Zero dynamics for networks of waves

Birgit Jacob a,*, Kirsten A. Morris b, Hans Zwart c,d

a School of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
b Department of Applied Mathematics, University of Waterloo, Canada
c Department of Applied Mathematics, University of Twente, The Netherlands
d Department of Mechanical Engineering, Eindhoven University of Technology, The Netherlands

A R T I C L E I N F O

Article history:
Received 10 November 2017
Received in revised form 11 November 2017
Accepted 11 January 2019
Available online xxxx

Keywords:
Port-Hamiltonian system
Distributed parameter systems
Boundary control
Zero dynamics
Networks
Coupled wave equations

A B S T R A C T

The zero dynamics of infinite-dimensional systems can be difficult to characterize. The zero dynamics of boundary control systems are particularly problematic. In this paper the zero dynamics of port-Hamiltonian systems are studied. A complete characterization of the zero dynamics for port-Hamiltonian systems with invertible feedthrough as another port-Hamiltonian system on the same statespace is given. It is shown that the zero dynamics for any port-Hamiltonian system with commensurate wave speeds are a well-posed system, and are also a port-Hamiltonian system. Examples include wave equations with uniform wave speed on a network. A constructive procedure for calculation of the zero dynamics that can be used for very large system order is provided.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The zeros of a system are well-known to be important to controller design; see for instance, the textbooks (Doyle, Francis, & Tannenbaum, 1992; Morris, 2001; Nijmeijer & van der Schaft, 1990). For example, the poles of a system controlled with a constant feedback gain move to the zeros of the open-loop system as the gain increases. Furthermore, regulation is only possible if the zeros of the system do not coincide with the poles of the signal to be tracked. Another example is sensitivity reduction–arbitrary reduction of sensitivity is only possible if all the zeros are in the left half-plane. Right half-plane zeros restrict the achievable performance; see for example, Doyle et al. (1992).

There are a number of definitions of zero dynamics. The most fundamental is that the zero dynamics are the dynamics of the system obtained by choosing the input u so that the output y is identically zero. This will only be possible for initial conditions in some subspace of the original state space. This definition applies to nonlinear and linear finite-dimensional systems (Isidori, 1999). For systems with linear ordinary differential equation models, the eigenvalues of the zero dynamics correspond to the invariant zeros, and if the realization is minimal, these are also the zeros of the transfer function. The inverse of the input–output map of a linear finite-dimensional system without right-hand-plane zeros can be approximated by a stable system. Such systems are said to be minimum-phase, and they are typically easier to control than non-minimum phase systems.

However, many systems are modelled by delay or partial differential equations. This leadsto an infinite-dimensional statespace, and also an irrational transfer function. The calculation of zero dynamics for finite-dimensional systems, both linear and nonlinear, is closely related to the construction of the Byrnes-Isidori form (Isidori, 1999). However, no such extension exists for general infinite-dimensional systems. The notion of minimum-phase as a system with an approximately invertible input–output map can be extended to infinite-dimensional systems. Minimum-phase infinite-dimensional systems are those for which the transfer function is an outer function, see Jacob, Morris, and Trunk (2007). A detailed study of conditions for second-order systems to be minimum-phase can be found in Jacob et al. (2007).

As for finite-dimensional systems, the zero dynamics are important for a number of approaches to controller design. Results on adaptive control and on high-gain feedback control of infinite-dimensional systems, see e.g. Logemann and Owens (1987), Logemann and Townley (1997), Logemann and Townley (2003), Logemann and Zwart (1992) and Nikitin and Nikitina (1999),
require the system to be minimum-phase. Moreover, the sensitivity of an infinite-dimensional minimum-phase system can be reduced to an arbitrarily small level and stabilizing controllers that exist achieve arbitrarily high gain or phase margin (Foias, Özbay, & Tannenbaum, 1996).

Since the zeros of infinite-dimensional systems are often not accurately calculated by numerical approximations (Cheng & Morris, 2003; Clark, 1997; Grad & Morris, 2003; Lindner, Reichard, & Tarkenton, 1993) it is useful to obtain an understanding of their behaviour in the original infinite-dimensional context. For infinite-dimensional systems with bounded control and observation, the zero dynamics have been calculated, although they are not always well-posed (Morris & Rebarber, 2007, 2010; Zwart, 1989).

There are few results for zero dynamics for partial differential equations with boundary control and point observation. In Byrnes, Gilliam, and He (1994) and Byrnes, Gilliam, Isidori, and Shubov (2006) the zero dynamics are found for a class of parabolic systems defined on an interval with collocated boundary control and observation. This was extended to the heat equation on an arbitrary region with collocated control and observation in Reis and Selig (2015). In Kobayashi (2002) the invariant zeros for a class of systems with analytic semigroup that includes boundary control/point sensing are defined and analysed.

The zero dynamics of an important class of boundary control systems, port-Hamiltonian systems (Jacob & Zwart, 2012; Le Gorrec, Zwart, & Maschke, 2005; van der Schaft & Maschke, 2002; Villegas, 2007) or systems of linear conservation laws (Bastin & Coron, 2016), are established in this paper. Such models are derived using Hamilton’s Principle. Many situations of interest, in particular waves and vibrations, can be described in a port-Hamiltonian framework. The approach used here follows Jacob and Zwart (2012). Both the control \(u \) and the measurement \(y \) are defined in terms of boundary conditions. In some cases the \((u,y)\) pairing does not define a passive system, unlike traditional port-Hamiltonian systems (van der Schaft & Maschke, 2002) where this pairing is always power flowing across the boundary. A complete characterization of the zero dynamics for port-Hamiltonian systems with commensurate wave speeds is obtained. For any port-Hamiltonian system with invertible feedthrough, the zero dynamics are another port-Hamiltonian system on the same state space. Port-Hamiltonian systems with commensurate wave speeds can be written as a coupling of scalar systems with the same wave speed. The zero dynamics are shown to be well-posed for such systems, and are in fact a new port-Hamiltonian system. This result echoes earlier results for zero dynamics of finite-dimensional Hamiltonian systems (Nijmeijer & van der Schaft, 1990, chap. 12) (van der Schaft, 1983, 1987). Preliminary versions of Proposition 7 (for constant coefficients), Theorem 12 (with an outline of the proof) and Example 3 appeared in Jacob, Morris, and Zwart (2015).

A constructive procedure for exact calculation of the zero dynamics of a port-Hamiltonian system based on linear algebra is provided. This algorithm can be used on large networks, and does not use any approximation of the system of partial differential equations.

2. Infinite-dimensional port-Hamiltonian systems

Consider systems on a one-dimensional (spatial) domain of the form

\[
\frac{\partial x'}{\partial t} = P_1 \frac{\partial}{\partial \zeta} (\mathcal{H}(\zeta) x' (\zeta, t)), \quad \zeta \in (0, 1), \quad t \geq 0
\]

(1)

\[
x(\zeta, 0) = x_0(\zeta), \quad \zeta \in (0, 1)
\]

(2)

\[
0 = W_{b, 1} \begin{bmatrix} (\mathcal{H} x')(1, t) \\ (\mathcal{H} x')(0, t) \end{bmatrix}, \quad t \geq 0
\]

(3)

\[
u(t) = W_{b, 2} \begin{bmatrix} (\mathcal{H} x')(1, t) \\ (\mathcal{H} x')(0, t) \end{bmatrix}, \quad t \geq 0
\]

(4)

\[
y(t) = W_c \begin{bmatrix} (\mathcal{H} x')(1, t) \\ (\mathcal{H} x')(0, t) \end{bmatrix}, \quad t \geq 0,
\]

(5)

where \(P_1 \) is an Hermitian invertible \(n \times n \)-matrix, \(\mathcal{H}(\zeta) \) is a positive \(n \times n \)-matrix for \(\zeta \in (0, 1) \) satisfying \(\mathcal{H}, \mathcal{H}^{-1} \in L^\infty[0, 1; \mathbb{C}^{n \times n}] \), and \(W_b := \begin{bmatrix} W_{b, 1} \\ W_{b, 2} \end{bmatrix} \) is a \(n \times 2n \)-matrix of rank \(n \). Such systems are said to be port-Hamiltonian, see Jacob and Zwart (2012), Le Gorrec et al. (2005) and Villegas (2007), or systems of linear conservation laws (Bastin & Coron, 2016). Here, \(\mathcal{H}(\zeta, t) \) is the state of the system at time \(t \), \(u(t) \) represents the input of the system at time \(t \) and \(y(t) \) the output of the system at time \(t \).

