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Abstract: We present a mathematical framework for modelling dependence between biometric comparison scores in likelihood-
based fusion by copula models. The pseudo-maximum likelihood estimator (PMLE) for the copula parameters and its asymptotic
performance are studied. For a given objective performance measure in a realistic scenario, a resampling method for choosing the
best copula pair is proposed. Finally, the proposed method is tested on some public biometric databases from fingerprint, face,
speaker, and video-based gait recognitions under some common objective performance measures: maximizing acceptance rate
at fixed false acceptance rate, minimizing half total error rate, and minimizing discrimination loss.

1 Introduction

In a biometric verification system, biometric samples (images of
faces, fingerprints, voices, gaits, etc.) of people are compared and
classifiers indicate the level of similarity between any pair of samples
by a comparison score. If two samples of the same person are com-
pared, a genuine score is obtained. If a comparison concerns samples
of different people, the resulting score is called an impostor score.
Depending on the application, a biometric verification system may
give either a hard decision or a soft decision. Hard decision means
that the system decides whether two biometric samples (query and
template) are from the same individual or not by comparing the score
to a threshold. On the other hand, the soft decision can be used in a
forensic scenario by only giving the likelihood ratio (LR) value as an
evidential value and let the final decision to the judge [4]. A common
performance measure for this scenario is the cost of log likelihood
ratio that can be decomposed into discrimination and calibration
performance [2].

When our biometric system has two or more classifiers, one has
to fuse the resulting multiple scores into a new score, which is called
score level fusion. It is convenient if the fused score is again an
LR because: (1) it is optimal for standard biometric verification [20]
and (2) it reflects evidential value in forensic individualization [4].
By assuming independence between scores, the fused LR can be
computed as the product of the individual likelihood ratios of the
classifiers (henceforth called PLR fusion). However, the score level
fusion problem becomes difficult if the scores are dependent. In this
paper, we propose a score level fusion method with the following
advantages.

1. The fused score is an LR.
2. It can deal with dependent scores.
3. It is available as an open-source software framework, pro-
grammed in Matlab∗, that implements the method.

This paper uses the copula concept to handle dependence between
scores. Although the copula model has already been used in [11, 29–
31] for some different scenarios, none of them provides analytically

∗http://scs.ewi.utwente.nl/downloads/show,Copula%20Fusion%20Framework/

how this model is built and why the estimation of parameters deter-
mining the model is reliable. After explaining some related works
in Section 2, this paper will explain how a copula model splits the
LR computation for two or more classifiers into a product of the
individual likelihood ratios and a correction factor in Section 3.
Section 4 introduces a semiparametric model of LR-based fusion
and subsequently provides an estimator of the proposed model with
its convergence analysis. Detailed procedures to apply for several
different applications of our method is given in Section 5. Finally,
our conclusions are presented in Section 6.

2 Score Level Fusion

There are three categories of score level fusion: transformation-
based [12], classifier-based [13], and density-based (henceforth
called likelihood-ratio-based) [18]. The transformation-based fusion
is done by mapping all components of the vector of comparison
scores to a common domain and applying some simple rules such as
sum, mean, max, med, etc. Apart from its simplicity, it is important
that the training set is representative of the data. For instance, to nor-
malize scores to the unit interval [0,1], one must have the minimum
and maximum scores. However, if the training data has outlier(s)
then this estimation will not be reliable and may destroy the fusion
performance. The classifier-based fusion acts as a classifier of the
vector of the comparison scores to distinguish between genuine and
impostor scores. These two first categories cannot be used in a foren-
sic scenario as the fused score is not always an LR value. The last
category would be optimal for biometric verification if the under-
lying distributions were known according to the Neyman-Pearson
lemma [20]. Moreover, the fused score, as an LR value, can be used
for forensic evidence evaluation [4] in forensic individualization as
a multiplicative factor for the information before analyzing the evi-
dence (prior odds) to get the information after taking the evidence
into account (posterior odds) via the Bayesian framework

Oposterior = LR×Oprior. (1)

