A Characterization of ET0L and EDT0L Languages*

Peter R.J. Asveld
Department of Applied Mathematics, Twente University of Technology
P.O. Box 217, 7500 AE Enschede, the Netherlands
e-mail: infprja@cs.utwente.nl

Abstract
There exists a PT0L language $L_0$ such that the following holds. A language $L$ is an ET0L language if and only if there exists a mapping $T$ induced by an a-NGSM (nondeterministic generalized sequential machine with accepting states) such that $L = T(L_0)$.

There exists an infinite collection of EPDT0L languages $D_{mn} \subseteq \Sigma^*_{mn}$ ($n \geq m \geq 1$) such that the family EDT0L is characterized in the following way. A language $L$ is an EDT0L language if and only if there exist $n \geq m \geq 1$, a homomorphism $h$ and a regular language $R \subseteq \Sigma^*_{mn}$ such that $L = h(D_{mn} \cap R)$.

1 Introduction
In studying sets closed under a fixed collection of operations—which are usually called algebras or algebraic structures—the sets generated (under those operations) by a finite number of elements have always obtained a considerable amount of attention. Thus in (semi)group theory much research has been done on finitely generated (semi)groups.

During the last few years families of languages closed under certain well-known operations have been intensively studied, which led to the introduction of the AFL concept (Abstract Family of Languages; cf. [7]). One of the major subjects in this field consists of the finitely generated or equivalently, the so-called principal (semi-)AFL’s [8].

In this note we show that the family of ET0L languages can be obtained from a single PT0L language using only one derived operation instead of the complete collection of AFL-operations. As a direct consequence we obtain the well-known result that the family ET0L

---

*This research has been supported by the Netherlands Organization for the Advancement of Pure Research (ZWO).
is a full principal AFL [3]. Moreover, we show a deterministic counterpart for the family EDT0L of Culik’s [3] characterization of the family ET0L.

This note is organized in the following way. Section 2 contains some preliminaries from formal language theory and in particular from parallel rewriting. In section 3 we recall a characterization of the family ET0L due to Culik [3] which enables us to prove the existence of a PT0L language \( L_0 \) such that each ET0L language is the image of \( L_0 \) under an appropriate a-NGSM mapping (i.e., a mapping induced by a nondeterministic generalized sequential machine with accepting states). Section 4 deals with the deterministic analogue of Culik’s result, characterizing the family EDT0L. Finally, in section 5 we will consider a few corollaries and applications.

2 Preliminaries

We refer to [12] or to [10] for terminology and basic facts from formal language theory and to [9] for elementary results in the theory of parallel rewriting.

A finite substitution \( \tau \) over an alphabet \( V \) is a function mapping each symbol \( \alpha \) from \( V \) into a nonempty finite language over \( V \):

\[
\tau(\alpha) \subseteq V^*.
\]

We extend \( \tau \) in the usual way to words by \( \tau(\lambda) = \{\lambda\} \) (\( \lambda \) stands for the empty word) and \( \tau(\alpha_1 \cdots \alpha_n) = \tau(\alpha_1) \cdots \tau(\alpha_n) \) and to languages by \( \tau(L) = \bigcup\{\tau(x) \mid x \in L\} \). A homomorphism over \( V \) is a particular kind of finite substitution, namely a substitution such that for each symbol \( \alpha \) from \( V \), the language \( \tau(\alpha) \) contains exactly one word over \( V \).

Definition. An ET0L system is a 4-tuple \( G = (V, \Sigma, U, \omega) \) where \( V \) (called the alphabet of \( G \)) and \( \Sigma \subseteq V \) (called the terminal alphabet) are finite sets. \( \omega \in V^+ \) is the initial word of \( G \). \( U \) is a finite set of finite substitutions over \( V \).

The language \( L(G) \) generated by \( G \) is defined by

\[
L(G) = (\bigcup \tau_{i_1} \cdots \tau_{i_n}(S)) \cap \Sigma^*.
\]

where the union is taken over all \( n \)-tuples \((i_1, \ldots, i_n)\) \((n = 0, 1, 2 \ldots)\) with \( \tau_{i_j} \) in \( U \) for each \( j \) \((1 \leq j \leq n)\).