A different representation of port-Hamiltonian systems, the diagonalized form, will be used. The matrices \(P_1 \mathcal{H}(\zeta) \) possess the same eigenvalues counted according to their multiplicity as the matrix \(\mathcal{H}^{1/2}(\zeta) P_1 \mathcal{H}^{-1/2}(\zeta) \), and as \(\mathcal{H}^{1/2}(\zeta) \mathcal{H}^{-1/2}(\zeta) \) is diagonalizable the matrix \(P_1 \mathcal{H}(\zeta) \) is diagonalizable as well. Moreover, by our assumptions, zero is not an eigenvalue of \(P_1 \mathcal{H}(\zeta) \) and all eigenvalues are real, that is, there exists an invertible matrix \(S(\zeta) \) such that

\[
P_1 \mathcal{H}(\zeta) = S^{-1}(\zeta) \text{diag}(p_1(\zeta), \ldots, p_n(\zeta), n_1(\zeta), \ldots, n_l(\zeta)) S(\zeta)
\]

(6)

where \(p_1(\zeta), \ldots, p_n(\zeta) > 0 \) and \(n_1(\zeta), \ldots, n_l(\zeta) < 0 \). In the remainder of this article it is assumed that \(S \) and \(\Delta \) are continuously differentiable on \((0, 1)\). Introducing the new state vector

\[
z(\zeta, t) = \begin{bmatrix} z_+(\zeta, t) \\ z_-(\zeta, t) \end{bmatrix} = S(\zeta) x(\zeta, t), \quad \zeta \in [0, 1],
\]

with \(z_+(\zeta, t) \in \mathbb{C}^k \) and \(z_-(\zeta, t) \in \mathbb{C}^l \), and writing

\[
\Delta(\zeta) = \begin{bmatrix} A(\zeta) & 0 \\ 0 & \Theta(\zeta) \end{bmatrix}
\]

(7)

where \(A(\zeta) \) is a positive definite \(k \times k \)-matrix and \(\Theta(\zeta) \) is a negative definite \(l \times l \)-matrix, the system (1)–(5) can be equivalently written as

\[
\frac{\partial z}{\partial t} = \frac{\partial}{\partial \zeta} \left(\Delta(\zeta) z(\zeta, t) + S(\zeta) S^{-1}(\zeta) \Delta(\zeta) z(\zeta, t) \right)
\]

(8)

\[
\begin{bmatrix} 0 \\ u(t) \end{bmatrix} = \begin{bmatrix} K_{0, +} & K_{0, -} \\ K_{u, +} & K_{u, -} \end{bmatrix} \begin{bmatrix} A(1) z_+(1, t) \\ \Theta(0) z_-(0, t) \end{bmatrix}
\]

(9)

\[
y(t) = \begin{bmatrix} K_{y, +} \\ K_{y, -} \end{bmatrix} \begin{bmatrix} A(1) z_+(1, t) \\ \Theta(0) z_-(0, t) \end{bmatrix}
\]

(10)

where \(t \geq 0 \) and \(\zeta \in [0, 1] \).

Defining \(A \)

\[
A f = - (\Delta f)' + S(S^{-1})' \Delta f,
\]
\(D(A) = \begin{cases} \Delta f \in H^1(0, 1; \mathbb{C}^n) | \\
0 = K \begin{bmatrix} A(1)f_+(1) \\ \Theta(0)f_-(0) \\ \Theta(1)f_-(1) \end{bmatrix} + L \begin{bmatrix} A(0)f_+(0) \\ 0 \\ 0 \end{bmatrix} \end{cases} \)

the system (6)–(9) with \(u \equiv 0 \) can be written in abstract form,

\[\dot{z}(t) = Az(t). \]

The resolvent operator of \(A \) is compact, and thus the spectrum of \(A \) contains only eigenvalues.

Next, consider well-posedness of the control system (6)–(9), or equivalently of system (1)–(5). Well-posedness means that for every initial condition \(z_0 \in L^2(0, 1; \mathbb{C}^n) \) and every input \(u \in L^2_{\text{loc}}(0, \infty; \mathbb{C}^p) \) the unique mild solution \(z \) of the system (6)–(8) exists such that the state and the output (9) lie in the spaces \(X := L^2(0, 1; \mathbb{C}^n) \) and \(L^2_{\text{loc}}(0, \infty; \mathbb{C}^m) \), respectively. See Jacob and Zwart (2012) for the precise definition and further results on well-posedness of port-Hamiltonian systems. To characterize well-posedness, define the matrices

\[K = \begin{bmatrix} K_0 \\ K_u \end{bmatrix} = \begin{bmatrix} K_{0+} & K_{0-} \\ K_{u+} & K_{u-} \end{bmatrix}, \quad L = \begin{bmatrix} L_0 \\ L_u \end{bmatrix} = \begin{bmatrix} L_{0+} & L_{0-} \\ L_{u+} & L_{u-} \end{bmatrix}. \]

Theorem 1 (Zwart, Gorrec, Maschke, & Villegas, 2010; Jacob & Zwart, 2012, Thm. 13.2.2 and 13.3.1). The following are equivalent

1. The system (6)–(9) is well-posed on \(L^2(0, 1; \mathbb{C}^n) \);
2. For every initial condition \(z_0 \in L^2(0, 1; \mathbb{C}^n) \), the partial differential equation (6)–(8) with \(u \) possesses a unique mild solution on the state space \(L^2(0, 1; \mathbb{C}^n) \). Furthermore, this solution depends continuously on the initial condition;
3. The matrix \(K \) is invertible.

Example 2. As an illustration, consider a small network of three tubes or ducts \(i = 1 \ldots 3 \) with flux density \(p_i \) and charge density \(q_i \). Alternatively, these equations model a network of transmission lines; in this case \(p_i \) is flux and \(q_i \) is current. For simplicity of exposition, set physical parameters to 1.

\[\frac{\partial p_i}{\partial t} = -\frac{\partial q_i}{\partial t}, \quad \frac{\partial q_i}{\partial t} = -\frac{\partial p_i}{\partial t}, \quad i = 1 \ldots 3. \tag{10} \]

The end of tube 1 is connected to the start of tubes 2 and 3, and \(t \) is the boundary conditions

\[u(t) = -q_1(0, t) - q_2(0, t) + q_3(t), \]

\[y(t) = q_1(1, t). \]

With state \(x = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}^T \), and defining

\[P_1 = \begin{bmatrix} 0_{3 \times 3} \\ -I_3 \\ 0_{3 \times 3} \end{bmatrix}, \quad \mathcal{H} = I_6, \]

this system of PDEs (10) with the boundary conditions (11) is in the form (1)–(9). (If the physical constants were not 1, the only change would be that the matrix \(\mathcal{H} \) would have the parameters on the diagonal.)

To obtain a diagonal form (6) of the PDE, define the new state variables

\[z_{+,i} = p_i - q_i, \quad z_{-,i} = p_i + q_i, \quad i = 1 \ldots 3 \]

so that

\[\begin{bmatrix} z_+ \\ z_- \end{bmatrix} \]

The PDE now has the form (6) with \(A = I_3, \Theta = -I_3 \). The boundary conditions (11) are now written

\[\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]

\[\begin{bmatrix} 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} z_{+,i}(1, t) \\ z_{+,i}(2, t) \\ z_{+,i}(3, t) \end{bmatrix} \]

\[\begin{bmatrix} 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} z_{-,i}(1, t) \\ z_{-,i}(2, t) \\ z_{-,i}(3, t) \end{bmatrix} \]

The matrix \(K \) is invertible so the control system is well-posed.

Example 3. Consider two coupled wave equations on \((0, 1) \)

\[\frac{\partial^2 w_1}{\partial t^2} = \frac{\partial^2 w_1}{\partial \xi^2} = 4 \frac{\partial^2 w_2}{\partial t^2} \]

\[\frac{\partial w_1}{\partial t}(1, t) = 0 \]

\[\frac{\partial w_2}{\partial t}(1, t) = 0 \]

\[\frac{\partial w_1}{\partial t}(0, t) = \frac{\partial w_2}{\partial t}(0, t) = 0 \]

\[a \frac{\partial w_1}{\partial t}(0, t) + b \frac{\partial w_2}{\partial \xi}(0, t) = u(t) \]

with \(|a| + |b| > 0 \). In order to write this system as a port-Hamiltonian system, define

\[x = \begin{bmatrix} \frac{\partial w_1}{\partial t} \\ \frac{\partial w_1}{\partial \xi} \\ \frac{\partial w_2}{\partial t} \\ \frac{\partial w_2}{\partial \xi} \end{bmatrix}. \]
Then the system can be written
\[
\frac{d\xi}{dt}(\xi, t) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \frac{\partial}{\partial \xi} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} x(\xi, t)
\]
with boundary conditions
\[
\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.
\]

Alternatively, diagonalize \(P_2 \) and define
\[
z_{+1}(\xi, t) = w_{11}(\xi, t) + w_{21}(\xi, t)
\]
\[
z_{+2}(\xi, t) = w_{22}(\xi, t) + 2w_{21}(\xi, t)
\]
\[
z_{-1}(\xi, t) = w_{11}(\xi, t) - w_{21}(\xi, t)
\]
\[
z_{-2}(\xi, t) = w_{22}(\xi, t) - 2w_{21}(\xi, t).
\]

The partial differential equation becomes
\[
\frac{d}{dt} \begin{bmatrix} z_+^1(\xi, t) \\ z_+^2(\xi, t) \\ z_-^1(\xi, t) \\ z_-^2(\xi, t) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} z_+^1(\xi, t) \\ z_+^2(\xi, t) \\ z_-^1(\xi, t) \\ z_-^2(\xi, t) \end{bmatrix},
\]
with boundary conditions
\[
\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.
\]

By Theorem 1 this is a well-posed system if and only if \(2a \neq -b \).