The LR is defined as the ratio between the density functions of the
genuine and impostor scores. There are two categories for comput-
ing the LR: (1) estimating the density functions of the genuine and
impostor scores separately and (2) estimating the LR directly. The
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common approaches of the first category are modelling the under-
lying densities parametrically (assuming normal, Weibull, Gaussian
mixture, etc.) and nonparametrically (kernel density estimation, his-
togram binning, etc.). Parametric models are usually chosen because
of their simplicity and nonparametric models because of their flexi-
bility. However, the main problem in using parametric models is the
difficulty in choosing the appropriate model whereas nonparamet-
ric estimators are sensitive to the choice of the bandwidth or other
smoothing parameters, especially for our multivariate case. A com-
mon parametric model to compute the likelihood ratio directly, is
the logistic regression method (Logit) by assuming the LR having
some parametric form such as linear, quadratic, and so on. Although
this method can also be used for the multivariate case [16, 17], the
same problem in choosing an appropriate model will appear. In [24]
a number of fusion methods are compared among which several
likelihood ratio based approaches. However, all of these LR based
methods use a parametric model. On the other hand, the nonpara-
metric approach of Pool Adjacent Violators (PAV), which seems
promising because of its optimality in transforming scores into their
LR values [2], is applicable only for 1-dimensional scores, which
means that it cannot be used to compute the LR for fusion.

Many studies of score level fusion assume independence between
classifiers; see [17, 32, 34]. However, the independence assumption
is not realistic since the scores may rely on the same information. To
incorporate the dependence between classifiers, we propose a semi-
parametric LR-based biometric fusion by modelling the marginal
individual likelihood ratios nonparametrically and the dependence
between them by parametric copulas, to trade off between the limi-
tations of parametric and the flexibility of nonparametric models.

3 Likelihood Ratio Computation via Copula

Suppose we have d classifiers and let (s1, · · · , sd) denote the con-
catenated vector of d similarity scores where sk is the corresponding
score from the k-th classifier for k = 1, . . . , d. Let fgen and fimp
be the densities of genuine and impostor scores, respectively. The
likelihood ratio at a point (s1, · · · , sd) is defined by

LR(s1, · · · , sd) =
fgen(s1, · · · , sd)

fimp(s1, · · · , sd)
. (2)

Using the copula concept, the densities fgen and fimp will be
split into their marginal densities and a factor modelling their
dependence.

A d-variate copula is a distribution function on the unit cube
[0, 1]d, of which the marginals are uniformly distributed. Sklar [26]
shows the existence of a copula for any multivariate distribution
function.

Theorem 1 (Sklar (1959)). Let d ≥ 2, and suppose H is a dis-
tribution function on Rd with 1-dimensional continuous marginal
distribution functions F1, · · · , Fd. Then there exists a unique copula
C so that

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (3)

for every (x1, . . . , xd) ∈ Rd.

By taking the derivative of (3) with respect to xi, we will get the
joint density function

h(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))

×
d∏

i=1

fi(xi) (4)

where c is the copula density and fi is the i-th marginal density for
every i = 1, · · · , d. This implies that (2) can be written as

LR(s1, · · · , sd) =
cgen(Fgen,1(s1), · · · , Fgen,d(sd))

cimp(Fimp,1(s1), · · · , Fimp,d(sd))

×
d∏

i=1

fgen,i(si)

fimp,i(si)
(5)

where cgen and cimp are the copula densities of genuine copulaCgen

and impostor copula Cimp, respectively. The second factor of (5),
which is the product of the individual likelihood ratios

PLR(s) =
d∏

i=1

fgen,i(si)

fimp,i(si)
=

d∏

i=1

LRi(si), (6)

will be called the Naive Bayes part, while the first factor, which is
the copula density ratio

CF(s)(Cgen,Cimp) =
cgen(Fgen,1(s1), · · · , Fgen,d(sd))

cimp(Fimp,1(s1), · · · , Fimp,d(sd))
(7)

will be called the correction factor where the superscript
(Cgen, Cimp) means that the CF is modelled by copulas Cgen and
Cimp for genuine and impostor scores, respectively. We call (7)
a correction factor because it corrects the Naive Bayes part for
dependence.

4 Semiparametric Model for Likelihood Ratio
Computation

The LR as defined in (5) could be computed exactly if the marginal
and copula densities of genuine and impostor scores were known.
However, they have to be estimated from training data, which will
be done semiparametrically, modelling the Naive Bayes part and dis-
tribution functions nonparametrically, and the dependence between
them by parametric copulas. Note that we aim at incorporating
dependence between classifiers. Therefore, the copula parameter is
the main parameter that one is interested in, which is called the
parameter of interest, while the marginal likelihood ratios and dis-
tribution functions are treated as nuisance parameters in the sense
that they are less important than the copula parameter when mod-
elling dependence between classifiers. However, in computing the
LR itself, we need to estimate all parameters composing (5).

