European Distance and E-Learning Network Annual Conference (EDEN 2016)

Re-Imagining Learning Environments

Budapest, Hungary
14 – 17 June 2016

Editors:

Antonio Moreira Teixeira
Andras Szucs
Ildiko Mazar

ISBN: 978-1-5108-5022-4
TABLE OF CONTENTS

THEORY, CONCEPT AND PRACTICE IN ICT ENHANCED LEARNING

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Invitation to Look at Enhancement in Technology-Enhanced Learning</td>
<td>1</td>
</tr>
<tr>
<td>Stéphanie Gauttier, Inmaculada Arnedillo-Sanchez, Trinity College Dublin, Ireland</td>
<td></td>
</tr>
<tr>
<td>New Methods in the Digital Learning Environment: Micro Contents and Visual Case Studies</td>
<td>2</td>
</tr>
<tr>
<td>András Benedek, János Horváth Cz., Budapest University of Technology and Economics, Hungary</td>
<td></td>
</tr>
<tr>
<td>Academics’ Use of Academic Social Networking Sites: The Case of ResearchGate and Academia.edu</td>
<td>3</td>
</tr>
<tr>
<td>Efrat Pieterse, Western Galilee College, Hagit Meishar-Tal, Holon Institute of Technology, Israel</td>
<td></td>
</tr>
<tr>
<td>Adapted Learning Environment in Future Education</td>
<td>4</td>
</tr>
<tr>
<td>Shimon Amar, Ohalo College of Education, Israel, Frederic Roblin, Steelcase Education, France</td>
<td></td>
</tr>
<tr>
<td>Top-Down or Bottom Up: A Comparative Study on Assessment Strategies in the Studio Adaptive Learning Environment</td>
<td>5</td>
</tr>
<tr>
<td>Christian Weber, Corvinno Technology Transfer Center, Réka Vas, Corvinus University of Budapest, Hungary</td>
<td></td>
</tr>
<tr>
<td>Gamification for Online Courses to Improve Inquiry Methodology</td>
<td>6</td>
</tr>
<tr>
<td>Paula Carolei, Universidade Federal de Sao Paulo (UNIFESP), Eliane Schlemmer, Universidade do Vale do Rio dos Sinos (UNISINOS), Brazil</td>
<td></td>
</tr>
</tbody>
</table>

POLICY DIMENSIONS OF ICTS AND LEARNING DEVELOPMENT

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development of a New Activity-Based Instructional Design Model</td>
<td>7</td>
</tr>
<tr>
<td>János Olle, László Hübler, Eszterházy Károly University of Applied Sciences, Henrik Sablik, Ágnes Kocsis, Nexus Learning – ELMS Zrt., Hungary</td>
<td></td>
</tr>
<tr>
<td>E-Learning Decision Making: Methods and Methodologies</td>
<td>8</td>
</tr>
<tr>
<td>Nikola Kadoić, Nina Begićević Redep, Blaženka Divjak, University of Zagreb, Faculty of Organization and Informatics, Croatia</td>
<td></td>
</tr>
<tr>
<td>Sustainability for Whom? Planning for Student Success in Open Education and Distance Learning</td>
<td>9</td>
</tr>
<tr>
<td>Alan Tait, The Open University, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Mobilising Leadership for Innovative Open and Distance Education in the 21st Century</td>
<td>10</td>
</tr>
<tr>
<td>Don Olcott, Jr., Charles Sturt University, Australia and Carl von Ossietzky University of Oldenburg, Germany, Lisa Marie Blaschke, Carl von Ossietzky University of Oldenburg, Germany</td>
<td></td>
</tr>
<tr>
<td>Governmental and Institutional Strategies to Support New Ways of Teaching and Learning</td>
<td>11</td>
</tr>
<tr>
<td>George Ubachs, European Association of Distance Teaching Universities (EADTU), The Netherlands</td>
<td></td>
</tr>
</tbody>
</table>

OPEN EDUCATIONAL RESOURCES

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening Studies Through Virtual Exchange – Case Description</td>
<td>12</td>
</tr>
<tr>
<td>Airina Volungevičienė, Estela Dauskšienė, Margarita Teresevičienė, Vytautas Magnus University, Lithuania</td>
<td></td>
</tr>
<tr>
<td>Advantages and Disadvantages of SPOCs (Small Private Online Courses): Experiences with Online Learning</td>
<td>13</td>
</tr>
<tr>
<td>Gerard Gielen, UC Leuven Limburg, Belgium</td>
<td></td>
</tr>
<tr>
<td>Educational System Interoperability – Challenges for Open Learning and Training Programs</td>
<td>14</td>
</tr>
<tr>
<td>Christian-Andreas Schumann, Eric Forkel, Helge Gerischer, Janek Goetze,Thomas Klein, Claudia Tittmann, West Saxon University of Zwickau, Jana Weber, Technische Universität Berlin, Germany, Feng Xiao, Tongji University, China, Jorge Alejandro Manriquez Frayre, Tec de Monterrey, Mexico</td>
<td></td>
</tr>
<tr>
<td>Open Education as Disruption: Lessons for Open and Distance Learning from Open Educational Practice</td>
<td>15</td>
</tr>
<tr>
<td>Ronald Macintyre, The Open University in Scotland, Scotland</td>
<td></td>
</tr>
</tbody>
</table>
Dear Educator, How Open are You? ... 16
Fabio Nascimbeni, Universidad Internacional de La Rioja (UNIR), Spain