In the port-Hamiltonian formulation, the importance of connections between subsystems and the overall boundary conditions to well-posedness of the control system is clear. Well-posedness of a port-Hamiltonian system can be established by a simple check of the rank of the matrix \(K \) in the definition of the boundary conditions.

For the remainder of this paper it is assumed that \(K \) is invertible so that the control system is well-posed.

For port-Hamiltonian systems, well-posedness implies that the system \((6)–(9)\) is also regular, that is, the transfer function \(G(s) \) possesses a limit over the real line, see Zwart et al. (2010) or Jacob and Zwart (2012, Section 13.3).

Writing \(K_s^{-1} = \begin{bmatrix} * & D \end{bmatrix} \) with \(D \in \mathbb{C}^{m \times p} \) the feedthrough operator, this limit of \(G(s) \) over the real axis is \(D \), see Jacob and Zwart (2012, Theorem 13.3.1).

3. Zero dynamics for port-Hamiltonian systems

Now we define zero dynamics for port-Hamiltonian systems.

Definition 4. Consider the system \((1)–(5)\) on the state space \(X = L^2(0, 1; \mathbb{C}^m) \). The zero dynamics of \((1)–(5)\) are the pairs \((\zeta_0, u) \in X \times L^2_{loc}(0, \infty; \mathbb{C}^p)\) for which the mild solution of \((1)–(5)\) satisfies \(y = 0 \). The largest output nulling subspace is
\[
V^* = \{ \xi_0 \in X \mid \text{there is a function } u \in L^2_{loc}(0, \infty; \mathbb{C}^p) \}
\]
\[
\text{mild solution of } (1)–(5) \text{ satisfies } y = 0.
\]

Thus, \(V^* \) is the space of initial conditions for which there exists a control \(u \) that “zeros” the output. As system \((1)–(5)\) is equivalent to system \((6)–(9)\) we can equivalently study the largest nulling subspace of \((6)–(9)\). Setting \(y = 0 \) in \((9)\) reveals that the zero dynamics are described by
\[
\frac{d\zeta}{dt}(\xi, t) = \frac{\partial}{\partial \xi}(\Delta(\xi)\zeta(\xi, t)) + S(\xi)\Delta^{-1}(\xi)\Delta(\xi)\zeta(\xi, t)
\]
\[
\zeta(\xi, 0) = \zeta_0(\xi), \quad \xi \in (0, 1)
\]
\[
0 = \begin{bmatrix} K_0 & A(1)z_+^1(1, t) \\ K_\rho \Theta(1)z_+^2(1, t) \\ K_\rho \Theta(1)z_-^1(1, t) \\ K_\rho \Theta(1)z_-^2(1, t) \end{bmatrix} + \begin{bmatrix} L_0 \\ L_y \Theta(1)z_+^2(0, t) \\ L_y \Theta(1)z_-^1(0, t) \end{bmatrix},
\]
\[
u(t) = K_d \begin{bmatrix} A(1)z_+^1(1, t) \\ \Theta(1)z_+^2(1, t) \\ \Theta(1)z_+^2(0, t) \\ \Theta(1)z_-^1(1, t) \end{bmatrix} + L_u \begin{bmatrix} A(1)z_+^2(0, t) \\ \Theta(1)z_+^2(0, t) \\ \Theta(1)z_-^1(0, t) \\ \Theta(1)z_-^1(1, t) \end{bmatrix},
\]

where \(t \geq 0 \) and \(\xi \in (0, 1) \). Note that system \((19)–(22)\) is still in the format of a port-Hamiltonian system, but even regarding \((22)\) as the (new) output, it needs not to be a well-posed port-Hamiltonian system since the new “\(K \)-matrix” \(\begin{bmatrix} K_0 & K_d \end{bmatrix} \) can have rank less than \(n \). The zero dynamics are a well-posed dynamical system if the system \((19)–(22)\) with state-space \(V^* \), no input and output \(u \) is well-posed.

The eigenvalues of the zero dynamics of the system are closely related to the invariant and transmission zeros of the system. For simplicity only the single-input single-output case is considered \((p = m = 1)\).

Definition 5 (Cheng & Morris, 2003; Reis & Selig, 2015). A complex number \(\lambda \in \mathbb{C} \) is an **invariant zero** of the system \((6)–(9)\) on the state space \(X = L^2(0, 1; \mathbb{C}^m) \), if there exist \(z \in H^1(0, 1; \mathbb{C}^m) \) and \(u \in \mathbb{C} \) such that
\[
\lambda z(\xi) = \frac{\partial}{\partial \xi}(\Delta(\xi)z(\xi)) + S(\xi)\Delta^{-1}(\xi)\Delta(\xi)z(\xi).
\]
\[
0 = \begin{bmatrix} K_0 & A(1)z_+^1(1, t) \\ K_\rho \Theta(1)z_+^2(1, t) \\ K_\rho \Theta(1)z_-^1(1, t) \\ K_\rho \Theta(1)z_-^2(1, t) \end{bmatrix} + \begin{bmatrix} L_0 \\ L_y \Theta(1)z_+^2(1, t) \\ L_y \Theta(1)z_-^1(1, t) \end{bmatrix},
\]
\[
u(t) = K_d \begin{bmatrix} A(1)z_+^1(1, t) \\ \Theta(1)z_+^2(1, t) \\ \Theta(1)z_+^2(0, t) \\ \Theta(1)z_-^1(1, t) \end{bmatrix} + L_u \begin{bmatrix} A(1)z_+^2(0, t) \\ \Theta(1)z_+^2(0, t) \\ \Theta(1)z_-^1(0, t) \\ \Theta(1)z_-^1(1, t) \end{bmatrix},
\]

Definition 6. A complex number \(s \in \mathbb{C} \) is a **transmission zero** of the system \((6)–(9)\) if the transfer function satisfies \(G(s) = 0 \).

If \(\lambda \in \rho(A) \), where \(\rho(A) \) denotes the resolvent set of \(A \), then \(\lambda \) is an invariant zero if and only if \(\lambda \) is a transmission zero.
The proof presented here is more complete, and includes the generalization to variable coefficients.

Thus the boundary conditions for the zero dynamics are (14)–(16) plus \(\frac{\partial w_1}{\partial t}(0, t) = 0 \).

In the diagonal representation this is

\[
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}
= \begin{bmatrix}
z_{-1}(0, t) \\
z_{-1}(1, t) \\
z_{+1}(0, t) \\
z_{+1}(1, t) \\
\end{bmatrix}
\]

The matrix \(\tilde{K} \) has full rank and so the zero dynamics are defined on the original state space.

The transfer function for this system can be found by solving

\[
s^2 \hat{w}_1(\xi, s) = \frac{\partial^2 \hat{w}_1}{\partial \xi^2}(\xi, s),
\]

\[
s^2 \hat{w}_2(\xi, s) = \frac{\partial^2 \hat{w}_2}{\partial \xi^2}(\xi, s),
\]

\[
\hat{w}_1(1, s) = 0,
\]

\[
\hat{w}_2(1, s) = 0,
\]

\[
\hat{w}_1(0, s) - \hat{w}_2(0, s) = 0,
\]

\[
\hat{w}_1(0, s) = \frac{a}{\partial \xi} \hat{w}_1(0, s) + \frac{b}{\partial \xi} \hat{w}_2(0, s) = \hat{u}(s),
\]

where \(\hat{y}(s) = s \hat{w}_1(0, s) \),

The energy associated with a port-Hamiltonian system is

\[
E(t) = \int_0^1 x(\xi, t)^T H(\xi) x(\xi, t)d\xi.
\]

The following proposition shows that for passive port-Hamiltonian systems (1)–(5) the zero dynamics are well-posed on the entire state space.

Corollary 8. Assume that the system (1)–(5) has the same number of inputs as outputs and that along classical solutions \(\dot{E}(t) \leq u(t)^T y(t) \), then the zero dynamics are well-posed on the entire state space and the feedthrough operator is invertible.

Proof. Consider the system (1)–(5) in which we set \(y(t) \equiv 0 \). Together with (3) this imposes \(n \) boundary conditions. Furthermore, we know from the power balance,

\[
\dot{E}(t) \leq u(t)^T y(t)
\]

that \(\dot{E}(t) \leq 0 \). From Jacob and Zwart (2012, Theorem 7.1.5, Lemma 7.2.1, and Theorem 7.2.4) we conclude that this homogeneous PDE generates a contraction semigroup on the whole state space. Hence by Proposition 7 we find that the feedthrough is invertible. □

Example 9 (Example 3 Cont.) As output for the system select

\[
y(t) = \frac{\partial w_1}{\partial t}(0, t).
\]

The boundary conditions for the zero dynamics are (14)–(16) plus \(\frac{\partial w_1}{\partial t}(0, t) = 0 \).