This section will present three main steps of computing the LR
using our approach: (1) computing the Naive Bayes part, (2) com-
puting the correction factor for a given copula pair of genuine and
impostor scores, and (3) choosing the best copula pair for a specific
performance measure. Let

W1, . . . ,Wngen (8)

and
B1, . . . ,Bnimp (9)

be i.i.d copies of d-dimensional random variable of genuine scores
W = (W1, · · · ,Wd) and impostor scores B = (B1, · · · , Bd),
respectively. Here, we will assume that the random variables of
genuine and impostor scores are continuous.

4.1 Naive Bayes part

The Naive Bayes part is typically easy to be computed because there
are several methods of computing the LR for 1-dimensional scores.
The most common ways are Kernel Density Estimation (KDE),
Logistic Regression (Logit), Histogram Binning (HB), and Pool
Adjacent Violators (PAV) methods; see [1] for a brief explanation
of these methods. In this paper, we choose the PAV method because
of its optimality [34].
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For every k = 1, · · · , d, PAV sorts and assigns a posterior prob-
ability of 1 or 0 to the k-th component of genuine and impostor
scores in a training set, respectively. It then finds the non-monotonic
adjacent group of probabilities and replaces it with the average of
that group. This procedure is repeated until the whole sequence
is monotonically increasing which estimates the posterior proba-
bility P (H1|(·)) of the k-th component of (8) and (9) where H1
correspond to a genuine score. By assuming

P (H1) =
ngen

ngen + nimp
,

the corresponding LRks of (8) and (9) can be computed according
to the Bayesian formula by

L̂Rk(·) =
P (H1|(·))

1− P (H1|(·))
× nimp

ngen
(10)

so that we have a numerical function that maps a score to its L̂Rk.
Finally, for every score for the k-th classifier, its corresponding L̂Rk
value can be computed by interpolation.

4.2 Semiparametric correction factor estimation

While the Naive Bayes part is modelled nonparametrically, the
correction factor will be modelled semiparametrically by assum-
ing Cgen and Cimp to be parametric copulas. Let θgen and θimp
denote the dependence parameters determining Cgen and Cimp,
respectively. Since the marginal distributions are treated as nui-
sance parameters as noted before, we will focus on the estimation of

parameter of interest θ =

(
θgen

θimp

)
. Thus our correction factor model

is defined by

CF = {CF
(Cgen,Cimp)
θ,F : θ ∈ Θ, F ∈ F} (11)

where Θ ⊂ RD is open andF is a collection of continuous marginal
distribution functions. Here, D is the dimensionality of θ, which is
the sum of dimensionalities of θgen and θimp, and

F = (Fgen,1, · · · , Fgen,d, Fimp,1, · · · , Fimp,d). (12)

Note that if the marginal distributions Fgen,k and Fimp,k for k =
1, . . . , d are known then the log-likelihood of the combined samples
(8) and (9) can be written as

L =

ngen∑

i=1

log cθgen
(
Ugen,i

)
+

nimp∑

j=1

log cθimp

(
Uimp,j

)
(13)

where

Ugen,i = (Fgen,1(W1,i), · · · , Fgen,d(Wd,i))

and
Uimp,i = (Fimp,1(B1,j), · · · , Fimp,d(Bd,j))

for i = 1, . . . , ngen and j = 1, . . . , nimp. Differentiating (13) with
respect to θ gives

ngen∑

i=1

∂cθgen
(
Ugen,i

)
/∂θgen

cθgen
(
Ugen,i

) = 0

and
nimp∑

j=1

∂cθimp

(
Uimp,j

)
/∂θimp

cθimp

(
Uimp,j

) = 0.