Understanding Laureate’s European Hybridity Initiative ... 17
Michael Vogelsang, Business and Information Technology School, Germany, Marios Vryonides, European University Cyprus, Cyprus, Pedro Lara Bercial, Universidad Europea Madrid, Spain, Alain Noghiu, Laureate Network Office, Netherlands

MOOCS ISSUES – EXPERIENCE, UNDERSTANDING, ATTITUDES, HOPES

MOOCs for Motivation: Promoting Student Engagement in Higher Education Studies ... 18
Steven Warburton, Maria Fragkaki, Sophia Vahora, University of Surrey, United Kingdom

MOOCs and Change Dynamics in Higher Education ... 19
Cathrine Tømte, Siri Aanstad, Jørgen Sjaastad, Sabine Wollscheid, The Nordic Institute for Studies in Innovation, Research and Education (NIFU), Norway

Do Our MOOC’s work? Creative Ways to Assess Innovative e-Learning Programs ... 20
Elran Michal, Bar Carmel, Bar-On Naama, Elran Yossi, Davidson Institute of Science Education, Weizmann Institute of Science, Rehovot, Israel

Exemplars of Collaborative Learning Design in Online Courses ... 21
Afshan Sharif, Manuel Dias, University of British Columbia, Canada

An Experiment of Social-Gamification in Massive Open Online Courses: The ECO iMOOC ... 22
Eva García-Lopez, Antonio García-Cabot, Luis de-Marcos, University of Alcala, Spain, António Moreira Teixeira, Universidade Aberta & University of Lisbon, Maria do Carmo Teixeira Pinto, Universidade Aberta, Portugal

Openness, Multiculturalism, Attitudes and Experience in Online Collaborative Learning ... 23
Noga Magen-Nagar, Gordon College of Education, Miri Shonfeld, Kibbutzim College of Education, Technology and Arts Institution and MOFET, Roni Dayan, Ministry of Education, Israel

How to Adopt the Remedial cMOOC GuerRilla Literacy Learners? ... 24
Huion Patricia, Limburg Catholic University College, Belgium

The Evolution of MOOCs and a Clarification of Terminology through Literature Review ... 25
Hakan Altinpulluk, Mehmet Kesim, Anadolu University, Turkey

How a MOOC-Like Course is Facilitating Teachers’ Continuing Education and Teachers’ Professional Learning Community? ... 26
Sabine Wollscheid, Cathrine Tømte, Jørgen Sjaastad, Siri Aanstad, The Nordic Institute for Studies in Innovation, Research and Education (NIFU), Norway

WORK BASED LEARNING AND TRAINING SUPPORTED BY TECHNOLOGY

Building together Efficient, Targeted and Long-Lasting E-Training: Experience Feedback from the uTOP Project ... 27
Vincent Beillevaire, UNIT Foundation, Anne Boyer, Lorraine University, France

Augmented Learning Environment for Wound Care Simulation ... 28
Nelson Jorge, Delft University of Technology, The Netherlands, Lina Morgado, Universidade Aberta, Pedro Gaspar, Instituto Politécnico de Leiria, Portugal

Extracurricular Vocational Training in Higher Education: Resume of Experiences after Ten Years of Practice ... 29
Thomas Richter, Heino H. Adelsberger, Peyoun Khatami, TELIT @ University of Duisburg Essen, Germany

Bridging Theory to Practice Through a Flipped Classroom Approach in an Entrepreneurship Course ... 30
Ingrid le Roux, University of Pretoria, South Africa
SOCIO-ECONOMIC AND CULTURAL ASPECTS IN E-LEARNING

The Changing Nature of Course Design and Development in Online Higher Education .. 31
Keith Hampson, Contact North/Contact Nord, Canada

Creating a Socially Sensitive Learning Environment for Science Education: The SSIBL Framework .. 32
Andrea Kárpáti, Andrea Király, ELTE University, Faculty of Science, Centre for Science Communication and UNESCO Chair for Multimedia in Education, Hungary

Global Citizenship and Leadership in Changed Learning Environments ... 33
Alan Bruce, Universal Learning Systems, Ireland

Cork Learning City: Toward a Community Wide Learning Environment .. 34
Séamus Ó Tuama, University College Cork, Ireland

Recasting “Wikinomics” in Educational Environments – Case Studies in the Wikinomics Project ... 35
Athanasios Priftis, Jean Philippe Trabichet, Haute école de gestion de Genève (HEG-Genève) of the University of Applied Sciences Western Switzerland (HES-SO), Theo Bondolfi, Ynternet.org, Switzerland, Nuria Molas-Castells, Universitat de Barcelona, Spain

