optimization methods.
Keywords: Health care delivery, health services, health policy,
medical decision making, operations research, constraints, optimal,
optimization.
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Background to the Task Force

The proposal to initiate an ISPOR Good Practices for Outcomes
Research Task Force was evaluated by the ISPOR Health Science
Policy Council then recommended to the ISPOR Board of
Directors for approval.

The task force was comprised of international subject matter
experts representing a diverse range of stakeholder perspectives
(academia, research organizations, government, regulatory agencies
and commercial entities). The task force met approximately every

fiveweeks by teleconference and in person at ISPOR conferences. All
task force members reviewed many drafts of the report and
provided frequent feedback in both oral and written comments.

To ensure that ISPOR Good Practices Task Force Reports are
consensus reports, findings and recommendations are presented
and discussed at ISPOR conferences. In addition, the first and final
draft reports are circulated to the task force’s review group. All
reviewer comments are considered. Comments are addressed as
appropriate in subsequent versions of the report. Most are
substantive and constructive improving the report.
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Introduction

There are often many different options for improving health care
policy or improving current practice in health care organizations. The
optimal solution among those options, i.e., the solution that best
achieves a defined goal, such as maximizing patient quality of life or
minimizing patient waiting time for services, may not be readily
apparent. Constrained optimization methods use mathematical
techniques to help efficiently and systematically identify the best
(optimal) of all possible solutions to a problem while considering the
relevant constraints, such as budget limits or staffing capacity.

Of course, mathematically optimal solutions to all problems
are not always feasible; other nonquantifiable criteria, such as
political barriers that cannot be accounted for by defined con-
straints, have to be considered. However, optimization techni-
ques can still be highly informative to decision makers in
providing insights about optimal target solutions and the magni-
tude of the loss of benefit or increased costs associated with the
ultimate policy choice. In health care, failing to identify a
mathematically superior or optimal solution represents a missed
opportunity to improve economic efficiency in the delivery of
care and clinical outcomes for patients.

The ISPOR Optimization Methods Emerging Good Practices
Task Force provided an introduction to constrained optimization
methods to solve important health policy and clinical problems
in its first report [1]. The previous report outlined the relationship
of constrained optimization methods relative to traditional
health economic modeling and simulation models and identified
some of the major variants of constrained optimization models,
such as linear programming, dynamic programming, integer
programming, and stochastic programming.
Table 1 – ISPOR Constrained Optimization Task Force Go

Stage Step

Modeling Problem structuring Specify the objective(s)
and appraise model a

Mathematical
formulation

Present the objective fu
variables and parame

Model development Program the model in s
decision variables an

Model validation Ensure the model is ap
and parameters

Optimization Select optimization
method

Choose an appropriate
the problem.

Perform optimization/
sensitivity analysis

Use the optimization al
performance of the o

Report results Report the results of th
Decision making Interpret the optimal so

Source: Crown et al. [1], Table 3, p. 315.
In addition, the report graphically illustrated the formulation
and solution of a straightforward integer program to maximize
health benefit subject to a budget constraint. Further, it explained
the steps in an optimization process: 1) structuring the problem;
2) formulating the mathematical model; 3) developing the
model; 4) validating the model; 5) selecting the optimization
method; 6) performing the optimization and conducting sensi-
tivity analysis; 7) reporting results; and 8) using the results for
decision making.

The principal objective of this second Optimization Task Force
Report is to illustrate the application of constrained optimization
methods in health care decision making. To identify relevant
examples, we began by searching for award-winning health care
papers from the Institute for Operations Research and Manage-
ment Sciences (INFORMS) and the Association for European
Operations Research Societies (EURO). From these papers, we
then selected examples with models relevant for health eco-
nomic policy or clinical decision making. Finally, we endeavored
to select papers that collectively illustrated a variety of different
constrained optimization methods. The three papers that
received the most votes from the task force members were
selected.

In this report, two of these three papers are compared with
the steps in formulating, solving, validating, reporting, and using
optimization models originally published as Table 3 in the first
Optimization Emerging Good Practices Task Force Report. A
slightly modified version of this previous table is presented as
the ISPOR Constrained Optimization Good Practices Checklist
(Table 1) in the current report. The first case study illustrates
the application of linear programming to determine the optimal
mix of screening and vaccination strategies for the prevention of
cervical cancer [2].
od Practices Checklist

Description

and constraints, identify decision variables and parameters, and list
ssumptions
nction(s) and constraints in mathematical notation using decision
ters
oftware to estimate the objective function(s) and constraints using
d parameters as inputs
propriate for evaluating different combinations of decision variables

optimization method and algorithm on the basis of characteristics of

gorithm to search for the optimal solution and examine the
ptimal solution for reasonable sets of parameters
e optimal solution and sensitivity analyses
lution and use it for decision making
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The second case illustrates application of the Markov Decision
Process to find the optimal strategy for treating type 2 diabetes
patients for hypercholesterolemia using statins [3].

Finally, the third paper (described in Appendix 1) is used as an
educational tool. The goal is to describe the characteristics of a
radiation therapy optimization problem and then invite the
reader to formulate the mathematical model for solving it. This
example is interesting because it lends itself to a range of
possible models, including linear, nonlinear, and mixed-integer
programming formulations. (Detailed formulations for each
model are provided in Appendix 1.)