As a consequence, if Fgen,k and Fimp,k are replaced by their
empirical distribution functions based on samples

Wk,1, . . . ,Wk,ngen

and
Bk,1, . . . , Bk,nimp

,

respectively, we will get two-step estimators θ̂gen,ngen and
θ̂imp,nimp

called pseudo-maximum likelihood estimators (PMLE) of
θgen and θimp, respectively, as studied in [8] and extended in [33].
The terminology of the two-step estimator comes from the fact that
one has to do two steps to obtain it: (1) transforming data to uni-
formly distributed and (2) finding the maximum likelihood estimator
of the transformed data. We use a modified version of the empirical
distribution function to avoid singularity problems; it is defined as

F̂n(x) =
1

n+ 1

n∑

i=1

1{Xi≤x}, ∀x ∈ R (14)

for a given sample X1, . . . , Xn.
Under some regularity conditions, we can derive the convergence

of

θ̂n =

(
θ̂gen,ngen

θ̂imp,nimp

)
(15)

in the following theorem.

Theorem 2. Write n = ngen + nimp and assume 0 < limn→∞ ngen/n <
1. If copula Cgen and Cimp satisfy some regularity conditions; see
Section 3 of [33],

√
n
(
θ̂n − θ

)
→ N (0,Σ) (16)

holds as n→∞ for some positive definite covariance matrix Σ.

This theorem guarantees the convergence of θ̂n with order 1/
√
n. In

a weaker statement, it tells that the estimated LR tends to the true
LR if our parametric copulas correctly specify the true copulas and
the sample size is big enough.

4.3 Choosing the best copula pair

Note that the LR at score s = (s1, · · · , sd) under correction factor
model (11) can be computed by a rule of thumb:

LR(Cgen,Cimp)(s) =
d∏

k=1

L̂Rk(sk)× CF
(Cgen,Cimp)

θ̂n,F̂n
(s). (17)

Here L̂Rk(·) and θ̂n are given by (10) and (15), respectively, while
F̂n is the modified empirical version of (12), which is obtained by
replacing all components in F with their corresponding modified
empirical distribution functions. However, the choice of the appro-
priate parametric copulas can be difficult in practice. Therefore,
what we can do is assuming Cgen and Cimp belong to a family of
parametric copulas and choosing the best copula pair. Interestingly,
Theorem 2 is still valid if the copula pair (Cgen, Cimp) misspecified
the true pair. It means that we will get a reasonable estimator of the
dependence parameter whichever a copula pair is chosen.

As noted in Section 1, combining classifiers in biometric recog-
nition may have different goals depending on the application or
scenario. For a given classifier K, let e(K) be a performance mea-
sure of classifier K. Assume that the smaller value of e(K), the
better performance of the classifier K. For instances, e(K) can be
the equal error rate, total error rate, false rejection rate at certain false
accept rate, 1 minus area under ROC curve, and so on.
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Let
C = {C1 · · · , Cnc}

be a family of nc candidate copulas. Since a goodness-of-fit test as
provided in [6] will only give the copula pair that is closest to the pair
(cgen, cimp), but whose ratio is not necessarily closest to the ratio
cgen/cimp, we propose to choose the best copula pair as follows. Let
K(i, j) be the classifier using copula pair (Ci, Cj) in its correction
factor model for 1 ≤ i, j,≤ nc, which is defined by

Ki,j(s) = LR(Ci,Cj)(s), ∀s ∈ Rd

as given in (17). Given a performance measure e, our model selec-
tion will choose (Cx, Cy) as the best copula pair with respect e if
e(Kx,y) has the smallest value among other pairs, i.e.,

e(Kx,y) ≤ e(Ki,j), ∀1 ≤ i, j,≤ nc.

If there are two or more best pairs then we choose one of them at
random. Note that it is always useful to include the independence
copula in C to guarantee that the chosen fused classifier performs at
least as good as fusion under independence.

5 Applications

We will present how our correction factor works and improves the
PLR fusion in some practical scenarios: in a standard biometric ver-
ification and in forensic scenarios. To approximate the correction
factor, we will use the following parametric copulas: independence
copula (ind), Gaussian copula (GC), Student’s t (t), Frank (Fr), Clay-
ton (Cl), flipped Clayton (fCl), Gumbel (Gu), and flipped Gumbel
(fGu). Therefore, the copulas Cgen and Cimp are chosen from the
copula family

C = {ind,GC, t,Fr,Cl,Gu, fCl, fGu}.

These parametric copulas are the same as used in [30, 31].
Suppose that we have genuine and impostor scores as given in

(8) and (9), respectively, that will be used to train our method with
respect to an evaluation measure e. Our procedure to choose the best
copula pair is simple. We randomize the genuine (impostor) scores
and take two disjoint subsets with size

nw = min {10000, bnimp/2c}

and
nb = min {10000, bngen/2c}.