Have New Technologies Improved Access to Quality Higher Education? ... 36
Anne Gaskell, St Edmund’s College, University of Cambridge, Roger Mills, Centre for Distance Education, International Academy, University of London, United Kingdom

LEARNER NEEDS, CHARACTERISTICS AND THE E-LEARNING SOLUTIONS

Perceptions of Learning Activities and Learning Outcomes in a ROSE (Random Short-Term Learning Environment) 37
Keren Levy, Elaine Hoter, David Burg, Ohalo College of Education, Science and Sport, Israel

Situated Formative Feedback – How a Moodle Can Enhance Student Learning through Online Feedback .. 38
Niels Bech Lukassen, University College of Northern Denmark and Aarhus University, Christian Wahl, University College of Northern Denmark, Elsebeth Korsgaard Sorensen, Aalborg University, Denmark

Examination of the Effectiveness of Electronic Learning Environments .. 39
Erika Jókai, Budapest University of Technology and Economics, Hungary

The Integration of Information Literacy Skills into the Curriculum ... 40
Luis Guadarrama, Marc Cels, Corinne Bossé, Elaine Fabro, Mary Pringle, Cindy Ives, Athabasca University, Canada

Re-Imagining Coursework Masters for Online Learning Based on Research and Design Principles ... 41
Lynette Nagel, University of Pretoria, South Africa

Self-Knowledge and Networking in a Training Course and How to Make it in the Virtual Space ... 42
Beatrix Séllei, Budapest University of Technology and Economic, Hungary

Pen or Keyboard – An Empirical Study on the Effects of Technology on Writing Skills ... 43
Benedetto Vertecchi, Antonella Poce, Francesco Agrusti, Maria Rosaria Re, Università Roma Tre, Italy

Guiding Students to Become Lifelong Learners: Flipped Classroom and Meaningful Participation in a Blended-Learning Environment .. 44
Teemu Leinonen, Eva Durall, Aalto University, Finland

Immersive Learning – Learning Patterns inside Digital Cultural Immersive Experiences in Situ ... 45
Patrizia Schettino, Università della Svizzera Italiana, Switzerland

Amplifying the Process of Inclusion through a Genuine Marriage between Pedagogy and Technology .. 46
Elsebeth Korsgaard Sorensen, Hanne Voldborg Andersen, Aalborg University, Denmark
SMART DIGITAL PEDAGOGY AND LEARNING METHODOLOGY

Using Hypervideos in Initial Vocational Education: Effectiveness and Motivation of Instructional Scenarios ... 48
Alberto Cattaneo, Florinda Sauli, Swiss Federal Institute for Vocational Education and Training, Switzerland

Curricular Development and ICT: From Technological Deficit to Methodological Deficit ... 49
Fernando Albuquerque Costa, University of Lisbon, Portugal

Integration of Virtual Learning Environment into the Educational Process .. 50
Sandra Kučina Softić, Ana Ćorić Samardžija, University of Zagreb University Computing Centre, Croatia

How Social Networking Experience Relates to Social Presence and Attitude of Using SNS in Education 51
Jieun Lim, Jennifer Richardson, Purdue University, United States of America

Use of Big Data in Education Efficiency Analysis .. 52
György Molnár, Zoltán Szűts, Dávid Sik, Budapest University of Technology and Economics, Hungary

Repository of Inspiring Science Education Project for Space and Astronomy in Science Education 53
Panagiota Argyri, Model High School Evangelika of Smyrna, Greece

Extending Learning Environments in Higher Education: Online Peer-to-Peer Counselling in Professional Degree Programs of Social Work .. 54
Patricia Arnold, Munich University of Applied Sciences, Germany

How Do Faculty Members React Towards the Use of Personal Mobile Devices by Students in the Classroom? 55
Hagit Meishar-Tal, Holon Institute of Technology (HIT), Alona Forkosh-Baruch, Levinsky College, Israel

Online Courses Evolving Teacher Education Programs ... 56
Miki Kritz, Miri Shonfeld, Kibbutzim College of Education Technology & Arts, Ilan Nagar, Hemdat Hadarom, Israel

QUALITY, ASSESSMENT AND EVALUATION

Opening Up Higher Education: Quality Assurance for Innovative Approaches ... 57
Stamenka Uvalić-Trumbić, Senior Advisor to the US Council for Higher Education Accreditation; Former Chief of Higher Education Section, UNESCO

Quality Culture in Blended Learning: Self-Assessment as a Driver for Change ... 58
Hilde Van Laer, Koen De Pryck, Chang Zhu, Yves Blieck, Vrije Universiteit Brussel, Belgium

Implementing a Model and Processes for Mapping Digital Literacy in the Curriculum (Online Badges) 59
George Evangelinos, Anglia Ruskin University, Debbie Holley, Bournemouth University, Mark Kerrigan, Anglia Ruskin University, United Kingdom