An EDT0L system is an ET0L system where all finite substitutions over \( V \) in \( U \) are homomorphisms over \( V \). A T0L (DT0L) system is an ET0L (EDT0L) system with \( V = \Sigma \). An X-system \( G \) is called propagating —denoted by \( PX \) — when all finite substitutions (or homomorphisms) involved in \( G \) are \( \lambda \)-free. Here \( X \) stands for ET0L, EDT0L, T0L and DT0L.

The family of languages generated by ET0L systems is denoted by ET0L. The same notational convention is applied to EDT0L, T0L and DT0L as well as to their propagating counterparts.

Examples. (1) Let \( G_{mn} = (V_{mn}, \Sigma_{mn}, U, S) \) where \( \Sigma_{mn} = \{a_i \mid 1 \leq i \leq m\} \cup \{b_{kj}, b'_{kj} \mid 1 \leq k \leq n; \ j = 1, 2\}; V_{mn} = \Sigma_{mn} \cup \{S, F\} \) and \( U = \{\tau_1, \tau_2\} \) for \( n \geq m \geq 1 \). The finite substitutions are defined for \( j = 1, 2 \) by
\[ \tau_j(S) = \{b_{kj}Sb'_{kj}S \mid 1 \leq k \leq n\} \cup \{a_i \mid 1 \leq i \leq m\}, \]
\[ \tau_j(a_i) = \{F\} \quad \text{for each } i \ (1 \leq i \leq m), \]
\[ \tau_j(\alpha) = \{\alpha\} \quad \text{for } \alpha \in \{F\} \cup \{b_{kj}, b'_{kj} \mid 1 \leq k \leq n; \ j = 1, 2\}. \]

Clearly, \( L(G_{mn}) \) is an EPT0L language for each \( n \geq m \geq 1 \).

(2) Consider the PT0L system \( G = (\Sigma, \Sigma, U, e) \) where
\[ \Sigma = \{c_1, c_2, d_1, d'_1, d_2, d'_2, e, e_1, e_2, f\} \]
and \( U = \{\tau_1, \tau_2, \tau_3\} \). The finite substitutions are defined by
\[ \tau_1(e) = \tau_1(e_1) = \tau_1(c_1) = \{fd_1e_1d'_1c_1\}, \]
\[ \tau_1(e_2) = \{e_2, d_2e_2d'_2\}; \]
\[ \tau_1(\alpha) = \{\alpha\} \quad \text{for } \alpha \in \{c_2, d_1, d'_1, d_2, d'_2, f\}, \]
\[ \tau_2(e) = \tau_2(e_2) = \tau_2(c_2) = \{fd_2e_2d'_2c_2\}, \]
\[ \tau_2(e_1) = \{e_1, d_1e_1d'_1\}; \]
\[ \tau_2(\alpha) = \{\alpha\} \quad \text{for } \alpha \in \{c_1, d_1, d'_1, d_2, d'_2, f\}, \]
\[ \tau_3(e_1) = \tau_3(c_1) = \tau_3(e_2) = \tau_3(c_2) = \{e\}, \]
\[ \tau_3(\alpha) = \{\alpha\} \quad \text{for } \alpha \in \{d_1, d'_1, d_2, d'_2, e, f\}. \]

(3) Let \( G^D_{mn} = (V_{mn}, \Sigma_{mn}, U, S_1) \) where \( \Sigma_{mn} \) is as in Example (1); \( V_{mn} = \Sigma_{mn} \cup \{F, S_1, S_2, \ldots, S_n\} \) for \( n \geq m \geq 1 \).