This re-sampling method is aimed at increasing the computation
speed because it will be repeated 100 times to see the consistency.
After all 64 fused classifiers

LR = {LR(Cgen,Cimp) : Cgen, Cimp ∈ C}

are trained using the first subset, their evaluation measures are then
computed on the second subset. Of the nc × nc resulting different
fused classifiers we choose the one that minimizes the performance
measure e. We then compare the performance of the chosen pair to
the PLR method using the paired t-test at significance level 0.01 to
see whether the difference is significant or not. If the performance of
the chosen pair is significantly different from the PLR method then
we use this copula pair in computing the correction factor. Other-
wise, we take (ind,ind) as the best pair or in other words we simply
use the PLR method. For the Logit and GMM methods, we employ
the linear logistic regression as used in [17] for the Logit method
while the parameters in the GMM method are fitted by the algorithm
proposed in [7], which automatically estimates the number of mix-
ture components using the minimum message length criterion with
the minimum and maximum numbers of components being 1 and 20,

Table 1 Sample size of training and testing sets

Databases training testing
genuine impostor genuine impostor

NIST-finger 1,000 999,000 5,000 2,4995,000
Face-3D 106,762 21,987,938 46,912 16,005,130

BSS1 968 936,056 968 1,089,000
BSS2P1 1,853 3,431,756 1,853 3,431,756
BSS2P2 1,853 3,431,756 1,853 3,431,756

BSS3 7,252 2,460,980 7,629 2,612,826
XM2VTS 600 40,000 400 111,800

respectively. Once all fusion strategies have been trained based on
the training set, their performances with respect to the performance
measure e are computed based on the testing set. The sample sizes
of genuine and impostor scores for both training and testing sets of
all databases are given in Table 1.

5.1 Maximizing TMR at Fixed FMR

In standard biometric verification, one has to set a threshold ∆ such
that a score greater than or equal to the threshold is recognized
as genuine score while a score less than the threshold is recog-
nized as impostor score. Therefore, a biometric recognition system
can make two different errors: accept an impostor score as gen-
uine score and reject a genuine score. The probability of accepting
an impostor score is called the False Match Rate (FMR(∆)) with
threshold ∆, while the probability of rejecting a genuine score is
called the False Non-Match Rate (FNMR(∆)). The complement of
the FNMR(∆) is called the True Match Rate (TMR(∆)), which
is defined as the probability of accepting a genuine score as gen-
uine score. Since every genuine score will be either accepted or
rejected by the system, we have TMR(∆) = 1− FNMR(∆). The
most common method to see the performance of a biometric per-
son verification system is by plotting the relation between FMR(∆)
and TMR(∆) for all ∆ ∈ (−∞,∞), which is known as Receiver
Operating Characteristic (ROC) [5].
Performance measure: The threshold can also be determined by
putting a FMR value in advance. For a given fixed FMR = α, the
corresponding TMR value can be estimated based on data. Let

W1, · · · ,Wngen (18)

B1, · · · , Bnimp (19)

be 1-dimensional genuine and impostor scores, respectively. In our
case, these are the fused scores of the testing set. According to [9],
the TMRα can be estimated by

1− F̂−gen(Q̂
F̂−

imp
(1− α))

where F̂−gen and F̂−imp are left-continuous empirical distribution
functions based on (18) and (19), respectively while Q̂

F̂−
imp

is the

empirical quantile function with respect to F̂−imp. Slightly different
from (14), the left-continuous empirical distribution function based
on a sample X1, · · · , Xn is defined by

F̂−n (x) =
1

n

n∑

i=1

1{Xi<x}, ∀x ∈ R (20)

and its corresponding quantile function is defined by

Q̂
F̂−

n
(p) = sup{y : F̂−n (y) ≤ p}, ∀p ∈ [0, 1]. (21)

Since higher TMR leads to a better classifier, the performance
measure in this standard verification scenario is e = 1− TMRα.
Databases: We use NIST-finger [19] and Face-3D [22, 25, 27, 28]
data to simulate fingerprint and face authentication, respectively.
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Table 2 Best copula pair at several FMRs of our method
on the NIST-finger and Face-3D databases