INTERNATIONAL INITIATIVES AND COLLABORATION CASES

International Students’ Behaviour in Virtual Collaborative Learning Arrangements .. 60
Wissam Tawileh, Technische Universität Dresden, Germany

Digital Learning in Higher Education — “Lessons from America” .. 61
Gerard L. Danford, Haaga-Helia University of Applied Sciences, Finland

ICT in the Final Years of Secondary Schooling: Policies and Assessments in Australia and Vietnam .. 62
Tran Manh Tang, Dorian Stoilescu, University of Western Sydney, Australia

The Role of the Association of Arab Universities in Promoting eLearning in the Member Universities 63
Sultan Abu Orabi, Abdallah Al-Zoubi, Association of Arab Universities, Jordan
School Displacement: Learning Outside Borders .. 64
Ana Mouta, Ana Paulino, Hélder Quintela, JP-inspiring knowledge, Portugal

ONLINE LEARNING NATIONAL CASE STUDIES

Design Challenges for an E-Learning Accreditation System for the Republic of Malta.......................... 65
Anthony F. Camilleri, Knowledge Innovation Centre, Alex Grech, StrategyWorks, Malta

Digital Creativity for Net Generation Students: Retooling the Art and Design Environment at School 66
Andrea Kárpáti, ELTE University, Faculty of Science, Centre for Science Communication and UNESCO Chair for Multimedia in Education, Ágnes Gaul-Ács, KAPTÁR Visual Arts Workshop and Archive, Hungary

The Impact of the National ICT Program on the School from the Viewpoint of the Administration – A Case Study 67
Wasserman Egoza, Targani Tami, Herzog Academic College, Israel

Developing an Irish Professional Development Framework for Teaching and Learning, in the Changing Higher Education Learning Environment ... 68
Geraldine O’Neill, Terry Maguire, Elizabeth Noonan, National Forum for the Enhancement of Teaching and Learning, Ireland

INSTITUTIONAL INNOVATION AND DEVELOPMENT WITH ICTS

Current Situation of e-Learning in Higher Education: A Case Study .. 69
Yasemin Gülbahar, Hale Ilgaz, Ankara University, Turkey

The TU Delft Online Learning Experience: From Theory to Practice ... 70
Nelson Jorge, Willem van Valkenburg, Sofia Dopper, Delft University of Technology, The Netherlands

From Sandbox to Learning Centre: A Case Study in New Learning Environments .. 71
Deborah Arnold, William Perez, Université de Bourgogne, France

The Assessment Process as a Cornerstone of Quality Assurance in Higher Education: The UOC Case 72
Ana-Elena Guerrero-Roldán, M. Elena Rodríguez, Xavier Bard, David Bañeres, Ingrid Noguera, Universitat Oberta de Catalunya, Spain

POSTERS

Tell Me Your Story: A MOOC Model for Reducing Bias Through Personalizing Cultural Narratives in Small, Collaborative, Multicultural Student Groups ... 73
Elaine Hoter, Ohalo College of Science Education and Sport, Nili Alon Amit, Kibbutzim College, Jen Sundick, David Yellin College of Education, Manal Yazbak Abu Ahmad, Sachnin College of Education, Reina Rutlinger-Reiner, Talpiot Academic College, Israel

Teaching to Teachers: A MOOC Based Hybrid Approach .. 74
Rosanna De Rosa, University of Naples, Alessandro Bogliolo, University of Urbino, Italy

Embedding MOOCs in University Courses: Experiences and Lessons Learned ... 75
Sólveig Jakobsdóttir, Grimur Bjarmason, Kristinn H. Gunnarsson, Dóra Dógg Kristófersdóttir, University of Iceland, Iceland

Using OERs, PERs, Blending and Flipping to Deliver a Computer Systems Module to Year 1 Students 76
Michael O’Rourke, Athlone Institute of Technology (AIT), Ireland

ICT Contests as a Road to Computer Literacy of Older People ... 77
Olga Grishina, Elena Sidorova, Plekhanov Russian University of Economics, Russia

Knowledge in Motion between Formal Education and Professional Practice – How to Design for Learning Across Boundaries ... 78
Anne Mette Bjørgen, Line Kristiansen, Lillehammer University College, Norway
WORKSHOPS

Leadership for Change in HE Institutions: The D-TRANSFORM Approach ... 97
Marta Aymerich, Universitat Oberta de Catalunya, Spain

Effective Interactive Webinars: Methods to Facilitate Learning in Open Collaborative Learning Environments. A
Toolbook for Practitioners/Facilitators ... 98
Torhild Slåtto, Flexible Education, Norway, Alastair Creelman, Linnaeus University, Markus Schneider, Karlstad
University, Sweden, David Röthler, Projektkompetenz, Austria, Hróbjartur Árnason, University of Iceland, Iceland