The zeros of \(G \) are all imaginary, and so the system is minimum phase (Jacob et al., 2007). Alternatively, calculation of the eigenvalues with \(\frac{\partial w_1}{\partial t}(0, t) = 0 \) leads to the same conclusion.
The energy of this model is
\[E(t) = \frac{1}{2} \sum_{i=1}^{4} \int_{0}^{1} z_i(t)^2 \, dt. \]

Differentiating with respect to time, substitution of the differential equation, and integration by parts in the spatial variable yields
\[\dot{E}(t) = \frac{\partial u_1}{\partial t}(\zeta, t) \frac{\partial u_1}{\partial \zeta}(\zeta, t) \big|_{\zeta=0}^{1} + 4 \frac{\partial u_2}{\partial t}(\zeta, t) \frac{\partial u_2}{\partial \zeta}(\zeta, t) \big|_{\zeta=0}^{1}. \]

Applying the boundary conditions (14)–(16) and (26) leads to
\[\dot{E}(t) = y(t) \left(-\frac{\partial u_1}{\partial \zeta}(0, t) - 4 \frac{\partial u_2}{\partial \zeta}(0, t) \right). \]

Thus, if \(a = -1, b = -4 \) in the boundary condition (17), then the control system satisfies \(E(t) \leq u(t)^T y(t) \).

It is very common though for the feedthrough to be non-invertible. This more challenging situation is considered in the next two sections.

4. Commensurate constant wave speed

In this section, the following class of port-Hamiltonian systems is considered:
\[
\begin{align*}
\frac{\partial}{\partial t} z(\zeta, t) &= -\lambda_0 \frac{\partial}{\partial \zeta} z(\zeta, t), \quad \zeta \in (0, 1), \quad (27) \\
z(\zeta, 0) &= z_0(\zeta), \\
\begin{bmatrix} 0 \\ u(t) \end{bmatrix} &= -\lambda_0 \begin{bmatrix} \lambda_0 & \lambda_0 \end{bmatrix} \begin{bmatrix} z(0, t) - \lambda_0 \begin{bmatrix} 1 \\ 1 \end{bmatrix} z(1, t), \\
\end{bmatrix} \quad (28) \\
y(t) &= -\lambda_0 K_0 z(0, t) - \lambda_0 K_2 z(1, t), \quad (29) \\
\end{align*}
\]

where \(\lambda_0 \) is a scalar. If \(\mathcal{H} \) is constant, then (6)–(9) is of the form (27)–(30) with \(-\lambda_0 \) replaced by a diagonal (constant) and invertible matrix \(\Delta \). On the diagonal of the matrix \(\Delta \) are the possible different wave speeds of the system. If the ratio of any pair of diagonal entries of \(\Delta \) is rational, then the system (6)–(9) can be equivalently written in form (27)–(30) by dividing the intervals to adjust the propagation periods, that is, we divide the intervals in a series of intervals. This is a standard procedure and is illustrated in Example 10. The following simple reflection makes positive wave speeds into negative wave speed, while keeping the same absolute speed
\[\tilde{z}_k(\zeta, t) := z_k(1 - \zeta, t). \]

It is good to remark that the system (27)–(30) will in general have larger matrices than the original system (6)–(9). However, for simplicity, still denote the size by \(n \).

Example 10. Consider the following system with commensurable wave speeds
\[
\begin{align*}
\frac{\partial z_1}{\partial t} &= -\frac{1}{2} \frac{\partial z_2}{\partial \zeta}, \\
\frac{\partial z_2}{\partial t} &= -\frac{1}{2} \frac{\partial z_1}{\partial \zeta}, \\
\end{align*}
\]

with \(\zeta \in [0, 1], t \geq 0 \) and
\[
\begin{align*}
\begin{bmatrix} 0 \\ u(t) \end{bmatrix} &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} z(0, t) + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} z(1, t), \\
y(t) &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} z(0, t) + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} z(1, t). \\
\end{align*}
\]

This system has not a uniform wave speed, but can be written equivalently as a system with one wave speed. To reach this goal, split the second equation into two and obtain the following equivalent system
\[
\begin{align*}
\frac{\partial z_1}{\partial t} &= -\frac{1}{2} \frac{\partial z_2}{\partial \zeta}, \\
\frac{\partial z_2}{\partial t} &= -\frac{1}{2} \frac{\partial z_1}{\partial \zeta}, \\
\end{align*}
\]

Thus, \(f_k(z(t), \zeta) = \lambda_k f_k(z(t), \zeta), \quad k = 1, 2 \)

This transformation also works if \(\Delta(\zeta) \) is diagonal a.e. \(\zeta \in (0, 1) \) and the ratio of the numbers \(t_1 := \int_{0}^{1} \frac{1}{\lambda_k(\zeta)} \, d\zeta \) is pairwise rational (Suzuki, Imura, & Aihara, 2013).

It is now shown that the zero dynamics can be well-posed through the input and output equations.

It is well-known that the solution of (27) is given by \(z(\zeta, t) = f(1 - \zeta + \lambda_0 t) \) for \(t \geq 0 \) and some function \(f \). Using this fact, we write the system (27)–(30) equivalently as
\[
\begin{align*}
f(t) &= z_0(1 - t), \quad t \in [0, 1], \\
\begin{bmatrix} 0 \\ u(t) \end{bmatrix} &= -\lambda_0 K_0 f(1 + \lambda_0 t) - \lambda_0 K_2 f(\lambda_0 t), \quad t \geq 0, \\
y(t) &= -\lambda_0 K_0 f(1 + \lambda_0 t) - \lambda_0 K_2 f(\lambda_0 t), \quad t \geq 0. \\
\end{align*}
\]

Since the system is well-posed, the matrix \(K \) is invertible (Theorem 1). Thus, equivalently.

\[
\begin{align*}
f(t) &= z_0(1 - t), \\
f(1 + \lambda_0 t) &= -K^{-1} f(\lambda_0 t) - \lambda_0^{-1} K^{-1} \begin{bmatrix} 0 \\ u(t) \end{bmatrix}, \\
y(t) &= (\lambda_0 K_0 K^{-1} - \lambda_0 L_0) \begin{bmatrix} 0 \\ u(t) \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} z(1, t). \\
\end{align*}
\]

Defining
\[
\begin{align*}
A_d &= -K^{-1} L, \\
B_d &= -\lambda_0^{-1} K^{-1} \begin{bmatrix} 0 \\ f \end{bmatrix}, \\
C_d &= -\lambda_0 K_0 A_d - \lambda_0 K_2, \\
D_d &= -\lambda_0 K_0 B_d. \\
\end{align*}
\]

Eqs. (35)–(36) can be written as
\[
\begin{align*}
f(1 + \lambda_0 t) &= A_d f(\lambda_0 t) + B_d u(t), \\
y(t) &= C_d f(\lambda_0 t) + D_d u(t). \\
\end{align*}
\]

Define for \(j \in \mathbb{N} \) the functions \(z_d(j) \in L_2^2(0, 1; \mathbb{C}^n), u_d(j) \in L_2^2(0, 1; \mathbb{C}^p) \), and \(y_d(j) \in L_2^2(0, 1; \mathbb{C}^m) \) by \(z_d(0)(\zeta) := z_0(1 - \zeta), \quad z_d(j)(\zeta) = f(j + \zeta) \) for \(j \geq 1 \) and
\[
u_d(j)(\zeta) = u_d(j + \zeta), \quad y_d(j)(\zeta) = y_d(j + \zeta), \quad j \in \mathbb{N}.
\]

Thus Eqs. (27)–(30) can be equivalently rewritten as
\[
\begin{align*}
z_d(j + 1)(\zeta) &= A_d z_d(j)(\zeta) + B_d u_d(j)(\zeta), \\
(\zeta) &= z_0(1 - \zeta), \\
y_d(j)(\zeta) &= C_d z_d(j)(\zeta) + D_d u_d(j)(\zeta) \\
(\zeta) &= y_d(j)(\zeta) = y_d(j + \zeta), \quad j \in \mathbb{N}.
\end{align*}
\]

This representation is very useful, not only for the zero dynamic, but also for other properties like stability.
Theorem 11 (Klöss, 2010, Corollary 3.7). The system (27)–(30) is exponentially stable if and only if the spectral radius of A_d satisfies $r(A_d) < 1$ or equivalently if $\sigma_{\text{max}}(A_d) < 1$.

Further sufficient conditions for exponential stability can be found in Bastin and Coron (2016), Engel (2013) and Jacob and Zwart (2012). In particular, exponential stability is implied by the condition $KK^* - LL^* > 0$, Bastin and Coron (2016, Thm. 3.2) and Jacob and Zwart (2012, Lemma 9.1.4). However, the condition $KK^* - LL^* > 0$ is in general not necessary, see Jacob and Zwart (2012, Example 9.2.1).