Databases Best pair at FMR
10−5 10−4 10−3

NIST-finger {Gu,t} {Gu,t} {ind,ind}
Face-3D {ind,Fr} {ind,Fr} {ind,Fr}

10
−5

10
−4

10
−3

10
−2

0.7

0.75

0.8

0.85

0.9

0.95

1

FMR

T
M

R
(b)
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10
−5

10
−4

10
−3

10
−2

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

(a)

FMR

T
M

R

Fig. 1: ROC curves of different fusion strategies on (a)NIST-finger
(b)face-3D

• NIST-finger: NIST-finger contains fingerprint similarity scores
from one system run on images of 6000 subjects. Each subject has
one left index and one right index fingerprint both in the gallery and
probe sets. All comparison scores of all pairs of left index finger-
prints and all pairs of right index fingerprints are then computed.
Here, we can consider the comparison scores based on left and right
index fingerprints to be the first and second classifiers that will be
combined. We use the first 1000 subjects for training and the rest for
testing.
• Face-3D: Face-3D is used in [27, 28] for 3D face recognition.
The training and the testing set are already defined and contain very
different images (taken with different cameras, backgrounds, poses,
expressions, illuminations and time). In his papers, the author pro-
poses 30 classifiers operating on 30 different facial regions. We only
use 5 regions out of these 30: similarity of the full face, the left half,
the right half, the bottom part, and the upper part of the face. This
choice is made to have dependent classifiers.

Results: We train our method at FMR 10−5, 10−4, and 10−3.
The best copula pairs and the TMRs for all scenarios are given by
Table 2 and Table 3, respectively. It is shown that on the NIST-
finger database the improvement of our method compared to the
PLR method is relatively small and that all fusion methods have
almost the same performance as seen in Figure 1, which shows that
the ROC curves of all fusion methods almost coincide. On the other
hand, the improvement of our method compared to the PLR method
can be clearly seen by the Face-3D database. This phenomenon
occurs because the left and right index fingerprints are almost inde-
pendent while the overlapping regions on the Face-3D database are
dependent. Interestingly, the dependence on the Face-3D database
cannot be captured by the GMM method and this GMM method even
performs worse than the best single matcher (BSM). This happens
because the estimated number of components in the GMM method
is equal to the maximum value (20) that we chose. This suggests that
the number of components might be more than 20. However, if we
increase the number of components then the estimator becomes less
reliable.

Table 3 The TMRs of different fusion strategies on the NIST-finger
and Face-3D databases. The bold number in every column is the best one.

Methods
NIST-finger Face-3D

TMR at FMR
10−5 10−4 10−3 10−5 10−4 10−3

BSM 0.793 0.835 0.887 0.784 0.849 0.900
PLR 0.882 0.912 0.939 0.817 0.866 0.917
Logit 0.883 0.911 0.939 0.828 0.876 0.918
GMM 0.878 0.910 0.937 0.747 0.812 0.896

Proposed 0.884 0.914 0.939 0.823 0.884 0.946

5.2 Minimizing HTER

Performance measure: Besides maximizing the TMR at certain
FMR, one may also be interested in minimizing some types of error:

• Equal error rate EER: Let ∆∗ be the threshold value at which
FMR(∆∗) and FNMR(∆∗) are equal. Then EER is defined as the
common value EER = FMR(∆∗) = FNMR(∆∗).
• Total error rate TER(∆): The sum of the FMR(∆) and the
FNMR(∆), i.e., TER(∆) = FMR(∆) + FNMR(∆). One may
also consider the half total error rate HTER(∆) = TER(∆)/2, to
keep the error value between 0 and 1.
• Weighted error rate WERβ(∆): A weighted sum of the
FMR(∆) and the FNMR(∆), i.e., WERβ(∆) = βFMR(∆) +
(1− β)FNMR(∆), β ∈ [0, 1]. The weights are usually called cost
of false acceptance and cost of false rejection.
• Area under ROC curve (AUC).