JRC-IPTS Research on Opening up Education through the Use of Digital Technologies:
Development of a Support Framework for Higher Education Institutions ... 99
Yves Punie, European Commission Joint Research Centre, Andreia Inamorato dos Santos, European Commission
(JRC-IPTS), Spain

Next Generation Learning Environments: How to Map Learning Methodologies to Learning Technologies 100
Francesc Santanach, Universitat Oberta de Catalunya, Spain, Jeff Merriman, Massachusetts Institute of
Technology, Tom Coppeto, Boston College, United States of America

The Global Classroom Learning Concept ... 101
Kristian Madsen, Flemming Nielsen, Laila Emilussen, VUC Storstrom, Denmark

Is Lurking Working? .. 102
Joergen Grubbe, The Danish Association for Flexible Learning – FLUID, Denmark, Alastair Creelman, Linnaeus
University, Sweden, Hróbjartur Árnason, University of Iceland, Iceland

European Policy and Practice in Digital Skills and Competences –
A Hands-on Workshop with Representatives of the ET2020 Working Group .. 103
Deirdre Hodson, DG EAC, European Commission, Belgium, Deborah Arnold, University of Burgundy, France,
Sandra Kučina Softić, University of Zagreb, Croatia, Ildiko Mazar, EDEN, United Kingdom

Implementing Inquiry Based Science Education in European Schools ... 104
Thomas Fischer, Sofoklis Sotiriou, Ellinogermaniki Agogi, Greece, Christian Stracke, Open University in the
Netherlands, The Netherlands, Sally Reynolds, Mathy Vanbuel, ATiT, Belgium

Learning Analytics: Exploring the Putting in Place of a System that Supports Learning
While Still Respecting Privacy ... 105
Tore Hoel, Oslo and Akershus University College of Applied Sciences, Norway, Dai Griffiths, Bolton University,
United Kingdom, Sally Reynolds, ATiT, Belgium

ABC Rapid Blended Course Design for Educators ... 106
Clive Young, Nataša Perović, University College London, United Kingdom

Open Courses as Virtual Mobility and the Role of Collaborative Literacy in Staff Development 107
Alastair Creelman, Anders Gerestrand, Linnaeus University, Lars Uhlin, Maria Kvarnström, Karolinska Institute,
Maria Hedberg, Lotta Åbjörnsson, Kenneth Johansson, Lund University, Stefan Stenbom, Royal Institute of
Technology, Sweden, Anne Whaits, IIE Varsity College, South Africa

From Heston back to Jamie: Designing an Appetising Recipe with an Ever-Changing Array of Ingredients
(Designing Learning for a World in Flux) ... 108
Lisette Toetenel, Wendy Fowle, Tom Olney, Open University, United Kingdom

DEMONSTRATIONS

So Close, but Still Out of Reach – Alternative Educational Program for Young Early School Leavers 109
Taru Kekkonen, Otava Folk High School, Johanna Juvonen, Valteri Centre for Learning and Consulting, Finland

Evolving Materials for the Flipped e-Classroom .. 110
Antonio Perez-Navarro, Marta Aymerich Martinez, Victor Garcia, Quelic Berga, Israel Conejero-Arto, Jordi Conesa,
Enric Mor Pera, Universitat Oberta de Catalunya (UOC), Spain
BOOK OF PROJECTS – COLLECTION OF "SYNERGY" SYNOPSIS

D-TRANSFORM ... 117
 Digital Resources As a New Strategical Factor for a Renovation of Modernization in higher education

ARMAZEG ... 118
 Developing Tools for Lifelong Learning in the Transcaucasus Region: e-Learning

eQTel ... 119
 Enhancing Quality of Technology-Enhanced Learning at Jordanian Universities

OpenMed .. 120
 Opening up Education in South-Mediterranean countries

SP4CE ... 121
 Strategic Partnership for Creativity and Entrepreneurship

LACE ... 123
 Learning Analytics Community Exchange

BigEdData .. 125
 The MOOCs Story Deconstructed

Y1Feedback ... 127
 Enhancing Assessment Feedback in First Year Using Digital Technologies

Student Success Toolbox .. 129
 Supporting Transitions from Thinking about Study to the First Weeks

Digital Laboratory of Open Learning .. 132
 An Exploration of Future Trends in Digital Learning Environments

MOOQ ... 133
 Massive Online Open Education Quality

OERup! ... 134
 Open Educational Resources uptake in adult education

OpenPROF .. 135
 Open Professional Collaboration for Innovation

OntoTech .. 136
 OntoTechnology

EDUWORKS ... 137
 Crossing borders in the comprehensive investigation of labour market matching processes: An EU-wide, trans-disciplinary, multilevel and science-practice-bridging training

eLene4work ... 139
 Learning to learn for new digital soft skills for employability

OBN ... 141
 Open Badge Network

LeHo .. 142
 Learning at Home and the Hospital
EBE-EUSMOSI ... 144
 Evidence Based Education European Strategic Model for School Inclusion

