Mimicking the nature: Hook-and-loop adhesion systems for elastomers

R. Anyszka12*, W. Dierkes1, A. Blume1, D. M. Bieliński2 and E. Sarlin3

1 University of Twente, Faculty of Engineering Technology, Department of Mechanics of Solids, Surfaces & Systems (MS3), Chair of Elastomer Technology & Engineering, Enschede, The Netherlands
2 Lodz University of Technology, Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz, Poland
3 Tampere University of Technology, Department of Materials Science, Tampere, Finland
* r.p.anyszka@utwente.nl; rafal.anyszka@p.lodz.pl

Nowadays, silica has become one of the most important fillers in the rubber industry. However, the polar character of its surface requires a chemical treatment before its incorporation to the less-polar or non-polar rubber matrix. Currently the most prevalent approach toward silica surface modification is the use of silane coupling agents which form strong covalent bonds between a silica and an elastomer. These bonds are relatively stiff and in most cases cannot be reconstructed after rupture. To overcome these disadvantages, a completely new approach was made. This new approach was inspired by the hook-and-loop velcro system widely spread in nature, which facilitates reconnectable mechanical links between two surfaces. The challenging task is to apply the hook-and-loop system in a macromolecular level by implementing physical entanglements for an alternative silica/elastomer interaction.

In this study a monohydroxy-telechelic butadiene oligomer was utilized as a backbone for the molecular “hook” synthesis. The hydroxyl group reacted with isocyanate group from triethoxysilane in order to form reactive sites toward the silica surface. Whereas, double carbon-carbon bonds in vinyl position were utilized to attach side mercapto-terminated groups of significant stearic hindrance providing sufficient entanglements with an elastomer matrix, acting as molecular “loops” (Fig. 1). This approach is a first step to implement the hook-and-loop system in a macromolecular level for the rubber industry and technology.

Figure 1: Scheme of the molecular “hook” synthesis and its attachments to a silica surface.