Here, ∆ is the threshold to compute the FMR and FNMR. Note
that for a given β ∈ [0, 1], we can set the performance measure
e = inf∆ WERβ(∆) and follow our procedure to get the best cop-
ula pair. To give an illustration, we will put β = 0.5, which leads
to inf∆ HTER(∆). Frequently, the minimum value of HTER is
approximated by the EER. This EER is used to report a fusion
performance in [14, 32]. However, as pointed out in [23], the cor-
responding ∆∗ is only a decision threshold and hence EER should
not be used to measure performance. To report fusion performance
itself, they suggest to set the threshold ∆∗ using the training set and
to report the final performance by computing the HTER(∆∗) on
the testing set. Therefore, we train our method by following this
procedure but adapted as follows. Once all 64 copula based fusion
strategies have been trained on the first subset of the training set,
they are applied to the first subset of the training set to determine
the threshold ∆∗ and to the second subset of the training set to com-
pute the HTER(∆∗). For all our benchmark methods, the threshold
∆∗ is determined using the fused scores of training data and the
HTER(∆∗) is computed using the fused scores of the testing data.
Databases: We use the same publicly available scores databases as
used in [14] from video-based gait biometrics. There are 4 databases
in which their training and testing sets are already clearly defined.

• BSS1: This database contains three-dimensional scores based
on the gait energy image (GEI), gait period, and height of the
subject [10].
• BSS2P1: This database is composed of three-dimensional scores
based on the GEI and 1- and 2-times frequency elements in the
frequency-domain feature [10].
• BSS2P2: This database is almost the same as the BSS2P1
database but the scores are computed based on the GEI, chrono-gait
image, and gait low image [10].
• BSS3: This database is composed of two-dimensional scores from
a wearable accelerometer and a gyroscope sensor [21].

Results: The HTERs of different fusion strategies are reported in
Table 4. We do not present the performance of other fusion strate-
gies used in [14] because it is already shown there that the pseudo
likelihood ratio method is always among the first or second best
results for all databases. Hence we are mostly interested in how our
method can improve the PLR method. Interestingly, we can see that
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Table 4 The HTERs of different fusion strategies on the video-based
gait databases. The bold number in every column is the best one.

Methods BSS1 BSS2P1 BSS2P2 BSS3

BSM 0.042 0.050 0.048 0.150
PLR 0.035 0.056 0.042 0.132
Logit 0.034 0.052 0.041 0.136
GMM 0.034 0.047 0.034 0.134

Proposed 0.034 0.047 0.035 0.131
Best pair {Gu,fCl} {Gu,GC} {t,t} {Gu,Cl}

the PLR method performs worse than the best single classifier on
the BSS2P1 database. This may be because ignoring dependence
of dependent classifiers will degrade the performance of the fusion.
This is confirmed by the performance of our method, which does
take the dependence into account. It is better than the best single
classifier. We can also see that the GMM method is comparable to
our method for all databases. Apparently, the GMM method fits the
dependence structures quite well.

5.3 Minimizing discrimination loss

The last application of our method concerns forensic biometric sce-
narios. Unlike the standard biometric verification that gives a hard
decision whether a score is genuine or impostor, the likelihood ratio
value in the forensic case only provides a soft decision, which can be
used to support the judge in court to make an objective decision [4].
Performance measure: Fusion is hoped to integrate the comple-
mentary information from the individual classifiers. In a forensic
scenario one aims at increasing the discrimination power (the ability
of distinguishing between genuine and impostor scores). Brümmer
and du Preez [2] introduce a measure called the cost of log likelihood
ratio (Cllr) in the field of speaker recognition, which may be inter-
preted as a summary statistic for a LR computation [3]. This measure
is also used in forensic face scenarios in [15]. Note that the scores
are interpretable as likelihood ratios when computing this measure.
Given 1-dimensional genuine scores (18), which correspond to the
hypothesis of the prosecution, and impostor scores (19), which cor-
respond to the hypothesis of the defense, the cost of log likelihood
ratio Cllr is defined by

Cllr =
1

2ngen

ngen∑

i=1

log2

(
1 +

1

Wi

)

+
1

2nimp

nimp∑

j=1

log2

(
1 +Bj

)
. (22)

To explain the name of this measure we note that our fused scores are
LR values and may be rewritten in terms of the logarithm of LR. The
minimum value of the Cllr (denoted by Cmin

llr ), which is obtained
by plugging the scores after PAV transformation into (22), is called
the discrimination loss. This measure can be seen as the opposite
of discrimination power. The smaller the value of this quantity, the
higher the discrimination power. The difference between theCllr and
the Cmin

llr is called the calibration loss

Ccal
llr = Cllr − Cmin

llr . (23)

Calibration is transforming a biometric comparison score to its LR
value. It means that the calibration loss Ccal

llr tends to zero if the
scores are well-calibrated and grows without bound if the scores
are miscalibrated. Since we are interested in having better dis-
crimination power, we put the performance measure e = Cmin

llr .
Nevertheless, the Cllr and the discrimination loss will also be
reported.
Databases: We use the following databases:

• XM2VTS: There are 8 classifiers in this database: 5 face clas-
sifiers and 3 speech classifiers. In order to have an application in
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Fig. 2: The discrimination and calibration loss of different fusion
strategies on the XM2VTS and Face-3D databases

Table 5 The Cmin
llr and Cllr values of different fusion strategies on the

XM2VTS and Face-3D. The bold number in every column is the best one.

