EFFECT OF AROMATIC OIL ON PHASE DYNAMICS OF S-SBR/BR BLENDS

A. Rathi¹, M. Hernández², C. Bergmann³, J. Trimbach³, W. Dierkes¹, A. Blume¹

¹University of Twente, Enschede (NL)
²Technische Universiteit Delft, Delft (NL)
³H&R Ölwerke Schindler GmbH, Hamburg (D)

February 17, 2016
Presented at the Tire Technology Expo & Conference
Hannover, Germany
PASSENGER CAR TIRE TREAD

Main performance indicators:

- Rolling Resistance (RR)
- Abrasion Resistance (AR)
- Wet Skid Resistance (WSR)

ROAD SAFETY!
MOTIVATION:

EC No 552/2009 - Shift to ‘safe’ process oils with lower PAHs content

Effects on compound properties:

- Improvement in the RR.
- Negative effect on the WSR and AR.

*Roughly drawn for UHP tread compound; Source: ETRMA
SBR/BR blends in different ratios (commonly, 50:50 and 70:30)

Mol.wt. Styrene/Vinyl

- High-cis BR
- S-SBR/BR (50:50/70:30)
- WSR
- Tg
- RR

Process Oils:

- **Improve processability**: increase the scope of using high mol.wt. polymers
- **Improve physical properties**: elasticity, flex life, aids filler dispersion.
- **Extend the rubber compound**: increases the free volume of the compound, thereby increasing filler loading capacity
- **Reduce the cost of final compound**
POLYMERS:

Functionalized solution styrene-butadiene copolymer (FsS-SBR)

\[
\begin{align*}
\text{T}_g &= -25 \degree C \\
\end{align*}
\]

High-cis polybutadiene (BR)**

\[
\begin{align*}
\text{T}_g &= -109 \degree C \\
\end{align*}
\]

PROCESS OIL:

*TDAE***, a low PAH content aromatic oil

\[
\begin{align*}
\text{T}_g &= -49 \degree C \\
\end{align*}
\]

*Supplied by Trinseo GmbH **Supplied by Lanxess GmbH ***Supplied by H&R Ölwerke Schindler GmbH
TDAE (Treated Distillate Aromatic Extract)

Two main properties of a process oil

MOLECULAR STRUCTURE
(Polarity or aromaticity)

Determines the degree of compatibility with the rubber

↑Mol.wt. = ↑Viscosity = ↑Shear in banbury mixer and improved mixing/dispersion

MOLECULAR WEIGHT

MATERIALS
Steps in preparation of S-SBR/BR (50/50) blends with 0/10/20 phr TDAE:

1st Stage: Internal Mixer
50 rpm, 50 °C; Oil addition stage

2nd Stage: Two roll mill
R.T.; Curative addition stage

T_{90} measurement (RPA) & vulcanization at 160 °C
STRUCTURE OF S-SBR/BR (50/50) BLENDS

MECHANICAL BLENDING

SOLUTION CASTING

Callan et al., Rubber Chemistry and Technology, 1969.
Scale bar: 2 μ

Inoue et al., Rubber Chemistry and Technology, 1985.
Scale bar: 10 μ
COMPARISON OF T_g^{eff} FROM DSC, DMA, BDS & theoretical model

Differential Scanning Calorimetry (DSC)
www.netzsch-thermal-analysis.com

Dynamic Mechanical Analysis (DMA)
www.paralab.pt

Broadband Dielectric Spectroscopy (BDS)

Lodge and McLeish model

\[
\frac{1}{T_g^{\text{eff(BR)}}} \left(\frac{\phi_{\text{eff(BR)}}}{T_g^{\text{S-SBR}}} \right) + \frac{1 - \phi_{\text{eff(BR)}}}{T_g^{\text{BR}}} = \frac{\phi_{\text{eff(BR)}}}{T_g^{\text{S-SBR}}} + \frac{1 - \phi_{\text{eff(BR)}}}{T_g^{\text{BR}}}
\]
DSC

0 TDAE
10 TDAE
20 TDAE

CHARACTERIZATION

DMA

BDS

Single, broad peak associated with the T_g
SEGMENTAL DYNAMICS OF OIL-EXTENDED FsS-SBR* AND BR