Let \( \Phi_n \) be the set of all total functions from \( \{1, \ldots, n\} \) into \( \{1, \ldots, n\} \times \{1, \ldots, n\} \); then clearly \( \Phi_n \) is a finite set. \( U \) is defined by \( U = \{\tau\} \cup \{\tau_\varphi \mid \varphi \in \Phi_n; \ j = 1, 2\} \) whereas the finite substitutions on their turn are given for each \( \varphi \) in \( \Phi_n \) and \( j = 1, 2 \) by
\[ \tau_\varphi(S_k) = \{b_{kj}S_kb'_{kj}S_q\} \quad \text{if and only if } \varphi(k) = (p, q) \ (1 \leq k \leq n), \]
\[ \tau_\varphi(a_i) = \{F\} \quad \text{for each } i \ (1 \leq i \leq m), \]
\[ \tau_\varphi(\alpha) = \{\alpha\} \quad \text{otherwise}, \]
\[ \tau(S_i) = \{a_i\} \quad \text{for each } i \ (1 \leq i \leq m), \]
\[ \tau(\alpha) = \{\alpha\} \quad \text{otherwise}. \]

Obviously \( L(G^D_{mn}) \) is an EPDT0L language for each \( n \geq m \geq 1 \). \( \square \)

The following result on ET0L languages is due to Rozenberg [11] and has been generalized in [1] in order to cover for instance the EDT0L case.
Lemma 2.1. For each ET0L (EDT0L) system with an arbitrary number of finite substitutions (homomorphisms) there exists an ET0L (EDT0L) system with only two finite substitutions (homomorphisms) generating the very same language. □

Using a simple proof technique (cf. [3]) this can be easily modified into

Lemma 2.2. Let \( L \subseteq \Sigma^* \) be an ET0L (EDT0L) language and let \( $ \) be a symbol not in \( \Sigma \). Then there exists an EPT0L (EPDT0L) system \( G = (V, \Sigma \cup \{ $ \}, U, S) \) with \( U = \{ \tau_1, \tau_2, \tau_3 \} \) such that for each \( \alpha \) in \( V - \Sigma - \{ $ \} \), \( \tau_i(\alpha) \subseteq (V - \Sigma)^2 \) \((i = 1, 2)\), \( \tau_3(\alpha) \subseteq \Sigma \cup \{ $ \} \), \( \tau_i(\alpha) = \{ \alpha \} \) if and only if \( \alpha \in \Sigma \cup \{ $ \} \) and \( L = h_0(L(G)) \), where \( h_0 \) is the homomorphism defined by \( h_0(a) = a \) for \( a \) in \( \Sigma \) and \( h_0($) = \lambda \). □

A family of languages is called an AFL (Abstract Family of Languages) when it is closed under union, concatenation, Kleene +, \( \lambda \)-free homomorphism, inverse homomorphism and intersection with regular languages. An AFL is a full AFL when it is also closed under arbitrary homomorphisms. Each full AFL is closed under a-NGSM (and a-GSM) mappings —i.e., mappings induced by nondeterministic (deterministic, respectively) generalized sequential machines with accepting states— which we will define now.

Definition. A nondeterministic generalized sequential machine with accepting states (a-NGSM) is a 6-tuple \( T = (Q, \Delta_1, \Delta_2, \delta, q_0, Q_F) \) where

- \( Q, \Delta_1 \) and \( \Delta_2 \) are finite sets (set of states, input alphabet, and output alphabet, respectively),
- \( q_0 \in Q \) is the initial state,
- \( Q_F \subseteq Q \) is the set of final states,
- \( \delta \) is a mapping from \( Q \times \Delta_1 \) into the finite subsets of \( Q \times \Delta_2 \).

We extend \( \delta \) to a mapping from \( Q \times \Delta_1^* \) into finite subsets of \( Q \times \Delta_2^* \) as follows:

- \( \delta(q, \lambda) = \{(q, \lambda)\} \),
- \( \delta(q, \omega \alpha) = \{(q', \varphi_1 \varphi_2) \mid \exists q'' : (q'', \varphi_1) \in \delta(q, \omega) \text{ and } (q', \varphi_2) \in \delta(q'', \alpha)\} \), where \( q \in Q \), \( \alpha \in \Delta_1 \) and \( \omega \in \Delta_1^* \).

For each a-NGSM \( T = (Q, \Delta_1, \Delta_2, \delta, q_0, Q_F) \) the function \( T \) from \( \Delta_1^* \) into subsets of \( \Delta_2^* \), defined by \( T(\omega) = \{ \varphi \mid (q, \varphi) \in \delta(q_0, \omega) \text{ for some } q \in Q_F \} \), is called an a-NGSM mapping. We extend the function \( T \) in the usual way to languages: \( T(L) = \bigcup \{ T(\omega) \mid \omega \in L \} \).