It will now be shown that the zero dynamics of systems of the form (27)–(30) are again a port-Hamiltonian system, but with possibly a smaller state, that is, instead of $L^2(0, 1; \mathbb{C}^n)$ the state space will be $L^2(0, 1; \mathbb{C}^m)$ with $0 \leq k \leq n$. First, it is shown that the problem of determining the zero dynamics for (27)–(30) can be transformed into determining the zero dynamics for the finite-dimensional discrete-time system described by the matrices A_d, B_d, C_d and D_d.

Theorem 12. Let $z_0 \in L^2(0, 1; \mathbb{C}^m)$. Then the outputs are equivalent to

(1) There exists an input $u \in L^2_{\text{loc}}(0, \infty; \mathbb{C}^p)$ such that the output y of (27)–(30) with initial condition $z(\cdot, 0) = z_0$ is identically zero;

(2) $z_0 \in L^2(0, 1; V^*_0)$, where $V^*_0 \subseteq \mathbb{C}^m$ is the largest output nulling subspace of the discrete-time system (A_d, B_d, C_d, D_d) with state space \mathbb{C}^m given by

$$w(j + 1) = A_dw(j) + B_du(j),$$

$$y(j) = C_dw(j) + D_du(j).$$

In particular, the largest output nulling subspace V^* of (27)–(30) is given by $V^* = L^2(0, 1; V^*_0)$.

Proof. The system (27)–(30) can be equivalently written as (38)–(40). In these equations the input, state and output were still spatially dependent. However, the time axis has been split as $[0, \infty) = \cup_{j \in \mathbb{Z}}[j, j + 1)$. Thus condition 1. is equivalent to

1’ There exists a sequence $(u_d(j))_{j \in \mathbb{Z}} \subseteq L^2(0, 1; \mathbb{C}^m)$ and a set $\Omega \subseteq \{0, 1\}$ whose complement has measure zero such that for every $\zeta \in \Omega$,

$$z_d(j + 1)(\zeta) = A_dz_d(j)(\zeta) + B_du_d(j)(\zeta),$$

$$y_d(j)(\zeta) = C_dz_d(j)(\zeta) + D_du_d(j)(\zeta).$$

Clearly, condition 1’ implies that $z_d(\zeta) \in V^*_0$ a.e., where V^*_0 denotes the largest output nulling subspace of the finite-dimensional system (41). Since trivially $z_0 \in L^2(0, 1; V^*_0)$, condition 2 follows.

The system (A_d, B_d, C_d, D_d) is a finite-dimensional discrete-time system. Let $V^*_0 \subseteq \mathbb{C}^m$ indicate the largest output nulling subspace. Then there exists a matrix K such that the output-nulling control is given by $u_d(j) = Kz_d(j)$, see Wonham (1985). Referring now to (42), if $z_0 \in L^2(0, 1; V^*_0)$ then the output-nulling control $(u_d(j))_{j \in \mathbb{Z}}$ for system (42) satisfies $u_d(j) \in L^2(0, 1; \mathbb{C}^p)$. Condition 2 thus implies condition 1’. □

For many partial differential equation systems, the largest output nulling subspace is not closed and the zero dynamics are not well-posed. Morris and Rebarber (2010) and Zwart (1989). However, for systems of the form (27)–(30) the largest output nulling subspace is closed, and the zero dynamics are well-posed. The following theorem provides a characterization of the largest output nulling subspace of (A_d, B_d, C_d, D_d) and hence of the zero dynamics for the original partial differential equation. The proof can be found in Jacob et al. (2015).

Theorem 13. Define $E = \begin{bmatrix} K & 0 \end{bmatrix}$, $F = \begin{bmatrix} I \end{bmatrix}$. The initial condition v_0 lies in the largest output nulling subspace V_d of $\Sigma(A_d, B_d, C_d, D_d)$ if and only if there exists a sequence $(v_k)_{k \geq 1} \subseteq \mathbb{C}^m$ such that

$$Ev_{k+1} = Fv_k, \quad k \geq 0.$$ \hspace{1cm} (43)

Furthermore, the largest output nulling subspace V^*_d satisfies $V^*_d = \cap_{k \geq 0} V^k$, where $V^0 = \mathbb{C}^m$, $V^{k+1} = V^k \cap F^* V^k$.

Thus in addition to the well-known V^*-algorithm for finite-dimensional systems, see Bastin and Coron (2016, p. 91). Theorem 13 provides an alternative algorithm. It remains to show that the system restricted to the output nulling subspace is again port-Hamiltonian.

Theorem 14. For the port-Hamiltonian system (27)–(30) the zero dynamics is well-posed, and the dynamics restricted to the largest output nulling subspace is a port-Hamiltonian system without inputs.

Proof. By Theorem 12, the largest output nulling subspace V^* of (27)–(30) is given by $V^* = L^2(0, 1; V^*_0)$.

If $V^*_0 = \{0\}$, then there is nothing to prove, and so assume that V^*_0 is a non-trivial subspace of \mathbb{C}^m. It is well-known that there exists a matrix F_d such that (Wonham, 1985)

$$(A_d + B_dF_d)V^*_0 \subseteq V^*_0.$$ \hspace{1cm} (49)

Therefore, using Theorem 12 and (38)–(40), it is easy to see that for the choice $u_d(j)(\zeta) := F_d z_d(j)(\zeta)$ the output $y_d(j)(\zeta)$ is zero provided the initial condition z_0 lies in $L^2(0, 1; V^*_0)$. Using the definition of A_d, B_d, C_d, D_d, u_d and z_0, it follows that for $z_0 \in L^2(0, 1; V^*_0)$ there exists a function f satisfying

$$f(t) = z_0(1-t), \quad t \in [0, 1],$$

$$f(1 + \lambda_0 t) = -K^{-1}f(\lambda_0 t) - \lambda_0 I_{\text{ext}}f(\lambda_0 t), \quad t \geq 0,$$

$$0 = (\lambda_0 K_d - K^{-1} I - \lambda_0 I_{\text{ext}})f(\lambda_0 t)$$

Eqs. (45)–(46) can be equivalently written as

$$0 = -\lambda_0 K_{\text{ext}}f(1 + \lambda_0 t) - \lambda_0 I_{\text{ext}}f(\lambda_0 t),$$

with

$$K_{\text{ext}} = \begin{bmatrix} K & 0 \end{bmatrix}$$

and some matrix I_{ext}. Since $z_0 \in L^2(0, 1; V^*_0)$, for all t and almost all $\zeta \in [0, 1]$, $f(\zeta + \lambda_0 t) \in V^*_0$. Thus, K_{ext} and I_{ext} can be restricted to V^*_0 and Eq. (47) can equivalently be written with matrices $K_{\text{ext}}|_{V^*_0}$ and $I_{\text{ext}}|_{V^*_0}$. Since K is part of the matrix K_{ext}, the matrix $K_{\text{ext}}|_{V^*_0}$ has rank equal to the dimension of V^*_0. Let P be the projection onto the range of $K_{\text{ext}}|_{V^*_0}$. This leads to

$$0 = -\lambda_0 P_{K_{\text{ext}}|_{V^*_0}}f(1 + \lambda_0 t) - \lambda_0 I_{P_{K_{\text{ext}}|_{V^*_0}}}f(\lambda_0 t).$$

Define $K_{V^*_0} := P_{K_{\text{ext}}|_{V^*_0}}$ and $L_{V^*_0} := P_{I_{\text{ext}}|_{V^*_0}}$. The above equation is the solution of the partial differential equation

$$\frac{\partial}{\partial t} z(\zeta, t) = -\lambda_0 \frac{\partial}{\partial \zeta} z(\zeta, t),$$

$$0 = -\lambda_0 K_{V^*_0} z(0, t) - \lambda_0 L_{V^*_0} z(1, t)$$

on the state space $L^2(0, 1; V^*_0)$. Since $K_{V^*_0}$ is invertible. Theorem 1 implies that this system is a well-posed port-Hamiltonian system.
In the following section a second method to obtain the zero dynamics for systems with one dimensional input and output spaces is developed. The advantage of this method is that a transformation to a discrete system is not needed and non-constant wave speed is possible.