Although we are clearly limited in the number of permuta-
tions we can present with these three cases, we hope the reader
will develop a sense of the wide range of problem types that can
be addressed with constrained optimization methods as well as
the variety of methods available.
Overview of Applications of Constrained
Optimization in Healthcare

Constrained optimization methods are already widely used in
health care areas, such as choosing the optimal location for new
facilities, making the most efficient use of operating room
capacity, workforce planning, etc. They can also be instrumental
in guiding clinical decision making in actual clinical practice
where health professionals and patients face constraints, such as
proximity to treatment centers, health insurance benefit designs,
and the limited availability of health resources.

Optimization is also beneficial for planning health care expen-
diture. An obvious example is the resource allocation problem
faced by a planner with a number of investment opportunities, but
a fixed budget inadequate to fund all available opportunities [4].
Perhaps the simplest case of this is where the investment
opportunities are incremental to current care and fall into distinct
categories (e.g., children’s services, cardiovascular disease, cancer,
respiratory disease, and mental health) with separate budgets [5].
In this situation, decisions about investments in different clinical
areas can be made independently of one another.

However, more commonly the health care budget needs to be
allocated across different conditions. The problem of choosing
the best set of investment opportunities to fund under a fixed
budget constraint in order to meet an objective, such as max-
imizing total quality-adjusted life-years (QALYs), can be
addressed as an optimization problem [6]. Given a number of
eligible interventions and a fixed budget, optimization can be
used to solve resource allocation problems.

In fact, the task central to health economic analysis, i.e.,
evaluating whether the incremental cost-effectiveness ratio
(ICER) of an intervention is below a critical threshold, can be
shown to be related to budget constrained optimization. Accord-
ing to the theoretical definition, under a strict set of assumptions,
the threshold represents the inverse of the shadow price of the
budget constraint; the shadow price is defined as how much the
objective (QALYs) would increase for a one-unit increase in the
constraint (budget) [7].

Other resource allocation problems may be even more compli-
cated. There may be significant and complex interactions between
different investments; and there may be additional constraints to
be considered, such as limits on the number of staff or bed
capacity [8]. For example, consider the case of allocating resources
for the prevention and cure of an infectious disease such as HIV,
hepatitis C, tuberculosis, malaria, or polio [9,10]. If the planner
invests in vaccination, there may be fewer cases to treat in the
future, and so investment in highly capital-intensive treatment
facilities may be wasted. On the other hand, vaccination is itself
costly, and if the disease has a low prevalence, it may be more
cost-effective to target the treatment [11]. Additional work in this
area is being performed and will appear in a future issue of Value in
Health.

Optimizing investment in such infectious disease programs is
more complicated because they may involve making multiple
runs of a state-of-the-art simulation [12,13] of the infectious
disease dynamics to plot out how the particular patterns of
resource allocation perform against the objective of minimizing
the total number of cases or maximizing the probability of
achieving disease eradication. For a review of mathematical
approaches to infectious disease prediction and control, see
Dimitrov and Meyers [14].

In other settings, the critical resource(s) might not be money;
for example, when allocating donated organs such as kidneys,
not every kidney will be compatible with every donor. In addition,
the medical condition of the eligible recipients will be different;
some will be more urgent than others. In this case, the under-
lying problem can be categorized as a matching problem [15].
In matching problems, not everyone will get the best match.
However, the objective with kidney allocation is generally to
ensure that as few people and kidneys as possible are left
unmatched (i.e., patients without kidneys, kidneys without
patients). Bertsimas et al. [16] present a discussion about how
to incorporate fairness in such problems. Some measures of
deservingness, e.g., time on waiting list, may be incorporated in
the objective function. Nevertheless, some fairness considera-
tions may also be included as constraints, e.g., at least x% of
transplants should go to patients of a certain blood type. The
2012 Nobel Prize in Economics was awarded to Shapley and Roth,
in part for their work in stable matchings applied to organ
donation.

Other clinical problems where optimization can be applied
relate to problems of disease management, e.g., timing of the
initiation of treatment, or the sequence of treatments. The
promise of health gain from treatment must be balanced against
reasons for holding off treatment, which may include cost,
undesirable side effects, and emergent drug resistance. It may
be the case that there is an optimal stage in the disease prognosis
or point in the patient’s life cycle where the balance shifts from
favoring nonintervention to favoring treatment. The Markov
Decision Process (MDP) approach provides an ideal framework
[17] to study such problems for identifying critical initiation
points. This framework has been used to analyze timing deci-
sions in diseases as diverse as HIV, diabetes, and breast cancer
[3,18,19]. Optimization methods can be applied to identify the
optimal treatment sequences when a large number of treatments
are available; for example, in rheumatoid arthritis [20].

Finally, constrained optimization methods have also been
applied to disease diagnosis [21,22], the development of optimal
treatment algorithms [23,24], and the optimal design of clinical
trials [25]. Health technology assessment using tools from con-
strained optimization methods is also gaining popularity [26]. We
also encourage the readers to refer to the initial ISPOR
Optimization Emerging Good Practices Task Force Report,
which presented a more comprehensive overview of the different
applications for which optimization techniques can be used [1].
Steps in an Optimization Process

Table 1 reproduces the steps of the optimization process pre-
viously presented in the initial Optimization Task Force Report. It
is reproduced here as the ISPOR Constrained Optimization Good
Practice Checklist to reduce reader burden because the two case
studies and the educational example will all be discussed in light
of this framework. The primary purpose of Table 1 is to support
the design of optimization studies by prompting the user to
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report and justify the choices made at each step of the process. It
should be noted that the steps outlined in Table 1 do not need to
be conducted sequentially. In fact, most of the optimization
studies involve performing these steps in an iterative manner to
solve the problem. Along with guiding the design of optimization
studies, Table 1 can also be used to support the critique and
quality assessment of published optimization studies. The steps
in Table 1 are described in detail in the text below.