An a-NGSM is called deterministic (an a-GSM) when \( \delta \) is a mapping from \( Q \times \Delta_1 \) into \( Q \times \Delta_2 \).

We conclude this section with a few elementary results concerning a-NGSM and a-GSM mappings. We start with a characterization of a-NGSM mappings; cf. [10].

Lemma 2.3. A family \( K \) is closed under a-NGSM mappings if and only if \( K \) is closed under finite substitution and intersection with regular languages. □
A similar characterization for a-GSM mappings does not hold; however, it is well known that, when a family is closed under a-GSM mappings, it is also closed under (arbitrary) homomorphism and intersection with regular languages.

Applying rather standard methods in machine theory, it is straightforward to prove (cf. [2])

**Lemma 2.4.** The class of a-NGSM (a-GSM) mappings is closed under composition, i.e., if $T_1$ and $T_2$ are two a-NGSM’s (a-GSM’s), then there exists an a-NGSM (a-GSM, respectively) $T$, such that $T_2T_1(L) = T(L)$ for each language $L$. □

Finally, we mention the properties of the families ET0L and EDT0L with respect to these machine mappings.

**Lemma 2.5.**
(1) The family ET0L is closed under a-NGSM mappings.
(2) The family EDT0L is closed under a-GSM mappings, but not under a-NGSM mappings.

**Proof.** (1) This is a direct consequence of the fact that ET0L is a full AFL [11].
(2) The closure of EDT0L under a-GSM mappings has been established in [5] and [1]. Since EDT0L is not closed under finite substitution [4], the second part of this proposition is immediately clear from Lemma 2.3. □

### 3 Characterization of ET0L Languages

Let $L_{mn} \subseteq \Sigma_{mn}$ denote the language generated by the EPT0L system $G_{mn}$ of Example (1). First we recall a result from [3] which enables us to establish the characterization we are looking for.

**Theorem 3.1.** [3] A language $L$ is an ET0L language if and only if there exist $n \geq m \geq 1$, a homomorphism $h$ on $\Sigma^*_{mn}$ and a regular language $R \subseteq \Sigma^*_{mn}$ such that $L = h(L_{mn} \cap R)$. □

We denote the language generated by the PT0L system $G$ of Example (2) by $L_0$.

**Theorem 3.2.** A language $L$ is an ET0L language if and only if there exists an a-NGSM mapping $T$ such that $L$ equals the image of the PT0L language $L_0$ under $T$, i.e., $L = T(L_0)$. 

**Proof.** Since PT0L $\subseteq$ ET0L, we have by Lemma 2.5(1): $\{T(L_0) \mid T \text{ is an a-NGSM mapping} \} \subseteq$ ET0L.

In order to show the opposite containment, Theorem 3.1 implies that it suffices to prove that for each $n \geq m \geq 1$, $L_{mn}$ can be obtained from $L_0$ by means of an appropriate a-NGSM mapping. Note that for each $L$ in the family ET0L there exists an appropriate a-NGSM mapping $T$ such that $L = T(L_{mn})$. Moreover, by Lemma 2.4, a-NGSM mappings are closed under composition.