Local motions
<< 1 nm

Segmental mobility
1-2 nm

Chain dynamics
10 nm

SECONDARY RELAXATIONS
(For e.g. β)

GLASS TRANSITION (T_g)

Detectable only at very low frequencies

Reorientation of dipoles on application of an electric field

Net dipole moment $= 0$

$\varepsilon^*(\omega) = \varepsilon' - i\varepsilon'' = \frac{1}{i\omega Z^*(\omega)C_0}$

Measured quantity: Complex dielectric permittivity ($\varepsilon^* = \varepsilon' - i\varepsilon''$)

$\tau = 1/2\pi F_{\text{max}}$

τ is the relaxation time at frequency of maximum loss

Dielectric dispersion curves corresponding to a Havriliak-Negami Process

HAVRILIAK-NEGAMI EQUATION(S) BASED FITTING

A) S-SBR/BR (50/50) _0 phr N2X at T = −30 °C

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\Delta \varepsilon_{\alpha})</th>
<th>(\tau_{\text{HN}} (\alpha)) (s)</th>
<th>b</th>
<th>c</th>
<th>(\Delta \varepsilon_{\alpha'})</th>
<th>(\tau_{\text{HN}} (\alpha')) (s)</th>
<th>b'</th>
<th>c'</th>
</tr>
</thead>
<tbody>
<tr>
<td>No oil</td>
<td>0.226</td>
<td>(1.384 \times 10^{-4})</td>
<td>0.609</td>
<td>0.131</td>
<td>0.089</td>
<td>(5.317 \times 10^{-4})</td>
<td>0.429</td>
<td>1</td>
</tr>
</tbody>
</table>
ACTIVATION PLOT: VOGEL-FÜLCHER-TAMMAN (VFT) EQUATION

\[\tau_{\text{max}} = \tau_0 \exp \left(\frac{B}{T-T_0} \right) \]

- **\(T_g \):** Temperature at which \(\tau_{\text{max}} = 100 \text{ s} \)

MOBILITY (segmental motion)

RESTRICION (segmental motion)
VOGEL-FÜLCHER-TAMMAN (VFT) EQUATION BASED FITTING

A) Pure polymers (S-SBR & BR)_0/10/20 phr TDAE

B) S-SBR/BR (50/50) _0/10/20 phr TDAE

\[-\log(t_{\text{max}}) \]
Calculate the relevant ‘self-concentration’, \(\phi_s \) factor.

Calculate the effective local composition, \(\phi_{\text{eff}} \).

Calculate the \(T_g^{\text{eff}} \) for each phase using a modified Fox equation.

\[
\frac{1}{T_g^{\text{eff}(BR)}} = \frac{\phi_{\text{eff}(BR)}}{T_g^{\text{eff}(BR)}} + \frac{1 - \phi_{\text{eff}(BR)}}{T_g^{\text{eff}(S-SBR)}} + \frac{1 - \phi_{\text{eff}(BR)}}{T_g^{\text{eff}(BR)}}
\]

LODGE & McLEISH MODEL

S-SBR/BR (50/50) Blend

- **S-SBR/BLEND**
- **BR/BLEND**
- **VFT Fitting line**

T_g^{\text{eff}}

- BDS
- Model based

- **S-SBR**
 - -43 °C
 - -42 °C

- **BR**
 - -69 °C
 - -60 °C
CONCLUSIONS

- Decoupling of individual S-SBR and BR phases via BDS.
- Effect of TDAE on the individual phases by observing the change in T_{g}^{eff}.
- Greater effect of the TDAE is observable on the BR phase.
- T_{g}^{eff} values corroborated with the Lodge and McLeish model for dynamics of miscible blends*.

1st step towards the final goal i.e., quantification of the partitioning of TDAE.

*applicable only to the non-oil-extended blends.
FUTURE OUTLOOK

- **2nd step:** To achieve a quantification of the partitioning of TDAE oil in each phase of the S-SBR/BR (50/50) blend.

- To extend the protocol devised for the 50/50 blend to other blend ratios, such as 70/30 and 30/70.
ACKNOWLEDGEMENT

The authors are thankful to H&R Ölwerke Schindler GmbH (Hamburg, Germany) for the scientific, financial and materials support as well as the permission to present this work.
THANK YOU FOR YOUR KIND ATTENTION!

Supposing is good, but finding out is better.

Mark Twain