Standardized, Modular Parallelization Platform for Microfluidic Large-Scale Integration Cell Culturing Chips

Anke R. Vollertsen1,2-4, Stefan Dekker1-3, Britt A.M. Wesselink1, Rob Haverkate1, Johan G. Bomer1, Hoon Suk Rho2, Robert Jan Boom3, Maciej Skolimowski2, Marko Blom2, Andries D. van der Meer4, Robert Passier4, Albert van den Berg1, Mathieu Odijk1

1BIOS Lab-on-a-Chip Group, University of Twente, NETHERLANDS,
2Institute for Technology-Inspired Regenerative Medicine, Maastricht University, NETHERLANDS,
3Micronit Microtechnologies, NETHERLANDS, and
4Applied Stem Cell Technology Group, University of Twente, NETHERLANDS

Introduction

Engineering challenges
As an engineer, you may have solutions to challenges such as robustness and high throughput, but don't know how to implement them in a specific biological setting.

Biology challenges
Here we present a modular system with standardized interfacing to parallelize chips with 64 chambers each for high-throughput cell culturing.

Standardized Design

Chip with 64 chambers

Fluidic Platform

Bolts for clamp
Control lines to chip ports
Platform valve control lines
Platform valves forming a chip ON/OFF switch

3 Results

I – Valve characterization

A) Measurement principle: Valve in chip

B) Flow at pumping vs. gating pressures:

One valve (no. 7): 13 valves, \(p_{\text{pump}} = 1.4 \text{ bar} \)

C) Pressure storage in chip control channels:

II – Platform proof of concept

A) Fully assembled platform with 3 chips

B) Individual chip operation:

III – Cell culturing in chambers

A) Chip coating:

- Channels are coated with 100 \(\mu \text{g/mL} \) PLL-g-PEG (poly(L-lysine) poly(ethylene glycol)) to prevent cell adherence.

- Chambers are coated with 0.1 mg/mL collagen-I to promote cell adherence.

B) Endothelial cells after 40 hours:

Brightfield images of chambers 33-48:

Human umbilical vein endothelial cells (HUVECs) were seeded at near confluency and cultured for 40 hours. Fresh medium was flushed through the chambers every 3 hours.

Conclusion & Outlook

Conclusion:
- Parallelization of 3 modular chips on a platform with ON/OFF switch
- 192 independently addressable chambers in total
- Over 2300 valves in the chips are controlled through the platform

Next step:
- Test different concentrations of tumor necrosis factor (TNF-\(\alpha \)) on HUVECs

Outlook:
- Extend library of standardized, modular chips to organs-on-chips field

References

Acknowledgements

This work was supported by the VESCEL ERC Advanced Grant to A. van den Berg (Grant no. 669768) and the MfManufacturing ESCEL Joint Undertaking (Grant no. 621275-2). The authors also thank Hans de Boer and Jan van Nieuwkasteele for their help with the microscope set-up.