PBL 3.0 .. 145
 Problem-based Learning 3.0

EDADCC ... 147
 Digital environments for argumentation, debate and collective knowledge

ENGAGE ... 149
 Engaging Science, Innovative teaching for responsible citizenship

DICHE ... 150
 Digital Innovation in Cultural and Heritage Education in the light of 21st century learning

Learning21 .. 152
 Shaping the Future

FORESIGHT ... 155
 Access, Equity and Quality: Envisioning the Sustainable Future of Postsecondary Education in a Digital Age

t-MAIL ... 157
 Teacher Mobile Application for Innovative Learning

m-commerce ... 158
 m-commerce
AN INVITATION TO LOOK AT ENHANCEMENT IN TECHNOLOGY-ENHANCED LEARNING

Stéphanie Gauttier, Trinity College Dublin, School of Computer Science, Inmaculada Arnedillo-Sanchez, Trinity College Dublin, Ireland

The Internet, e-learning and now mobile learning are seen as opportunities for individual to access information and engage in learning anytime, anywhere. However, digital devices and technologies are also perceived as detrimental for learning (Dror, 2007), memory and attention (The Telegraph, 2015). The role that they play in learning needs questioning.

Technology-enhanced learning (TEL) is the use of technologies for learning. The term appears almost systematically in research concerned with e-learning without being discussed in itself (Price and Kirkwood 2014). To this end, there is a call for drawing more attention to the concept of enhancement, which is at the core of TEL, (Kirkwood & Price, 2014; Dror 2008).

This paper proposes a discussion of the notion of Technology-Enhanced learning. Firstly, it will examine the definition of enhancement and highlight how learners could be cognitively enhanced. Secondly, it will discuss the role of technology in learning as seen in literature, and illustrate it mainly performs an enabling function, rather than an enhancing one. The paper argues that technology appears to have a real enhancing role when the cognitive abilities of the learner are taken into account. Based on these considerations, future research directions for TEL will be proposed.

1 Enhancement as a person-centered concept

This section introduces the concept of enhancement as person-centered event. It discusses the definition of enhancement as extended abilities for the individual, which can be reached by intervention on competencies, mood and performance. To achieve this, the person can be enhanced in a physical or cognitive manner. This work focused on cognitive enhancement and present different means to achieve it, among which technology.

The transhumanist movement defines enhancement as a way to extend intellectual, physical and psychological abilities of individuals, so that they can go beyond their naturally limited capacities to become transhumans (More, 2013). For transhumanists, enhancement is not about repairing disabilities and relieving individuals from suffering, but going beyond the realm of what we know as possible, in a quest for happiness (Bailey 2013; Bostrom 2005). As such, it has a transformative impact on the individual and aims to increase the capacities, the efficiency of individuals.

To extend the abilities of the person beyond possible, enhancement can have three objects: 1. the competencies of a person; 2. the state (mood) of a person; 3. the performance of a person. The realization of at least one of them is enough to enhance the individual (Baertschi 2011). Baertschi (2011) establishes a link between the duration of enhancement and its impact: if one takes amphetamines before an exam, it’s to enhance performance at a given moment. If one takes drugs regularly to increase one’s attention, then it’s to enhance a capacity or competency.

1.1 Types of enhancement and ways to achieve it

Competencies, moods and performance can be enhanced by intervening on the physical or cognitive abilities of the individual. Physical enhancement entails gaining new bodily capacities, for instance through addition of new limbs, and improving body resistance to achieve a radical extension of human health span and life expectancy. Cognitive enhancement in stead is “the amplification or extension of core capacities of the mind through improvement or augmentation of internal or external information processing systems” (Bostrom and Sandberg,
Enhancing cognition refers to “the processes an organism uses to organize information. This includes acquiring information (perception), selecting (attention), representing (understanding) and retaining (memory) information, and using it to guide behaviour (reasoning and coordination of motor outputs)”, (Bostrom & Sandberg, 2009). To this end, three types of cognitive enhancement can be identified in relation to enhancing performance: 1. Enhancing separate cognitive processes; 2. Enhancing the process overall; 3. transforming the hierarchy of processes to make it more efficient. Similarly, it can have different objectives. For instance, enhancing the performance of the individual for a specific task at a specific moment, or enhance the cognitive abilities of the individual overall. Furthermore, aspects of physical and cognitive enhancement overlap as cognition is bodily-based. Notwithstanding the role of the body and perceptual senses in learning, the focus of this work is on cognitive enhancement (CE). Cognition, from the the Latin cognoscere, which means to know. Thus, the processes which help individuals to learn, gain knowledge and skills, are the ones to be considered here.