Problem Structuring

The first step is to determine if constrained optimization is an
appropriate methodology to address the problem at hand. It
involves identifying if there are any quantifiable constraints
and whether a specific goal can be achieved by changing some
decision variables. This problem structuring phase should be
done in consultation with the key stakeholders and decision
makers to ensure that the optimization problem is appropriately
specified. This will ensure that the objective functions and
constraints are appropriate and get their “buy-in” to change the
decision variables in order to achieve an optimal solution. A clear
textual description of the decision problem should be reported to
and validated with the key stakeholders and decision makers.

Mathematical Formulation

This involves converting the textual description into a mathe-
matical representation of the optimization problem. Objective
function(s) and constraints need to be defined in analytical form
as a function of decision variables and parameters. Note that
decision variables are changed during optimization iterations in
order to identify the optimal solution, although parameters
remain fixed. The number and type of decision variables
(continuous or discrete) as well as the parameters need to be
justified. The type of objective function (single objective or
multiobjective, linear or nonlinear, stochastic or deterministic)
and the type of estimation (analytical estimation or simulation
modeling for complex problems) need to be specified. Similarly,
for constraints, the number of constraints and the type of
estimation used for the constrained quantity need to be
reported and justified. The sources and the values of the
parameters used to estimate the objective function(s) and
constraints also need to be justified. The mathematical repre-
sentation of the optimization problem should be reported after
validation with the key stakeholders and decision makers.

Model Development

This involves programming the model in software to estimate the
objective function(s) and constraints, using decision variables
and parameters as inputs. It should be noted that in some
instances, the analytical form of the mathematical formulation
can be programmed directly because the mathematical formula-
tion sufficiently defines the relationships between objective
function(s)/constraints and decision variables/parameters. How-
ever, in other instances, a simulation model needs to be devel-
oped to estimate the objective function(s)/constraints. Models
should be designed so that the objective function can be eval-
uated based on the full range of possible decision variables (the
feasible region or search space). The model structure and
assumptions should be reported and validated with the key
stakeholders and decision makers. The initial mathematical
formulation and model development steps affect the specifica-
tion of the particular optimization method to be applied. These
steps are closely related and interdependent. This is one important
reason why the steps in optimization do not always have to
follow the order described in Table 1.
Model Validation

Before optimization is undertaken, the underlying model needs
to be verified and validated to ensure the robustness of the
results for different analyses performed. This means that the
model should be consistent with reality within specified toler-
ances. Once the model has been developed to the point where
it is producing estimates, the model code also needs to be
checked to ensure the model results are valid. In the case of
models that represent an analytical formulation directly, this is
relatively straightforward because this involves checking the
specific model results used as parameters for estimating the
objective function and constraints.

However, when a simulation model is used to evaluate the
objective function, this would necessitate a combined approach of
simulation-optimization [27,28]. This is a bit more difficult because
it involves checking the model results for all combinations of
decision variables. Metamodeling techniques [29], i.e., modeling
the simulation model outputs as functions of simulation inputs,
can circumvent getting the simulation results for all variables in
the parameter space. These topics are beyond the scope of this
report; we suggest reviewing Sargent [30] and Law [31].

Modelers are encouraged to validate the model results in
different parts of the decision variable space to have enough
confidence that the model used is appropriate for optimization
[32,33]. This should also involve asking the key stakeholders and
decision makers to check the model results for face validity.

Select Optimization Method

The choice of optimization method needs to be justified on the
basis of the type of decision variables (continuous or discrete), the
type of objective function (single objective or multi-objective,
linear or nonlinear, stochastic or deterministic), and the type of
constraints (single vs. multiple). The optimization algorithm or tool
used also needs to be justified on the basis of the optimization
method as well as the estimation type (analytical formulation vs.
simulation optimization) and other relevant characteristics of the
model (number of decision variables or transferability of the
problem to other well-known problem types). The methods and
tools chosen for optimization need to be reported and justified.

Perform Optimization/Sensitivity Analysis

This involves running the optimization model, identifying the
optimal solution, and understanding the impact of alternative
parameters on the optimal solution using sensitivity analyses.
Settings used for the optimization, such as the convergence level
required or the maximum number of iterations, need to be
justified. In some problems, searching for the optimal solution
might be computationally feasible, whereas in others, solving time
increases to such an extent that the use of heuristics is justified.

As with decision modeling, optimization can have stochastic
uncertainty in parameters and model structure. Stochastic opti-
mization [34], robust optimization techniques [35], and sensitivity
analyses can be used to deal with parameter uncertainty. How-
ever, structural uncertainty needs to be dealt with by thinking
about the choices throughout the optimization process. For
example, is a linear program really appropriate? Are the simpli-
fications and assumptions appropriate? Further, to what extent is
there a risk of a wrong or suboptimal decision being reached? The
choice of decision variables, parameters, constraints, and model
assumptions also needs to be structurally evaluated.

The optimal solution needs to be checked to identify if it is
feasible and, if so, sensitivity analyses should be conducted. The
optimization settings and the sensitivity analyses need to be
explained to the key stakeholders or decision makers and
reported in detail.
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Report Results

This involves specifying the values of the decision variables,
objective function, and constraints at the optimal solution for the
base case analyses as well as the sensitivity analyses. The
optimization results (i.e., optimal solution for the base case and
sensitivity analyses) need to be reported and validated with the key
stakeholders or decision makers. Also, the performance of the
optimization tool or method, such as the time taken to identify the
optimal solution, number of iterations required, and the conver-
gence level (if applicable), needs to be reported. These results
should be reported in a manner that is understandable and
interpretable by relevant stakeholders and decision makers.