Consider the a-NGSM $T_{mn} = (Q, \Sigma, \Sigma_{mn}, \delta, q_0, Q_F)$ where $\Sigma$ and $\Sigma_{mn}$ are the alphabets of $L_0$ and $L_{mn}$; cf. Examples (1) and (2), respectively. Let $Q_F = \{q_f\}$ and $Q = \{q_0, q_f\} \cup \{[k, j], \langle k, j \rangle \mid 1 \leq k \leq n; \ j = 1, 2\}$. The mapping $\delta$ is defined by
\[ \delta(q_0, e) = \{(q_f, a_i) \mid 1 \leq i \leq n \}, \]
\[ \delta(q_0, f) = \{(q_0, \lambda)\}, \]
\[ \delta(q_0, d_j) = \{([1, j], \lambda)\}, \]
\[ \delta([k, j], d_j) = \{([k+1, j], \lambda)\} \quad 1 \leq k \leq n-1, \]
\[ \delta([k, j], f) = \{(q_0, b_{kj})\} \quad 1 \leq k \leq n, \]
\[ \delta([k, j], \alpha) = \{(q_0, b_{kj} a_i) \mid 1 \leq i \leq m\} \quad 1 \leq k \leq n, \alpha \in \{c_1, c_2, e_1, e_2, e\}, \]
\[ \delta(q_0, d'_j) = \{([1, j], \lambda)\}, \]
\[ \delta([k, j], d'_j) = \{([k+1, j], \lambda)\} \quad 1 \leq k \leq n-1, \]
\[ \delta([k, j], \alpha) = \{(q, b'_{kj} a_i) \mid q \in \{q_0, q_f\}; 1 \leq i \leq m\} \quad 1 \leq k \leq n, \alpha \in \{c_1, c_2, e_1, e_2, e\}; \]
\[ \delta([k, j], f) = \{(q_0, b'_{kj} a_i) \mid 1 \leq i \leq m\} \quad 1 \leq k \leq n. \]

The effect of the a-NGSM mapping \( T_{mn} \) is rather simple. In the first place it changes any occurrence of \( c_1, c_2, c_1, e_2 \) or \( e \) nondeterministically into an \( a_i \) (\( 1 \leq i \leq m \)). Secondly, it decodes strings like \( d_j^k \) and \( d_j^k \) into \( b_{kj} \) and \( b'_{kj} \) respectively whenever \( 1 \leq k \leq n \). But when \( T_{mn} \) reads in any particular input string a sequence of more than \( n \) consecutive occurrences of \( d_j \) (and \( d'_j \)) then it rejects that input word.

By a straightforward argument, which we leave to the reader, one can show that \( L_{mn} = T_{mn}(L_0) \). \( \square \)

Note that we coded each symbol \( b_{kj} \) (\( b'_{kj} \), respectively) occurring in the language \( L_{mn} \) into \( fd_j^k \) (\( fd_j^k \); cf. the definition of \( L_0 \)), where the symbol \( f \) was introduced in order to separate the codes of different (occurrences of) \( b_{kj} \)’s (and \( b'_{kj} \)’s, respectively). When the numbers \( n \) and \( m \) are fixed an a-NGSM is able to perform the decoding process.

4 Characterization of EDT0L Languages

This section is devoted to establish a deterministic counterpart of Theorem 3.1.

For each \( n \geq m \geq 1 \), let \( D_{mn} \) denote the language generated by the EPDT0L system \( G_{mn}^D \) of Example (3).

**Theorem 4.1.** A language \( L \) is an EDT0L language if and only if there exist \( n \geq m \geq 1 \), a homomorphism \( h \) on \( \Sigma_{mn}^* \), and a regular language \( R_L \subseteq \Sigma_{mn}^* \), such that \( L = h(D_{mn} \cap R_L) \).

**Proof.** Let \( L \subseteq \Sigma_{mn}^* \) be an EDT0L language and let \( L = h_0(L(G)) \) where \( G = (V, \Sigma \cup \{\$\}, U, S) \) is the EDT0L system and \( h_0 \) is the homomorphism according to Lemma 2.2. Let \( \Sigma_0 = \Sigma \cup \{\$\} = \{a_1, \ldots, a_m\} \) and let \( n \) be the number of nonterminal symbols in \( V \), i.e., \( V - \Sigma_0 = \{A_1, \ldots, A_n\} \). The alphabet \( \Sigma_{mn} \) was already introduced in Example (3). (Note that \( \Sigma_0 \subseteq \Sigma_{mn} \).)

Consider the right-linear grammar \( G_L = (V \cup \Sigma_{mn}, \Sigma_{mn}, P_L, S) \) where the set of productions is defined in the following way:
(1) if \( \tau_3(A) = \{a\} \), then \( A \rightarrow a \) is in \( \mathcal{P}_L \), i.e., \( A \in V - \Sigma_0; \ a \in \Sigma_0 \).