5. Zero dynamics of port-Hamiltonian systems with commensurate wave speed

In this section the zero dynamics of systems of the form (27)–(30) with one dimensional input and output spaces and (possibly) non-constant wave speed are defined. The class of systems considered has the form

\[\frac{\partial z}{\partial t}(\xi, t) = - \frac{\partial}{\partial \xi}(\lambda(\xi)z(\xi, t)) \quad (52) \]

\[0 = K_0(\lambda(0)z(0, t)) + L_0(\lambda(1)z(1, t)) \quad (53) \]

\[u(t) = K_u(\lambda(0)z(0, t)) + L_u(\lambda(1)z(1, t)) \quad (54) \]

\[y(t) = K_yz(0, t) + L_yz(1, t). \quad (55) \]

Here \(K_0, L_0 \in \mathbb{C}^{(n-1)\times n}, K_u, K_y, L_u, L_y \in \mathbb{C}^{1\times n} \) and \(\lambda_0 \in \mathbb{L}_{\infty}(0, 1] \). If \(P_{1\mid 1} \) is a diagonal matrix, then (6)–(9) is of the form (52)–(55) with \(-\lambda(\xi)\) replaced by a diagonal and invertible matrix \(\Delta \). On the diagonal of the matrix \(\Delta \) are the possible different wave speeds of the system. If the ratio of any pair of diagonal entries of \(\Delta \) is rational, then the system (6)–(9) can be equivalently written in form (52)–(55) by dividing the intervals to adjust the propagation periods. It will be assumed throughout this section that the port-Hamiltonian system (52)–(55) is a well posed linear system with state space \(L^2(0, 1; \mathbb{C}^n) \) or equivalently that the matrix \([K_0 \ K_u] \) is an invertible \(n \times n \)-matrix, see Theorem 1. The corresponding generator \(A \) of the \(C_0 \)-semigroup of the homogeneous system is given by (Jacob & Zwart, 2012)

\[A f = -\lambda(\xi) f, \]

\[D(A) = \{ \lambda_0 f \in H^1(0, 1; \mathbb{C}^n) \mid [0 \ 0] = \begin{bmatrix} K_0 & K_u \\ L_0 & L_u \end{bmatrix} (\lambda_0 f)(0) + \begin{bmatrix} L_0 & L_u \end{bmatrix} (\lambda_0 f)(1) \}. \]

Denote by \(G(s) \) the transfer function of the port-Hamiltonian system (52)–(55). Since the port-Hamiltonian system is assumed to be well-posed, there exists a right half plane \(\mathbb{C}_u := \{ s \in \mathbb{C} \mid \text{Re} s > \alpha \} \) such that \(G : \mathbb{C}_u \to \mathbb{C} \) is an analytic and bounded function. Define

\[p := \int_0^1 \lambda^{-1}(s)ds. \]

Moreover, using (Jacob & Zwart, 2012, Theorem 12.2.1) for \(s \in \rho(A) \), where \(\rho(A) \) denotes the resolvent set of \(A \), and \(u \in \mathbb{C} \) the number \(G(s)u \) is (uniquely) determined by

\[0 = (K_0 + L_0e^{-sp})u, \quad (56) \]

\[u = (K_u + L_ue^{-sp})u, \quad (57) \]

\[G(s)u = (K_y + L_ye^{-sp})u \quad (58) \]

for some \(v \in \mathbb{C}^n \).

Lemma 15. There exists \(\mu \in \mathbb{R} \) such that, for \(s \in \mathbb{C}_\mu \), \(G(s) = 0 \) if and only if the matrix \([K_0 + K_u e^{-sp} \ K_y + L_y e^{-sp}] \) is not invertible. Proof. Since the matrix \([K_0 \ K_u] \) is invertible and \(A \) generates a \(C_0 \)-semigroup there is a \(\mu \in \mathbb{R} \) such that \(\rho(A) \subseteq \mathbb{C}_\mu \) and

\[[K_0 + L_0e^{-sp} \ K_u + L_ue^{-sp}] = \begin{bmatrix} K_0 & L_0 \\ K_u & L_u \end{bmatrix} e^{-sp} \]

is invertible for \(s \in \mathbb{C}_\mu \).

Assume now \(G(s) \equiv 0 \) for some \(s \in \mathbb{C}_\mu \). Then (56)–(58) imply that there exists \(v \in \mathbb{C}^n \) such that

\[0 = (K_0 + L_0e^{-sp})v, \]

\[1 = (K_u + L_ue^{-sp})v, \]

\[0 = (K_y + L_ye^{-sp})v. \]

Because \([K_0 + K_u e^{-sp} \ K_y + L_y e^{-sp}] \) is invertible, it yields \(v = 0 \). Thus \([K_0 + L_0e^{-sp} \ K_u + L_ue^{-sp}] \) is not invertible.

Conversely, assume that for some \(s \in \mathbb{C}_\mu \), \([K_0 + K_u e^{-sp} \ K_y + L_y e^{-sp}] \) is not invertible. Then there exists a non-zero vector \(v \in \mathbb{C}^n \) such that

\[0 \in [K_0 + L_0e^{-sp} \ K_u + L_ue^{-sp}] v. \]

Set \(u := (K_u + L_ue^{-sp})v \). Since \([K_0 + K_u e^{-sp} \ K_y + L_y e^{-sp}] \) is invertible, it follows that \(u \neq 0 \). However, \(G(s)u \equiv 0 \) by (56)–(58), which implies \(G(s) = 0 \).

Theorem 16. Suppose that \(G(s) \neq 0 \). Then the zero dynamics of the port-Hamiltonian system (52)–(55) are again a well posed port-Hamiltonian system with wave speed \(-\lambda_0 \) and possibly a smaller state space. More precisely, there exists \(k \in \{0, \ldots, n\} \) such that the zero dynamics is described by the port-Hamiltonian system

\[\frac{\partial}{\partial t} w(\xi, t) = -\frac{\partial}{\partial \xi}(\lambda(\xi)w(\xi, t)) \]

\[0 = K_u(\lambda(0)w(0, t)) + L_u(\lambda(1)w(1, t)). \]

with state space \(L^2(0, 1; \mathbb{C}^n) \) and the \(k \times k \)-matrix \(K_w \) is invertible.

Proof. The zero dynamics are defined by the equations

\[\frac{\partial}{\partial t} z(\xi, t) = -\frac{\partial}{\partial \xi}(\lambda(\xi)z(\xi, t)) \]

\[0 = \begin{bmatrix} K_0 & K_u \\ L_0 & L_u \end{bmatrix} (\lambda(0)z(0, t)) + \begin{bmatrix} L_0 & L_u \end{bmatrix} (\lambda(1)z(1, t)). \]

Since there is one input and one output, and rank \([K_0 \ K_u] \) equals \(n - 1 \) or \(n \).

If rank \([K_0 \ K_u] = n \), then that is, this matrix is invertible, then the zero dynamics is well-posed on the whole state space \(L^2(0, 1; \mathbb{C}^n) \), see Proposition 7. Theorem 1 implies that the zero dynamics are well-posed on the state space \(L^2(0, 1; \mathbb{C}^n) \). Thus \(k = n \) and the theorem is proved.

Suppose next that rank \([K_0 \ K_u] = n - 1 \). Then \(K_y \) is a linear combination of the rows of \(K_0 \) and there is an invertible transformation, a row reduction, so that (60) is equivalent to

\[\begin{bmatrix} 0 & 0 \\ K_{11} & K_{12} \end{bmatrix} (\lambda(0)z(0, t)) + \begin{bmatrix} L_{11} & L_{12} \end{bmatrix} (\lambda(1)z(1, t)). \]

Here \(K_{11}, L_{11} \in \mathbb{C}^{(n-1)\times (n-1)} \) and \(L_{12} \in \mathbb{C}^n \). Since rank\([K_{11}, K_{12}] \) equals \(n - 1 \), column transformations lead to a representation where the matrix \(K_{11} \) is invertible. Assume now that this has been done.

Since \(K_{11} \) is invertible, and \(G \) is not equivalently zero, Lemma 15 implies that there exists \(s_0 \in \mathbb{C} \) such that both \(T_1 := K_{11} + L_{11}e^{-sp} \)
Thus, the transformed partial differential equation is identical to
\[L + L_u e^{-\omega p} \]
are invertible. Defining the Schur complement of \(T \) with respect to \(T_1 \),
\[S = T_4 - T_3 T_1^{-1} T_2, \]
\[\begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix} \begin{bmatrix} I & 0 \\ T_3 T_1^{-1} I & S \end{bmatrix} \begin{bmatrix} I & T_1^{-1} T_2 \\ 0 & I \end{bmatrix}. \]
Since \(T_1 \) and \(T \) are invertible, \(S \) is invertible and
\[T^{-1} := \begin{bmatrix} T_1^{-1} + T_1^{-1} T_2 S^{-1} T_1 T_1^{-1} - T_1^{-1} T_2 S^{-1} T_1^{-1} \\ -S^{-1} T_1 T_1^{-1} \end{bmatrix} \].
We define the matrices
\[K_w := K_{11}(T_1 T_1^{-1} + T_1^{-1} T_2 S^{-1} T_1 T_1^{-1} - K_{12} S^{-1} T_1 T_1^{-1}) \]
\[L_w := L_{11}(T_1 T_1^{-1} + T_1^{-1} T_2 S^{-1} T_1 T_1^{-1} - L_{12} S^{-1} T_1 T_1^{-1}) \]
\[K_{w12} = K_{12} S^{-1} - K_{11} T_1^{-1} S^{-1} T_1^{-1}. \]
Thus it yields
\[\begin{bmatrix} K_{11} & K_{12} \\ 0 & 0 \end{bmatrix} T^{-1} = \begin{bmatrix} -K_{11} & K_{12} \\ 0 & 0 \end{bmatrix} \].
Here \(K_{w12} \) is a \((n-1)\times 1\)-matrix and rank \(K_w \) \geq n-2. Now applying the state transformation \(\tilde{z} = Tz \), Eqs. (61) are equivalent to
\[\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} K_{11} & K_{12} \\ 0 & 0 \end{bmatrix} T^{-1}(\lambda_0(0)\tilde{z}(0, t)) \]
\[+ \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} T^{-1}(\lambda_0(1)\tilde{z}(1, t)) \]
\[= \begin{bmatrix} K_w & K_{w12} \\ 0 & 0 \end{bmatrix} (\lambda_0(0)\tilde{z}(0, t)) + \begin{bmatrix} L_w \\ 0 \end{bmatrix} L_{12} S^{-1} - L_{11} T_1^{-1} T_2 S^{-1} \]
\[\begin{bmatrix} 0 \\ \lambda_0(1)\tilde{z}(1, t) \end{bmatrix}. \]
Also the system of partial differential equations (59) is equivalent to
\[\frac{\partial}{\partial t} \tilde{z} (\xi, t) = -\frac{\partial}{\partial \xi} (\lambda_0(\xi) \tilde{z}(\xi, t)). \]
Thus, the transformed partial differential equation is identical to the original. The general solution
\[\tilde{z}_0 (\xi, t) = \frac{c}{\lambda_0(\xi)} e^{\xi^2 (\lambda_0(0) - \lambda_0(1))t}, \]
and the boundary condition \(\tilde{z}_0 (1, t) = 0 \) imply that \(\tilde{z}_0 \equiv 0 \). Define
\[w := \begin{bmatrix} \tilde{z}_0 \\ \vdots \\ \tilde{z}_{n-1} \end{bmatrix}. \]
The zero dynamics is described by the reduced port-Hamiltonian system
\[\frac{\partial w}{\partial t} = -\frac{\partial}{\partial \xi} (\lambda_0 w), \]
\[0 = K_w (\lambda_0(0)w(0, t)) + L_w (\lambda_0(1)w(1, t)). \]
The reduced system is well-posed on \(L^2(0, 1; \mathbb{C}^{n-1}) \) if and only if \(K_w \) is invertible; that is, \(K_w \) has rank \(n-1 \). If \(K_w \) is invertible, then the theorem is proved.