Decision Making

The meaning of the optimal solution should be explained to the
decision makers. This involves converting the mathematical
optimal solution into clear, concise plans for implementation.
At this stage, the choices made at all the stages of modeling and
optimization (i.e., type of model, data, and assumptions as well
as design, settings, and others) need to be validated to ensure the
results of the optimization problem are plausible and consistent
with decision maker objectives. Also, the possibility of amending
the decision variables to the values specified by the optimization
process needs to be checked with the stakeholders to ensure that
the implementation is feasible.

To reiterate, the results of the optimization should not be
used mechanistically. It is the decision makers that implement
the findings; hence, they should be comfortable with the method-
ology, data, and assumptions involved in the whole optimization
process.
Optimization Case Studies

In this section, we consider two constrained optimization studies
and compare their structure to the steps outlined in Table 1. The
first case study focuses on resource allocation for the prevention
and cure of infectious diseases, and the second illustrates the use
of constrained optimization to guide optimal treatment initia-
tion. These cases illustrate different modeling techniques as well
as extensions of the application of constrained optimization
methods beyond the typical realm of scheduling, shipping cost
minimization, maximization of facility capacity, etc. Please note
that the educational case study and the model formulations
appear in Appendixes 1 and 2, respectively.
Case Study 1: Selecting a Mix of Prevention Strategies
Against Cervical Cancer

Problem Structuring

Cervical cancer is the second most common cancer in women
under 35 years old in the United Kingdom (UK). The objective of
this study was to identify the optimal mix of primary and
secondary prevention strategies for cervical cancer that achieves
maximum reduction in cancer cases under budget and logistic
constraints [2]. The authors applied the optimization model in
two countries (UK and Brazil) with different health care organ-
izations, epidemiology, screening practices, resource settings,
and treatment costs. They considered two cervical cancer pre-
vention strategies against human papillomavirus (HPV):

1. Primary prevention: Because an HPV infection is the most
common cause of cervical cancer, HPV vaccination is a primary
prevention strategy. Two HPV vaccines are currently available.
Both vaccines have an efficacy of approximately 98% against
the cervical cancer vaccine HPV types (HPV 16 and 18), but with
a different cross-protection profile against oncogenic nonvac-
cine HPV types. The implementation of vaccination varies
widely among countries with regard to the strategy selection
(national immunization program or individual-based), the
logistics (via a separately established vaccination setting or
via primary health care), the age group targeted, and the
gender selection (female only or all patients).

2. Secondary prevention: Cytology-based screening programs
have contributed to a decrease of up to 80% in the incidence
and mortality of cervical cancer in countries with a well-
established, organized screening program. However, despite
their potential, cytology-based screening programs sometimes
have a limited impact due to factors such as sensitivity of the
screening method (ability of the test to correctly identify those
patients with the disease), treatment failure, and the level of
resources required for an adequate follow-up of patients.

Four prevention strategies were evaluated: screening, vacci-
nation, screening plus vaccination, and no prevention because
these were the options available for cervical cancer prevention in
the UK and Brazil at the time of the study. Only cytology-based
screening was included in the model, with sensitivity estimates
based on published literature. Different screening interval sce-
narios were explored, from every year to every 25 years. Women
were screened only twice over their lifetime, with a 1-year
increment between each scenario.

It was assumed that vaccination was administered at age 12
and induced lifelong protection against HPV. In total, 52 different
strategies were tested for each country. These 52 strategies
defined the full range of possible combinations of vaccination
(not available or available) and screening interventions (not
available or available, with intervals between screenings esti-
mated from 1 year to 25 years in 1-year increments). The final
scenarios can be listed as follows: (scenario 1: no screening & no
vaccine; scenario 2: 1-year screening interval & no vaccine; scenario
3: 2-year screening & no vaccine; ..., scenario 26: 25-year screening
& no vaccine; scenario 27: no screening & vaccine; scenario 28: 1-
year screening & vaccine; scenario 29: 2-year screening & vaccine;
..., scenario 52: 25-year screening & vaccine).

Mathematical Formulation

The optimization model used a linear programming formulation
consisting of a single linear objective function and multiple linear
constraints. The model was continuous, allowing fractional
values for the decision variables. It was static, meaning that the
problem was solved once at steady state. Finally, the model was
deterministic, which assumed that all the outputs were known
and there was no stochastic variation.

Fifty-two decision variables, xi, each representing the propor-
tion of the population addressed by each strategy considered, i ¼
1,2,..,52, were used with separate identifiers for strategies involv-
ing screening and strategies involving vaccination in order to deal
with screening and vaccination coverage constraints. Given the
aim was to minimize the number of cervical cancer cases, the
objective function was represented as the sum of the cervical
cancer cases (at steady state for 100,000 women) for each
strategy,CCi, multiplied by the proportion of population receiving
each strategy,xi

The linear programming formulation for the cervical cancer
prevention strategy optimization is given as the following:

X52
i¼1

CCixi ð1Þ
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X52
i¼1

bixirB ð2Þ

(budget constraint)

0rxir1, for i¼1,2,…, 52 ð3Þ
(strategy coverage bounds)

X52
i¼1

xi¼1 ð4Þ

(complete population distribution)