(2) if \( \tau_j(A_k) = \{BC\} \), \( (j = 1, 2; \ A, B, C \in V - \Sigma_0) \), then

\[ \begin{align*}
(2.1) & \quad A_k \rightarrow b_{kj} B \text{ is in } \mathcal{P}_L, \text{ and} \\
(2.2) & \quad A \rightarrow ab_{kj} C \text{ is in } \mathcal{P}_L \text{ for each } A \text{ such that } \tau_3(A) = \{a\}.
\end{align*} \]

Now, let \( R_L \) be the regular language generated by \( G_L \) and let \( h_1 \) be the homomorphism on \( \Sigma_{mn} \) defined by

\[ \begin{align*}
h_1(\alpha) = \alpha & \quad \text{if } \alpha \in \Sigma_0, \\
h_1(\alpha) = \lambda & \quad \text{if } \alpha \in \Sigma_{mn} - \Sigma_0.
\end{align*} \]

By means of induction on the derivation length one can prove that \( h_1(D_{mn} \cap R_L) = L(G) \). The proof is similar to the case of context-free languages (cf. [12] or [6]) or to the case of ET0L languages (cf. [3]) and is left to the reader.

We define the homomorphism \( h \) as the composition of \( h_0 \) (cf. Lemma 2.2) and \( h_1 \), i.e., \( h(\alpha) = h_0 h_1(\alpha) \) for \( \alpha \) in \( \Sigma_{mn} \). Clearly, \( L = h(D_{mn} \cap R_L) \) holds for an arbitrary EDT0L language \( L \).

Finally, since for each \( n \geq m \geq 1 \), \( D_{mn} \in \mathcal{EPDT0L} \subseteq \mathcal{EDT0L} \) and \( \mathcal{EDT0L} \) is closed under arbitrary homomorphism and intersection with regular languages (Lemma 2.5 and the remark preceding Lemma 2.4), we have that \( h(D_{mn} \cap R) \) is in \( \mathcal{EDT0L} \) for each homomorphism \( h \) and each regular language \( R \). \( \square \)

5 Applications

Let SF denote the family of (context-free) sentential form languages, i.e., languages generated by grammars \( G = (\Sigma, P, \omega) \) with \( \omega \in \Sigma^+ \), \( P \subseteq \Sigma \times \Sigma^* \), \( P \) is finite and the derivation relation "\( \Rightarrow \)" is as in the context-free case [13].

**Example.** (4) Let \( G = (\Sigma, P, c) \) where \( \Sigma = \{a, b, a', b', c\} \) and \( P = \{ c \rightarrow \lambda, c \rightarrow aca'c, c \rightarrow bcb'c \} \). Then \( L(G) \) is an SF language and \( L(G) \cap \{a, b, a', b'\}^* \) is the Dyck language \( D_2 \) over \( \{a, b, a', b'\} \). \( \square \)

In a similar way we can define the family of regular sentential form languages RSF, i.e., languages generated by SF grammars under the restricted derivation relation "\( \Rightarrow_R \)”, defined by \( \varphi \Rightarrow_R \psi \) if and only if there exist \( \alpha \) in \( \Sigma \), \( \omega_0, \omega \) in \( \Sigma^* \) such that

\[ \begin{align*}
(1) & \quad \varphi = \omega_0 \alpha, \\
(2) & \quad \psi = \omega_0 \omega, \quad \text{and} \\
(3) & \quad (\alpha, \omega) \text{ is in } P.
\end{align*} \]

**Example.** (5) Consider \( G = (\Sigma, P, a) \) where \( \Sigma = \{a\} \) and \( P = \{ a \rightarrow aa \} \). Clearly, \( L(G) = \{a^n \mid n \geq 1\} \). \( \square \)
Now we recall a well-known result on context-free languages usually referred to as the
Chomsky-Schützenberger Theorem; cf. [12] or [6].

**Theorem 5.1.** For each context-free language \( L \) over an alphabet \( \Sigma \) of \( m \) symbols there
exist an alphabet \( \Sigma_0 \) of \( 2m + 4 \) symbols, a Dyck language \( D_m \) over \( \Sigma_0 \), a homomorphism
\( h : \Sigma_0 \to \Sigma \) and a regular language \( R \subseteq \Sigma_0^* \) such that \( L = h(D_m \cap R) \).

Let \( L_2 \) be the language generated by the SF grammar of Example (4). Completely
analogous to the derivation of Theorem 3.2 from Theorem 3.1, we obtain from Theorem
5.1 the following characterization.