Now suppose that rank \(K_w = n-2 \). As in the first part, elementary row and column transformations can be used to put the boundary conditions for the reduced system into the form, again indicating the state variables by \(w \),
\[\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \tilde{K}_{11} & \tilde{K}_{12} \\ 0 & 0 \end{bmatrix} (\lambda_0(0)w(0, t)) \]
\[+ \begin{bmatrix} \tilde{L}_{11} & \tilde{L}_{12} \\ \tilde{L}_{21} & \tilde{L}_{22} \end{bmatrix} (\lambda_0(1)w(1, t)). \]
where \(\tilde{K}_{11} \) is invertible. Define \(\tilde{T}(s) = K_w + L_w e^{-\omega p} \).
In order to repeat the above procedure, a complex number \(s \) such that \(T \) and \(\tilde{K}_{11} + L_1 e^{-\omega p} \) are both invertible is needed. Set \(s = s_0 \). Define
\[X = T_1^{-1} + T_1^{-1} T_2 S^{-1} T_1 T_1^{-1}. \]
Recalling that \(T_1 = K_{11} + e^{-\omega p}L_{11}, T_2 = K_{12} + e^{-\omega p}L_{12} \),
\[K_w + L_w e^{-\omega p} = K_{11} X - K_{12} S^{-1} T_1 T_1^{-1} \]
\[+ e^{-\omega p}L_{11} X - e^{-\omega p}L_{12} S^{-1} T_1 T_1^{-1} \]
\[= T_1 X - T_1^{-1} T_2 S^{-1} T_1 T_1^{-1} \]
\[= I + T_1 S^{-1} T_1 T_1^{-1} - T_1 S^{-1} T_1 T_1^{-1} \]
\[= I. \]
Thus, with \(s = s_0 \), \(\tilde{T}(s) \) is invertible. Define
\[f_w : C_u \to C, \quad f_w(s) = \det(\tilde{T}(s)). \]
and so \(f_w(s_0) = 1 \). Since \(f_w \) is analytic, there is a sequence \(s_n \in \mathbb{R} \), \(s_n \to \infty \) with \(f(s_n) \neq 0 \). Choose then \(s_n \) so that \(\tilde{K}_{11} + L_n e^{-\omega p} \) is invertible. Repeating the previous procedure leads to a port-Hamiltonian system with state-space \(L^2(0, 1; \mathbb{C}^{n-1}) \). Since each iteration leads to a state-space with fewer number of state variables, this procedure is guaranteed to converge within \(n \) steps.

Since the zero dynamics are a well-posed dynamical system, the following result is immediate.

Corollary 17. The invariant zeros are contained in a left-hand-plane.

One consequence of calculating the zero dynamics using the original port-Hamiltonian form is that it is easy to obtain the input \(u \) that zeros the output. Suppose only one state space reduction in **Theorem 16** is needed. The state space of the zero dynamics is \(L^2(0, 1; \mathbb{C}^{n-1}) \). From (54) and (62)
\[u(t) = K_0 \lambda_0(0) \tilde{z}(0, t) + L_0 \lambda_0(1) \tilde{z}(1, t) \]
\[= K_0 \lambda_0(0) \tilde{z}(0, t) + L_0 \lambda_0(1) \tilde{z}(1, t) \].
In the zero dynamics, \(\tilde{z}_0 \equiv 0 \). Defining \(K_u \) to be the first \(n-1 \) columns of \(K_0 \lambda_0(0) \tilde{z}(1, t) \) and defining \(L_u \) similarly, the zeroing input is
\[u(t) = K_u w(0, t) + L_u w(1, t) \]
where \(w \) is defined in (64). For the situation where more than one state space reduction is needed, the calculation is similar, except that a transformation matrix \(T \) is needed for each reduction.

6. Computation

Theorem 16 leads to a characterization of the zero dynamics as a port-Hamiltonian system of smaller dimension. Moreover, the proof is constructive and can be used in an algorithm to calculate the zero dynamics using standard linear algebra algorithms, see the box on the following page. Zero dynamics can be calculated exactly for large system order; that is those with a large number of nodes. Furthermore, **Theorem 16** can be used to check stability. Several examples are now presented to illustrate the calculation of zero dynamics.
Example 18. Consider the system from Example 10, written in the
equal wave speed form. For zero dynamics,
\[
\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} z(0, t) + \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} z(1, t). \tag{65}
\]
The rank of \(K = 2 \) and so the zero dynamics are defined on a
smaller state space than the original. Applying one iteration of the
algorithm yields (with \(s_0 = 0 \))
\[
TP = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{bmatrix}, \quad K_w = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \quad L_w = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}.
\]
The last row of the transformation matrix \(TP \) indicates that for zero
dynamics
\[
z_1 + z_{2a} = 0 \tag{66}
\]
and the first two rows define the remaining state variables:
\[
\tilde{z}_1 = 2z_1 + z_{2b}, \quad \tilde{z}_2 = z_{2a} - z_{2b}.
\]
Since rank \(K_w = 1 \) another iteration of the algorithm is needed.
This leads to
\[
(TP)_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \quad K_{w2} = 1, \quad L_{w2} = 0.
\]
Thus,
\[
\tilde{z}_1 + \tilde{z}_2 = 0,
\]
which, along with (66), implies that
\[
z_1 \equiv 0, \quad z_{2a} \equiv 0.
\]
This leads to
\[
\frac{\partial}{\partial t} z_{2b}(\xi, t) = -\frac{\partial}{\partial \xi} z_{2b}(\xi, t), \quad z_{2b}(1, t) = 0.
\]
The only solution to this equation is the zero function and so
the zero dynamics are empty. There is no control \(u \) that zeros
the output. This reflects the fact that this system has, regarding the
network as pipes, pipe 1 closed with both inlet and outlet
connected to the end of pipe 2. The control is applied at the start of
pipe 2. Not only is the system unstable, but there is no control that
can zero the measurement \(z(0, t) \).

Example 19.
\[
\frac{\partial x_i}{\partial t} = -\frac{\partial x_i}{\partial \xi}, \quad i = 1, 2, 3,
\]
with
\[
\begin{bmatrix} 0 \\ u(t) \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} x(0, t) + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} x(1, t) \tag{67}
\]
\[
y(t) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} x(0, t) + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} x(1, t).
\]
The rank of \(K \) in (67) is 3 and so the system is well-posed. The
transfer function is not identically zero.

Zero dynamics require
\[
\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} x(0, t) + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} x(1, t). \tag{68}
\]

Algorithm: Calculation of Zero Dynamics

The data are wave speed \(p = \int_{\frac{1}{2}}^{1} \frac{1}{\sqrt{\xi(t)}} \, dt \), boundary condition
matrices \(K_0, L_0 \), and output matrices \(K_y, L_y \). The dimension of
the system is \(n \), the number of columns in \(K \). Define
\[
K = \begin{bmatrix} K_0 \\ K_y \end{bmatrix}.
\]
If \(K \) is invertible the zero dynamics are well-posed with \(n \) state
variables. Otherwise do the following calculations.