X26
i¼2

xiþ
X52
i¼28

xirCov1 ð5Þ

(screening coverage upper bound)

X52
i¼27

xirCov2 ð6Þ

(vaccination coverage upper bound)

x1r minð1�Cov1,1�Cov2Þ ð7Þ
(upper bound on population with no coverage)

xi 2 R, for i¼1,2,…, 52 ð8Þ
The model has five constraints: budget, strategy coverage,

total population, screening, and vaccination coverage limits. The
first constraint is to ensure that the sum of the cost for each
strategy (at steady state for 100,000 women), bi, multiplied by the
proportion of the population receiving each strategy xi, is less
than the overall budget constraint, B. The strategy coverage
constraint ensures that the proportion of each strategy is
between zero and one. The complete population distribution
constraint guarantees that all 52 variables add up to 1. That is,
the sum of the proportion of the population receiving each
strategy should reflect the entire population.

Also, the sum of the proportion of the population receiving
strategies including screening should be less than the
government-imposed screening coverage limit, Cov1,. Similarly,
the sum of the proportion of the population receiving strategies
including vaccination should be less than the externally (e.g.,
government) imposed vaccination coverage limit,Cov2. Note that
the parameters CCi and bi are derived from the Markov cohort
model (see details below) for each strategy i.

Model Development

The mathematical formulation described above used the outputs
of a health economic Markov cohort model (number of cervical
cancer cases [CCi] and total costs [bi] for each strategy [i]) as input
parameters. The Markov cohort model describes the population
level’s natural history of cervical cancer for the evaluation of the
clinical and economic consequences of different prevention
strategies. The model considers a population of 100,000 women
under a given prevention strategy at steady state level. The
Markov model consists of the following states: no HPV infection,
HPV infection, cervical intraepithelial neoplasia (CIN) stages,
cancer, and death (both cancer and noncancer related).

Once patients are infected with HPV, individuals can progress
and regress from HPV infection and CIN stages. Vaccination is
assumed to reduce the HPV infection rates, and detection
through screening provides the possibility of the treatment of
CIN. Overall vaccine efficacy in the UK and Brazil was calculated
from the country-specific proportions of each HPV type in
cervical cancer. Other clinical and cost inputs were specified for
each of these two countries.

The time horizon of the optimization problem was 1 year, and
both the health and cost outcomes across the whole population
were derived from the lifetime cohort results from the
Markov model.

The model was run separately (for both countries) with a
cohort of women over their lifetime for each one of the 52
scenarios described above. The results of each scenario were
used to estimate the number of cervical cancer cases and total
costs expected over 1 year at steady state for 100,000 women. The
estimated number of cervical cancer cases (CCi) and total costs (bi)
of each of the 52 prevention strategies were then used as input
parameters for the optimization model.

Model Validation

No validation effort was reported for either the health economic
model or the optimization model.

Select Optimization Method

Due to the relatively small size of the linear programming
formulation described above (a total of 52 decision variables
and 57 constraints), a standard primal simplex method was
chosen to solve the problem.

Perform Optimization/Sensitivity Analysis

This optimization problem was programmed in Microsoft Excel
as a linear program and solved using the Solver Add-in. This tool
uses the simplex method to identify the optimal mix of the 52
cervical cancer prevention strategies to minimize the expected
cervical cancer cases under a fixed budget as well as screening
and vaccination coverage constraints. The optimization model
was solved twice using separate parameter sets, reflecting the
settings in UK and Brazil.

The base-case analysis assumed that the maximum screening
coverage is the prevaccination coverage rate (65% in the UK and
50% in Brazil), maximum vaccination coverage was set to 80%,
and the overall budget was the prevaccination budget allotted to
screening and treatment of cervical lesions. No explanation was
given as to why these maximum coverage rates were chosen in
the base-case.

Sensitivity analyses were performed to understand the effect
of altering the budget or the achievable screening or vaccination
coverages (the constraints in the model) as well as the duration of
vaccine protection, which was one of the parameters in the
economic modeling. The budget constraint was varied from a
20% reduction to a 150% increase over the prevaccination levels,
and the screening and the vaccination coverage levels were
varied from 0% to 100%.

Report Results

The optimal mix of strategies in the UK was 65% vaccination plus
screening, with a screening interval of 6 years, and 15% vacci-
nation alone. In Brazil, the optimal mix was 50% vaccination plus
screening, with a screening interval of 5 years, and 30% vacci-
nation alone. These optimal mixes of strategies would result in a
reduction of cervical cancer by 41% in the UK and 54% in Brazil
from prevaccination levels with no budget increase. It can be
easily observed that in both countries, the optimal coverage rates
for both preventive interventions are at the maximum levels
permitted in the model.

In the sensitivity analyses, increasing the budget permits a
shortening of the screening interval, but the effect on the
reduction in cervical cancer cases is modest and tends to reach
an early plateau. Vaccination alone (screening coverage set to 0%)
could provide a reduction in cervical cancer cases compared with
the prevaccination situation of screening alone with a lower
budget. In both countries, the effect of reduced vaccine efficacy
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duration (25 years compared with lifetime) still results in a
reduction in cervical cancer compared with the prevaccination
strategy, but not as much as the base-case analysis. In both
countries, a sharp reduction in the expected number of cervical
cancers is seen when the vaccine coverage rate exceeds the
maximum screening coverage rate or when screening coverage
rate exceeds the maximum vaccine coverage rate while main-
taining the budget (treatment and prevention) constraint.