**Theorem 5.2.** A language \( L \) is context-free if and only if there exists an \( a \)-NGSM
mapping \( T \) such that \( L \) equals the image of the SF language \( L_2 \) under \( T \), i.e., \( L = T(L_2) \).

In [1] a family closed under finite substitution and intersection with regular languages,
containing a nontrivial language (i.e., a language containing at least one nonempty word)
was called a prequasoid. A prequasoid (full AFL) \( K \) is called full principal if and only if \( K \)
contains a language \( L \) such that \( K \) equals the smallest prequasoid (full AFL, respectively)\(^1\)
that contains the language \( L \). In that particular case the language \( L \) is called a full
generator of \( K \).

**Corollary 5.3.** The families of ET0L, context-free, and regular languages are full principal
prequasoids. Moreover, there exists a full generator in the corresponding family of sentential
form languages (i.e., in T0L or even in PT0L, in SF, and in RSF, respectively).

**Proof.** The former two cases are direct consequences of Theorems 3.2 and 5.2. The
smallest prequasoid containing an arbitrary infinite regular language equals the family of
regular languages [1]. In particular the RSF language of Example (5) is a full generator.

This corollary immediately implies other well-known results, obtained by Culik [3] and
Ginsburg & Greibach [8], respectively.

**Corollary 5.4.** The families of ET0L, context-free and regular languages are full principal
AFL’s.

In order to get Theorem 3.2, starting from Theorem 3.1, we did the following:

(i) For each \( n \geq m \geq 1 \), we defined the homomorphism \( h_n \) by

\[ h_n : \Sigma_0 \to \Sigma \]

\[ h_n = \begin{cases} h, & \text{if } n = 1, \\ h_{n-1}, & \text{if } n > 1. \end{cases} \]

\(^1\) A full AFL \( K \) is full principal if and only if \( K \) is finitely generated, i.e., there exists a finite number of
languages \( L_1, L_2, \ldots, L_n \) such that \( K \) is the smallest full AFL that contains the languages \( L_1, L_2, \ldots, L_n \).
A similar result applies to full semi-AFL’s and analogous types of languages families that are closed under
union and a-NGSM mappings; cf. [8] or [7]. However, such an equivalence does not hold for full principal
prequasoids because —although being closed under a-NGSM mappings— in general prequasoid are not
closed under union.
\[ h_n(a_i) = e, \]
\[ h_n(b_{kj}) = fd_j^k \quad \text{and} \]
\[ h_n(b_{kj}) = d_j^k. \]

(ii) It turned out that \( \bigcup \{ h_n(L_{mn}) \mid 1 \leq m \leq n \} = L_C \) is in the family ET0L.

(iii) It was even possible to replace \( L_C \) by a corresponding sentential form (i.e., T0L or even PT0L) language.

A similar procedure was also followed in case of context-free languages to obtain Theorem 5.2 from Theorem 5.1.

However, in the cases of EDT0L and E0L languages (i.e., languages generated by ET0L systems where consists of exactly one finite substitution), it seems to be very likely that such a construction is impossible, which may be caused by a non-containment of the language \( L_C \) in the original family.

References

1. P.R.J. Asveld, Controlled iteration grammars and full hyper-AFL’s, TW-memorandum no. 114 (1976), Department of Applied Mathematics, Twente University of Technology, Enschede, The Netherlands\(^2\).

2. P.R.J. Asveld, Extensions of families of languages: Lattices of full X-AFL’s, TW-memorandum no. 124 (1976), Department of Applied Mathematics, Twente University of Technology, Enschede, The Netherlands.


5. J. Engelfriet, Top-down tree transducers with regular look-ahead, DIAMI PB-49 (1975), University of Arhus, Arhus, Denmark\(^3\).


\(^2\)A revised version appeared as: P.R.J. Asveld, Controlled iteration grammars and full hyper-AFL’s, Inform. Contr. 34 (1977) 248–269.

\(^3\)This report appeared as: J. Engelfriet, Top-down tree transducers with regular look-ahead, Math. Systems Theory 10 (1976/7) 289–303.