Cognitive enhancement can be achieved through different means such as pharmaceutical, neurological, genetic therapy or technology. Pharmaceuticals like nootropics (neuro-enhancers) can be used and for instance, pills to increase memory or attention are available on the market. Through non-invasive neurological techniques such as brain stimulation and brain-machine interfaces, or through invasive techniques as neural implants, neuro-enhancement can be achieved. Also, gene therapy can be used to modify some traits hereditary traits or traits linked to learning. Finally, technology can be utilised to enhanced cognition. Bostrom and Sandberg (2009) outline several technological means to obtain cognitive augmentation; 1. internal software: learning improved cognitive strategies or making use of the plasticity of the brain; 2. external hardware and software: collective cortex, artificial intelligence, software agents; 3. intelligence augmentation: software, mediation “embedding the human within an augmenting shell such as wearable computers or virtual reality”; 4. smart environments. Regarding the variety of purposes involved in the use of these technologies, Bostrom and Sandberg (2009) argue information technology can “give an overview, keep multiple items in memory, and perform routine tasks. Data mining and information visualization tools help produce overview and understanding where the perceptual system cannot handle the amount of data, while specialized tools like expert systems, symbolic math programs, decision support tools, and search agents expand specific skills and capacities”. While they highlight the role technology can play in the areas of perception, understanding and application of knowledge (decision making), our work focuses on the role of technology in enhancing the learner.

2. Enabling versus enhancing the learner

While technology can enhance cognition and therefore learning in many ways, two different roles for technology in learning can be identified: 1. Technology as an enabler of learning whereby learners are afforded access to learning material; 2. Technology as an enhancer of learning whereby learners’ capacities and performance are improved.

2.1 Technology enables, but doesn't necessarily enhance the learner

In practice, the role technology plays in enhancing learning is often implicit rather than explicitly articulated (Price & Kirkwood, 2014; Dror, 2008). To this end trends which characterize the affordances technology offers learners are:

- Provides more access to information (mainly through the Internet)
- Provides more access to education by allowing them to enrol in classes in remote places (via for instance e-learning courses and MOOCS)
- Provides more access to learning, as people can learn anywhere and anytime using their mobile devices (via m-learning).
- Provides more access to other learners and enable learners to learn by interacting with each other. For instance, mobile learning and computer-supported collaborative learning (CSCL) examines way in which learners can find each other (Kukulska-Hulme et al, 2012).
- Provides contextualized instructions. Technologies like Augmented or Virtual Reality allow learners to learn by being immersed in the environment related to their task. It allows them to practice tasks they
wouldn’t have the possibility to practice for real without risk (Hung et al, 2015). It allows them to learn what to do in this environment (Lee and Akin, 2011)

- Technology makes knowledge less abstract through visualization. For instance, augmented reality has been used to improve spatial abilities of learners, which are required for better understanding of geometry and mathematics (Kaufmann & Schmalstieg, 2003).

Not all these points relate to enhanced learning. Indeed, they do not all refer to learning itself. First, increased access to information doesn’t mean individuals process that information in such a way that they gain new knowledge out of it. Information can be perceived, but not understood, memorized or applied. Second, contextualized or digitalized instructions may not lead to gaining skills. Indeed, it is merely about following what the technology instructs the user to do, without necessarily understanding the logic behind the instructions and steps to take. The depth of understanding is questionable. Moreover, Dror (2007) highlights that by providing too much to the learner, technology present the risk of reducing the depth of processing and memory in learners themselves.

What is related to learning here is getting more access to learning. Learners can engage in learning whenever and wherever they want, gaining flexibility. But this doesn’t necessarily lead to increased efficiency, improved cognitive skills and learning.

The second point related to learning is the way knowledge is made less abstract by the means of visualization techniques. This is related to improved understanding, and in turn better learning.

To summarize technology would have an enabling role - it enables access to learning, information, and enables users to perform specific tasks - and an enhancing role, linked to improved understanding of concepts.

2.2 Technology enables the learner when it looks at cognitive processes and performance

We will discuss what has been identified as enhancement in TEL research and show that even though enhancement has not been a core concern so far, there is literature documenting improved cognitive processes and learners’ performance.

Kirkwood and Price (2014) conducted a literature review on TEL. They highlight that the type of enhancement to be offered through the technology is not intentionally stated in the work. A posteriori analyses allows to highlight 8 ways in which enhancement can be conceived in TEL: 1) increased flexibility, 2) improved retention (memory), 3) improved engagement or time spent on a learning task, 4) more favourable perception or attitudes, 5) improvement in test and assessments, 6) deeper understanding, 7) more reflexion or critical awareness, 8) improved interaction online and sharing experiences.

These aspects of enhancement overlap with the cognitive processes transhumanists describe. For instance, memory and understanding can be improved. Improvement in assessment also denotes of increased learning efficiency.

But there are also aspects that do not necessarily relate to enhancement. Indeed, there is little to no evidence that increased flexibility, engagement, attitude, and increased interaction translate in better learning outcomes. Kirkwood and Price (2014) underline that while current literature uses “quantitative measures that may be easy to capture, they contribute little to no understanding how (…) can promote qualitative developments in learning.”