Decision Making

In this case study, within the same budget, results of the
optimization program show that it would be possible to substan-
tially reduce the number of cervical cancer cases by implement-
ing an optimal combination of HPV vaccination (80% coverage)
and screening at prevaccination coverage (65% UK, 50% Brazil)
while extending the screening interval to every 6 years in the UK
and 5 years in Brazil.

Optimization models can be used to determine the optimal
mix of primary and secondary prevention strategies minimizing
cervical cancer burden under budget and logistic and infrastruc-
ture constraints. The key strength of optimization modeling is its
ability to evaluate multiple combinations of different interven-
tions and identify the mix that provides the maximum expected
health benefit (reduction in cervical cancer cases) at the expected
costs within the available budget. In addition, it allows the
decision maker to set constraints reflecting local conditions,
such as a limited available budget or limited achievable
coverage rates.

In this paper, the optimization model uses the health eco-
nomic model outcomes as its input parameters. Therefore, the
validity of the optimization results is based on the validity of the
health economic model. Furthermore, the implementation
issues, such as how it will be decided who will receive vacci-
nation, screening, or both, were not discussed. In its current
form, the optimization model is used more to demonstrate the
potential value of adding vaccination strategy and to coordinate
this addition with the existing screening practices in the UK and
Brazilian health systems.

The epidemiologic model developed to estimate the outcomes
of the HCV vaccination program was a static cohort model. This
allowed using the simpler linear programming approach to solve
the optimization problem but might have underestimated the
impact of vaccination in reducing disease cases among those
unvaccinated. A dynamic transmission model could have
accounted for these effects, however this might have complicated
the optimization process and might risk the model to be less
transparent to decision makers. Methods need to be developed to
allow consideration of secondary transmission while maintain-
ing model transparency and increasing the usefulness of the
results provided in the paper.
Case Study 2: Optimizing Statin Treatment Initiation
Using MDP

Problem Structuring

Type 2 diabetes (T2D) leads to many chronic outcomes, including
stroke, coronary heart disease (CHD), and kidney failure. This
study focuses on the selection of T2D patients for statin therapy
of hypercholesterolemia [3]. The market for statins is significant
and remains burdensome to health system costs despite
the availability of generics. Furthermore, there are a number
of studies that report overprescribing (prescribing statins to
those patients who only achieve marginal benefit) and
underprescribing (not prescribing statins to those patients most
likely to benefit). Given this debate, the aim of the study by
Denton et al.was to identify the optimal time to initiate statin
treatment for hypercholesterolemia in T2D patients [3].

The problem is set up using a MDP framework. Traditional
health services research methods focus on efficacy or cost
effectiveness at a snapshot in time to inform decisions, whereas
MDP provides an in-depth modeling and understanding of opti-
mal decisions at multiple time points over a patient’s disease
history. Due to the nature of the modeling, it provides the ability
to personalize decisions, as opposed to one-size-fits-all policies
and guidelines established for medical decisions. However, sim-
ilar to other approaches, MDPs have assumptions based on data
and/or the structure of the model.
Mathematical Formulation

The model optimizes a cost-reward function over time using an
MDP. We recognize that MDPs are not commonly associated with
constrained optimization because they typically do not have
“constraints” in the same sense that the term is used in the
mathematical programming literature (for example, in the pre-
vious case study). However, the ability of dynamic programming
models to identify the optimal solution to the MDP (i.e., the
optimal pattern of statin therapy initiation over time) provides an
excellent example of a clinical use case for constrained optimi-
zation as long as one recognizes that constraints in an MDP are
implicitly defined based on allowable transitions between states
and/or available decisions within each state.

The structure of the model reflects shared decision making by
providers and patients over time as a function of patient age,
patient clinical history, and several health states. History is
dependent on CHD or stroke as well as nine cholesterol levels
pertaining to low, medium, or high high-density lipoprotein
(HDL) and low-density lipoprotein (LDL) levels. Patient informa-
tion aligning with the data across three major heart studies
provides much higher sensitivity to the proper time to initiate
and maintain a statin regimen. The MDP model determines at
each epoch the optimal decision to maximize the overall rewards
v(st) while accounting for costs of all future states.

Reward function: Max v stð Þ¼E-
s
½PT
t¼1

λN
Dt

� �
rðst,aðstÞÞ� 8st 2 -S

where t is a time index for discrete decision epochs, st is an
index for states at time period t ¼ 1,…T, a (st) is the statin
treatment decision at time t ¼ 1,…T, λϵ 0,1½ � discounts the
objective function depicting reduced value of rewards in future
years, and ND is the number of years in a decision epoch.

Reward function for each time period: r st,a stð Þð Þ¼ND R stð Þ� CFS stð Þþ��
CFCHD stð ÞÞ�a stð ÞCST �� CS st,a stð Þð ÞþCCHD st,a stð Þð Þ� �
where ND reflects the number of years in a decision epoch, R (st) is the
monetary value of quality life years, C (St) is the annual cost of statin
treatment in period t, CFs (st) is the annual follow-up care cost of
stroke in period t, CFCHD (st) is the annual follow-up care cost of CHD
event in period t, CS(sT) is the one time cost of stroke occurring in
period t.