1. Perform LU-decomposition of \(K \): \(P_i u K = M_i M_u \) where
\(M_i \) is lower triangular, \(M_u \) is upper triangular and \(P_i \) is a
permutation matrix.

2. If necessary, permute last column of \(M_u \) with earlier column,
so that rank of top left \(n-1 \) block is \(n-1 \); call the
permutation matrix \(P \). Partition \(M_i P \) and \(M_i^{-1} P_u L \) similarly as
\[
M_u = \begin{bmatrix} K_{11} & K_{12} \\ \{ 0 \ldots 0 \} & 0 \end{bmatrix}, \quad M_i^{-1} P_u L = \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix}.
\]

3. Define the matrices \(T_1 = K_{11} + L_{12} e^{P_u L} \) and
\[
T = \begin{bmatrix} T_1 & K_{12} + L_{12} e^{P_u L} \\ L_{21} & L_{22} e^{P_u L} \end{bmatrix}
\]
for \(s_0 \) so that both matrices are invertible. (The existence of such an
\(s_0 \) is guaranteed if the transfer function is not identically zero. A
simple way find a suitable \(s_0 \) is to start with \(s_0 = 0 \) and then increase
by an arbitrary amount until both matrices are invertible.)

4. Decompose \(T^{-1} \) using the same decomposition as for \(K \)
and construct the inverse of \(T \) using the Schur complement.
Letting \(X \) be the solution of \(T_3 = X T_1 \), define
\[
S = (T_4 - X T_2)^{-1}.
\]
(Note \(S \) is a scalar.) Only the 2 left blocks of \(T^{-1} \) are needed:
\[
(T_1)_{11} = T_1^{-1}(I + T_3 S X), \quad (T_1)_{12} = -S X.
\]

5. The boundary matrices for the reduced system are
\[
K_w = K_{11}(T_1)_{11} + K_{12}(T_1)_{12}, \quad L_w = (L_1(T_1)_{11} + L_{12}(T_1)_{12}).
\]

6. The new variables are \(\tilde{z}_1 \ldots \tilde{z}_{n-1} \) where \(\tilde{z} = T P \tilde{z} \), the
differential equation is
\[
\frac{\partial}{\partial t} \tilde{z}(\xi, t) = -\frac{\partial}{\partial \xi} \lambda_0(\tilde{z}(\xi, t))
\]
and the boundary conditions are
\[
K_w \lambda_0(\tilde{z}(0, t) + L_w \lambda_0(1) = \tilde{z}(1, t).
\]

Applying the algorithm yields (with \(s_0 = 0 \))
\[
TP = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}, \quad K_w = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad L_w = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.
\]

The third row of \(TP \) implies that \(z_1 \equiv 0 \). The reduced states are
\[
\tilde{z}_2 = -z_1 + z_2, \quad \tilde{z}_3 = z_1 - z_3 = -z_3.
\]
Since \(K_w \) does not have full rank the algorithm needs to be repeated; but with \(K_w, L_w \) as the boundary matrices. This yields
\[
(\mathbf{TP})_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad (K_w)_2 = [1], \quad (L_w)_2 = [0].
\]

Thus \(z_2 = z_2 \equiv 0 \) and \(z_1(0) = -z_3(0) = 0 \).

This example is simple enough to do by hand. The original equations (68) are already row-reduced, and imply \(x_1 \equiv 0 \). The reduced system must have \(x_3 \equiv 0 \).

Either calculation leads to one non-zero equation, for \(x_3 \) with the boundary condition
\[
x_3(0, t) = 0.
\]

The system Eqs. (67) imply that in order to achieve this, \(u(t) = x_3(1, t) \).

Example 20. Consider a larger system with \(n = 10 \). Suppose the wave speed \(\lambda_0 \) is such that \(-\int_0^1 \lambda_0(\xi) d\xi = -1 \). The entries in the boundary matrices are zero, except that
\[
K_0(1, 2) = 1, \quad K_0(1, 9) = -3, \quad K_0(2, 3) = 1,
\]
\[
K_0(2, 2) = -1, \quad K_0(3, 6) = 1, \quad K_0(3, 10) = 2,
\]
\[
K_0(4, 1) = -5, \quad K_0(4, 6) = 2, \quad K_0(5, 10) = 6,
\]
\[
K_0(5, 9) = -4, \quad K_0(6, 8) = 4, \quad K_0(6, 1) = -2,
\]
\[
K_0(7, 6) = 1, \quad K_0(7, 7) = 3, \quad K_0(8, 3) = -2,
\]
\[
K_0(8, 8) = 1, \quad K_0(8, 5) = -5, \quad K_0(9, 1) = 1,
\]
\[
K_0(9, 6) = 5, \quad K_0(9, 9) = -1
\]

\(K_w(1, 4) = 1; \quad L_r(1, 2) = 1, \quad L_r(1, 4) = -2 \).

Since
\[
\text{rank} \begin{bmatrix} K_0 \\ K_w \end{bmatrix} = 10
\]

this system is well-posed. Also, the transfer function \(G \) is not identically \(0 \); in particular \(G(0) \neq 0 \). Applying the algorithm with \(s_0 = 0 \) yields
\[
\begin{bmatrix}
-5 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 0 & -5 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -2.5 & 0 & 0 & 0.5 & -3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.862 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 1.481 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.862 \\
0 & 1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\(K_w = I_n, \quad L_w = 0_{nxn} \).

For zero dynamics, \(z_2 - 2z_4 \equiv 0 \) and the zeroing input is
\[
u(t) = K_w \mathbf{TP} \mathbf{z}(0, t) = -2.5z_3(0, t) + 0.5z_2(0, t) - 3z_0(0, t).
\]

7. Conclusions

In this paper, zero dynamics were formally defined for port-Hamiltonian systems. If the feedthrough operator is invertible, then the zero dynamics are again a port-Hamiltonian system of the same order. In general, however, the feedthrough operator is not invertible. For many infinite-dimensional systems, where the feedthrough is not invertible, the zero dynamics are not well-posed. It has been shown in this paper that provided the system can be rewritten as a network of waves with the same speed, the zero dynamics are always well-posed, and are a port-Hamiltonian system. Furthermore, a numerical method to construct the zero dynamics using the original partial differential equation has been described. Finite-dimensional approximations, which can be inaccurate in calculation of zeros, are not needed. The approach applies to systems with commensurate but non-equal wave speeds, and this generalization will be explored in future work. The extension to multi-input multi-output systems also needs to be established.

References

Birgit Jacob’s current research interests include the area of infinite-dimensional systems and operator theory, particularly well-posed linear systems and port-Hamiltonian systems. She has written with Hans Zwart (Twente) a monograph on port-Hamiltonian systems. She received the M.Sc. degree in mathematics from the University of Dortmund in 1992 and the Ph.D. degree in mathematics from the University of Bremen in 1995. She held post-doctoral and professor positions at the universities of Twente, Leeds, Paderborn, at Berlin University of Technology and at Delft University of Technology. Since 2010, she has been with the University of Wuppertal, Germany, where she is a full professor in analysis. She is a member of the editorial board of Operators and Matrices and Journal of Nonlinear and Robust Control, and series editor of the Birkhäuser Verlag book series Linear Operators and Linear Systems.

Prof. Kirsten Morris’ research interests are control and estimation of systems modelled by partial differential equations and also systems, such as smart materials, involving hysteresis. Her recent research has focused on improving performance through attention to actuator location as part of controller design, and sensor location as part of estimator design. She has written an undergraduate textbook “Introduction to Feedback Control”, and was editor of the book “Control of Flexible Structures”. She is a professor in the Applied Mathematics Department at the University of Waterloo with a cross-appointment to the Department of Mechanical & Mechatronics Engineering. From 2005–2008 she was Associate Dean for Graduate Studies & Research in the Faculty of Mathematics. She has held visiting positions at ICASE (NASA Langley), the Fields Institute, the Institute for Mathematics & Applications in Minneapolis and the Institut de Mathématiques in Bordeaux. She served as a vice-president of the IEEE Control System Society from 2013 to 2016, vice-chair of the SIAM Control & Systems Theory group 2016–2017 and is chair of that organization 2018–2019. She was an associate editor with the IEEE Transactions on Automatic Control and is currently an editor for SIAM Journal on Control & Optimization, Mathematics of Control, Signals & Systems and a member of the editorial board of the SIAM book series Advances in Design & Control.

Hans Zwart received the Masters degree in mathematics in 1984 and his Ph.D. in 1988 at the University of Groningen. Since 1988 he is with the Department of Applied Mathematics, University of Twente, the Netherlands, where he is now full professor. His research interest lies in the area of distributed parameter systems. In addition, he holds a part-time professorial position at the department of Mechanical Engineering, Eindhoven University of Technology. He is the co-author of many papers and of the text books “An Introduction to Linear Infinite-Dimensional System Theory”, Springer Verlag, 1995, with R.F. Curtain and of “Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces” with B. Jacob. Current research topics include system theory for distributed parameter systems with a Hamiltonian dynamics and controller design for mechanical systems.