We are facing a double issue here. First, cognitive processes have a direct impact on learning outcomes, and thinking of how to enhance them is de facto linked to enhancing learning, while some other variables such as participation, flexibility, may have an indirect impact on learning outcomes and efficiency. Second, the evidence used in TEL literature is not always conclusive. Because enhancement is not intentionally designed, evaluations use sets of measure that are not efficient in proving enhancement itself. There needs to be more reflexion around TEL at technology design and evaluation stages.

3. Directions for further developments

This section opens up directions for TEL research. We discuss how cognitive enhancement can be integrated to technology design processes. As enhancement is not neutral on the individual, risks have to be considered.
3.1 Need to integrate intended enhancement to technology design

Enhancement must be integrated to technology-design processes. Xia and Maes (2012) propose a framework for designing intelligence augmentation. They suggest to consider the desired state after enhancement, the processes at stake for the tasks, can the role of the technology on the processes (or hierarchy of processes). Although this approach can serve as a roadmap, there is still a lack of guidelines on what is to be enhanced and how to approach that decision. Indeed, in a specific situation, being able to forget something might be an enhancement, while in others enhancement may come in the form of better memorization, for instance. For design to integrate enhancement, there must be clarity in the impact sought, but also on the time-frame of that impact. Is the artefact impact memory for a specific moment, or is it touching to memory as the overall ability of the learner?

Another challenge is linked to understanding the type of enhancement needed by different learners – adults and children are at different developmental stages and face different cognitive challenges. The setting in which learning is occurring, and the presence of a teacher might influence ways to improve learning. The depth of learning looked for, depth of understanding, has be accounted for. Finally, the learner’s familiarity with the task or learning topic will have an impact on the enhancement needed from the technology to improve his/her performance.

There is so far little understanding of the impact these different variables would have on designing enhancement and no guidelines in terms of technological affordances, features, that would be needed to enhance learners. There’s also very little understanding of how to assess the efficiency of technologies regarding their enhancing character.

3.2 Need to develop thinking about how we assess artefacts for TEL

Evaluations of TEL present three types of shortcomings, which might hide the risks involved in using technology to intervene on cognitive processes.

First, as mentioned above, evidence collected during evaluation of technologies for learning and learners’ assessment is often not appropriate from an enhancement perspective. Reflection around the meaning of increased learning efficiency has to be carried out. Dror (2008) underlines that “too often ‘learning’ is reduced and limited to acquisition of information”, whereby efficiency equals the number of things learnt. But the notion of efficiency linked to enhancement has also been discussed concerning intelligence augmentation as allowing to comprehend/solve problems better, faster and in new ways. A technology-enhanced learner would have to learn “better” (quality of learning), faster, and be able to apply knowledge to do new things (Engelbart, 1962).

Second, evaluations do not consider long-term persistence of learning outcomes (Kirkwood and Price, 2014). Evaluations occur right after technology usage. At best, short term memory is tested. But there is no evidence of TEL systems allowing users to get better memory long-term, knowledge and understanding of the concepts a while after discovering them with technology.

Thirdly, the impact of technology use on cognitive processes over time hasn’t been a concern so far. However, Dror (2008) underlines that the loss of devices is lived as the loss of one’s own cognitive capacities and (Dror, 2007) that by providing too much to the learner, technology presents the risk of reducing the depth of processing and memory in learners themselves. This would in turn create a need for enhancement and lead users to use even more technology, as a consequence of being diminished by the technology.

Besides what is perceived consciously by the learner, some developmental processes can be at stake. Indeed, using technologies changes the way we develop by modifying our physical activity and the structure of our brains. These changes could hinder or even prevent some developmental stages as we know them today – if kids do not develop precise locomotor skills because they learn through tablets instead of playing with smaller toys, will they be able to acquire the same precision of movement that we can now have? Will it have an impact on their cognitive abilities overall? Without calling for a precautionary or proactivity principle, we argue that enhancement and its potential downsides must be considered by developers for more ethical technology development.

Conclusion

Enhancement for learners resides mainly in cognitive enhancement, that is increased efficiency of cognitive processes such as perception, attention, memorization, understanding or applying knowledge. By improving one or several processes, one improves the learning outcomes for the learner. TEL literature highlights affordances
from technology for learners, such as access to information, other learners, education, which are enabling learners. It also identifies some areas of enhancement, linked to cognitive processes but also to variables more indirectly related to learning efficiency. Enhancement has to be considered at a technology-design design stage for TEL to be effective, and to allow better assessment. An important downside of enhancement is the impact that enhancing one skill has on parallel or depending cognitive skills which development could be impaired, and the enhancement of the learner overall through time. Transdisciplinary research bridging such disciplines as learning, cognitive sciences and neurology is needed to illuminate the impact of enhancement technologies on the brain and learning overall. Studies that consider enhancement in a longitudinal perspective are required to guide educational practices and leverage the power of technology at the most.

References

Acknowledgements

Financial support of the Eduworks Marie Curie Initial Training Network Project (PITN-GA-2013-608311) of the European Commission’s 7th Framework Programme is gratefully acknowledged.