Reward function for final time period: r sT,a sTð Þð Þ¼ND R sTð Þ�½
CFS sTð ÞþCFCHD sTð Þ� ��a sTð ÞCST �� CS sT ,a sTð Þð ÞþCCHD sT,a sTð Þð Þ� �

þE½PDHR
���sT,a sTð Þ�,

where E½PDHR
���sT,a sTð Þ� is the postdecision horizon expected

reward. The authors separate the time horizon into a decision
horizon and a postdecision horizon. While the decisions are only
made during the decision horizon, the rewards from the post-
decision horizon still need to be included. For instance, while the
decision to initiate statin therapy is only until age 80, the rewards
of treatment after age 80 need to be included in the model in
Figure 2 in the article [3].
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Model Development

The starting age of the patients in the model was 40, and it was
assumed that the patients could start statin treatment at any
point between 40 and 80 in 2-year increments. If all these
treatment options were modeled as separate scenarios, as is
common in both clinical trials and economic evaluations, the
problem would soon become quite complicated, especially if
these treatment options were compared incrementally.

However, using optimization techniques, one can identify a
“single” optimal age for initiating statin treatment that max-
imizes the reward function. The authors interpreted reward in
terms of expected net monetary benefit E(NMB) as a function of
QALYs and cost and willingness-to-pay threshold (λ), that is:

E NMBð Þ¼ΔQALYsnλ–ΔCost ð9Þ

Model Validation

The authors do not describe the model validation process,
although it is clear from the manuscript’s acknowledgments
section that the authors interacted extensively with experts
within the clinical system where the research was conducted as
well as with external reviewers.

Select Optimization Method

The problem is set up using an MDP. The MDP framework is
intended for dynamic streams of decisions (i.e., decisions made
over time). The time horizon and the time steps are identified as
indices for decision epochs. Each decision in the stream guides the
evolution of the system being modeled (typically the patient’s
health in medical applications) and may enable or foreclose further
decisions. The patient’s health at each time point is typically the
state, and the decisions or actions are identified. MDPs can be
considered a hybrid between a Markov model and a decision tree.

Just as in Markov models, in an MDP, a patient’s health state
changes over time, transitioning from one discrete state to
another according to a specified matrix of probabilities. However,
typically in a Markov model, the decision maker has a choice
between two or more treatment regimens to start the patient on
initially. By contrast, in an MDP, the decision maker can make a
choice about treatment in every time period. Thus, it is possible
to model at a more granular level. At each time point, one may
decide to start, stop, or switch treatments for as long as the
patient survives. The constraints may involve the changes in
states and/or the decisions. The transition from one state to
another is characterized probabilistically.

In this study, the critical decision is when to start statins.
Starting statins is taken to be a one-time irreversible decision.
Thus, in each time period from age 40 to death—or age 80—there
is a binary “start” or “delay” decision. Much of the complexity of
the model is in the modeling of the health states. There are 324
health states describing various combinations of cholesterol and
high-density lipoprotein levels (three each) as well as stroke and
CHD states (six each). Transition probabilities are parameterized
based on a proprietary clinical database. The objective function is
a combination of health sector costs—such as the cost of treat-
ment transacted between the provider, patient, and payer—and
net monetary benefit, appropriately discounted over time. The
risk of adverse events is modeled for comparison through three
third-party risk models.

Different risk-prediction models have estimated probabilities of
T2D complications in patients based on sociodemographic and
environmental risk factors. These predictive models can specify
the type of treatment to reduce the risk of comorbidity. The most
common validated risk models from several large studies are
the United Kingdom Prospective Diabetes Study (UKPDS), the
Framingham Heart Study (United States [US]), and Archimedes,
based on data trial results from the Heart Protection Study of 2002.

In particular, the article “Optimizing the Start Time of Statin
Therapy for Patients with Diabetes” [3] aimed to identify the
optimal decisions for individual patients based on their attrib-
utes, including age, gender, total cholesterol, and HDL. The
authors also performed the analyses using the predictions from
each of the three risk models above. Because the choice of the
risk model may impact the treatment decision, they noted that
the predictions from the models could be different.

Perform Optimization/Sensitivity Analysis

The solution method is based on a backward induction approach
starting with the last epoch T. Knowing the optimal future
actions, the optimal decision at the current epoch can be
established using recursive optimality in the following equation:

Recursive optimality:

vðstÞ¼λN
D
max r st,aðstð Þ½ Þþ P

8stþ 1

pðstþ1

���st,aðstÞÞvðstþ1Þ�

where

pðstþ1

���st,aðstÞÞ is the state transition probability at time t given state

st and action aðstÞ
Decision variable: a stð Þ¼

1 if statin treatment is initiated

0 if statin treatment is delayed

(

where if at0 ¼1, then a stð Þ¼1,8t4 t0

Where uncertainty in the model existed based on recommended
statin starting therapy, the results of the optimization approach
were tested for the low, medium, and high cost of statins across a
willingness-to-pay threshold ranging from $25,000/QALY to
$100,000/QALY in $25,000 increments. This additional analysis
provides insight into the value of the model recommendations
and whether the recommendation results from using a low- or
high-value proposition as a starting point. The model was also
calibrated to best available data from that time when statins did
not have as much information on long-term effectiveness. Given
that postmarket knowledge of statin effectiveness is greater now
than in 2009, these results express uncertainty where greater
knowledge now exists.

Report Results

The MDP model also unifies results across the three risk models,
where there is noticeable variability in recommended treatment
between studies. The Framingham model determines never to
initiate statins for three of the nine metabolic states. The
Archimedes risk model does not offer statin start points for all
metabolic states, and predicts statin start points based on
statistical inference rather than by generalizable samples of
patients, making the model prone to statistical error.