Methods XM2VTS Face-3D
Cmin

llr Cllr Cmin
llr Cllr

BSM 0.044 0.587 0.072 1.596
PLR 0.041 0.057 0.064 0.214
Logit 0.037 0.153 0.141 0.423
GMM 0.038 0.046 0.121 0.421
Proposed 0.034 0.047 0.038 0.140
Best Pair {Fr,fGu} {ind,t}

the field of speaker recognition, we only take the speech classi-
fiers. Moreover, only the LFCC-GMM and SSC-GMM classifiers
are used in this experiment because they have the highest correla-
tion value among all pairs. The training and testing sets are already
defined [23].
• Face-3D: The same database as used for the standard verification
in Section 5.1.

Results: The Cmin
llr and Cllr values of different fusion strategies and

the best copula pair of our method on the XM2VTS and Face-3D
databases are presented in Table 5. Our method outperforms other
methods with respect to the performance measure Cmin

llr . Moreover,
the Cllr of our method on the XM2VTS database is only slightly
higher than the GMM method and on the Face-3D database our
method even has by far the smallest Cllr among all methods. As
before, the GMM method performs poorly even if it is compared to
the best single classifier. Surprisingly, even though the Logit method
performs better than the PLR method for the standard biometric ver-
ification scenario in Section 5.1, its performance is also worse than
the best single classifier. This means that the Logit method can dis-
criminate genuine and impostor scores quite well in the tails, but
it fails in the middle. Another interesting thing is that if we use
the best copula pair {ind,Fr} chosen in Section 5.1 then the cor-
responding Cmin

llr is 0.040 which is higher than the 0.038 for the
copula pair {ind,t}, which is trained to minimize the Cmin

llr here. It
tells us that the copula pair {ind,t} handles dependence on the whole
scores better than the copula pair {ind,Fr}, which is trained to han-
dle dependence in the tail. Finally, we also notify that the calibration
loss of all fusion strategies (including our method) is pretty high on
the Face-3D database as seen in Figure 2. In order to reduce this cal-
ibration loss, we proposed in our previous work [31] a method called
the two-step calibration method. Briefly, the first step of this method
is computing both training and testing sets to their fused scores once
the best copula pair has been found and the second step is calibrat-
ing the fused scores by the PAV algorithm trained based on the fused
scores of the training set. Readers who are interested in the detailed
explanation of the two-step calibration method may refer to [31].
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6 Conclusion

We have presented the mathematical framework of a semiparametric
LR-based score level fusion method to improve via parametric cop-
ula families the PLR fusion strategy. Estimators of the dependence
parameters have been provided and subsequently their convergence
has been analyzed. It has also been shown in detail how our LR-
based method is used and how the best copula pair is chosen that
depends on a specific application. Finally, application to standard
biometric verification and forensic scenarios has been demonstrated
on real databases from fingerprint, face, speaker, and video-based
gait recognition, and it has been confirmed that our LR-based
method outperforms the GMM and Logit fusion methods, which are
also designed to handle dependence.
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9 Appendix

Proof of Theorem 2

According to Proposition 2 of Chen and Fan [33], we have

√
ngen

(
θ̂gen,ngen − θgen

)
→ N (0,Σgen)

and
√
nimp

(
θ̂imp,nimp

− θimp

)
→ N (0,Σimp)

for some positive definite matrices Σgen and Σimp. Define λn =

ngen/n with limn→∞ λn = λ. Since θ̂gen,ngen and θ̂imp,nimp
are

independent then

√
n
(
θ̂n − θ

)
=




√
ngen/λn

(
θ̂gen,ngen − θgen

)

√
nimp/(1− λn)

(
θ̂imp,nimp

− θimp

)



→ N (0,Σ)

where

Σ =

(
Σgen/λ 0

0 Σimp/(1− λ)

)
.
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