In contrast, the UKPDS and Framingham risk models fit
smoothed Weibull distributions across a well-defined population
sample. The UKPDS and the Framingham model give numerically
different, but qualitatively similar, optimal statin start time
results. However, using the Archimedes risk model in the opti-
mization did not produce a smooth pattern for initiating statin
therapy as observed with the UKPDS and Framingham models.
The authors attribute this to “statistical error” associated with the
Archimedes estimates.

The study demonstrates the value of the MDP framework,
providing insight into when to start statin treatment. As one
would expect, the model generally shows that statins should be
started earlier for more severely ill patients. Exactly how early
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depends on the severity of the patient’s condition, but also on
model parameters and which risk model is used. Interestingly, for
less severe and elderly patients, from the results of Figure in the
article [3], it seems that it may not be worthwhile starting statin
therapy at all. Women are in general recommended to start statin
treatment later than men.

Decision Making

The study is an example of how the MDP modeling approach can
provide personalized and clinically relevant recommendations
(for patients of type x, start statins at age y) and integrate and
compare different data sources and risk models. As there are
many questions about the right time to start, stop, and switch
treatment in medical care, this seems an underused and highly
promising framework for economic evaluation.

Due to the dynamic nature of the MDP modeling, it provides
the ability to personalize decisions, as opposed to one-size-fits-all
policies and guidelines established for medical decisions. How-
ever, similar to other approaches, MDPs have assumptions based
on data and/or the structure of the model. Once the results are
obtained, sensitivity analyses can be performed (e.g., for some
range of variation in the transition probabilities). Once satisfied
with the solution, translation is in the form of guidelines and/or
decision tools. Owing to the modeling and computational nature
of the MDPs, they can easily be translated into decision support
systems to use in practice.

This example showed the use of MDP for optimizing the start
time of statin therapy. MDPs can be used for other similar
decision-making problems for breast or prostate cancer screen-
ing, the decision for biopsy, initiating HIV therapy treatment
policies, etc. The underlying theme is focusing on decisions over
time, with decisions at one point affecting future states and
decisions operating under constrained resources. The results of
the optimization models can help establish optimal clinical
guidelines [36].
Conclusion

In this second report, the task force’s primary objective is to
provide an overview of areas where optimization methods can be
applied and describe three case studies illustrating the applica-
tion of constrained optimization methods to critical clinical and
health policy questions. The cases illustrate several major var-
iants of these methods and demonstrate their potential in
complementing the classical economic evaluation, decision-
making framework.

In the first case study, linear programming methods were
used to identify the optimal mix of HPV vaccination and screen-
ing to minimize the number of cervical cancer cases subject to a
budget constraint. Similarly, in the second case study, MDP and
dynamic programming were used to identify the optimal time to
initiate statin therapy in type 2 diabetes patients. The first two
case studies describe the translation of the original problem into
its mathematical formulation as well as its estimation, interpre-
tation, and use. In contrast, the third is an educational case that
allows the reader to work through the formulation of a con-
strained optimization problem using the ISPOR Constrained
Optimization Good Practice Checklist.

The health care sector faces major challenges with regard to
appropriate diagnosis and treatment, allocation of scarce resour-
ces, design of policies, etc. These methods provide an approach
for finding optimal solutions to complex problems in the face of
constraints. As such, they are complementary to and build on the
health economic models and simulation methods that are widely
used to guide clinical and policy decision making.
Constrained optimization methods can improve the current
reimbursement decision-making processes, which take budget
constraints partially into account. In the constrained optimiza-
tion framework, budget constraints can be incorporated explic-
itly, together with other types of constraints, like human resource
or geographical equity constraints. In addition, when there are
numerous treatment options available for treating patients with
a specific condition, constrained optimization might prove to be
an efficient method for developing treatment protocols or guide-
lines compared to the classical economic evaluation framework.

In the current health care landscape, health economic model-
ing is widely used to make reimbursement decisions for new
technologies, particularly outside the United States.

Constrained optimization methods can help decision makers
incorporate related considerations beyond the reimbursement
decision itself, including the best way to integrate the new
technology with the health care delivery system, as well as in
technology disinvestment decisions. These are becoming crucial
as personalized medicine and performance-based payment con-
cepts become more common.

It is important to recognize that application of constrained
optimization methods in health care is still an emerging area and
that there are some challenges that must be addressed. Con-
strained optimization methods can be limited by data availability
and quality, and validating an optimization model can be chal-
lenging. Choosing and applying the appropriate method can be
difficult and require specific expertise. Interpreting results and
knowing which solution algorithm is likely to be best require a
level of methodological understanding and sophistication.

However, despite these obstacles, the application of con-
strained optimization methods to health care decision making
offers substantial potential benefits, which make them a valuable
addition to the arsenal of analytic methods at the disposal of the
researcher. Approaching a problem in the context of mathemat-
ical optimization forces modelers to identify and quantify the
endpoint that they are trying to accomplish. Most importantly,
constrained optimization takes into account the limits placed on
the solution by real-world factors, such as budgets, availability of
treatments, staffing capacity, and patient characteristics. As a
result, implementation of the identified optimal solution is much
more likely to be feasible.

In a disease management problem, by treating patients
optimally we have the potential to improve population health
and enhance the value associated with health care expenditure.
For individual patients, this means providing treatment with the
proper therapy faster. For physicians, this can help provide
optimal health outcomes for their patients, enhance the perform-
ance of their medical practice, and offer more efficient health
care delivery. The task force hopes that these two reports will
encourage modelers to explore the use of optimization methods
and looks forward to seeing more published optimization appli-
cations and the development of further guidelines and resources
as the use of these methods becomes more widespread.
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